JPH02237183A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH02237183A
JPH02237183A JP5853489A JP5853489A JPH02237183A JP H02237183 A JPH02237183 A JP H02237183A JP 5853489 A JP5853489 A JP 5853489A JP 5853489 A JP5853489 A JP 5853489A JP H02237183 A JPH02237183 A JP H02237183A
Authority
JP
Japan
Prior art keywords
microwave
laser
dielectric
optical axis
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5853489A
Other languages
Japanese (ja)
Inventor
Kenji Yoshizawa
憲治 吉沢
Junichi Nishimae
順一 西前
Masakazu Taki
正和 滝
Tohei Nitta
新田 東平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5853489A priority Critical patent/JPH02237183A/en
Publication of JPH02237183A publication Critical patent/JPH02237183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To obtain high laser output with high efficiency by combining a microwave in a dielectric from the side face thereof through a combination window which is formed in a wall surface, where a microwave electric field in a microwave transmission path is almost eliminated, and extends in the direction of a laser optical axis. CONSTITUTION:A microwave transmission path 2 and a microwave circuit 6 are installed parallel along a laser optical axis and a microwave is combined from the side face 661 of a dielectric 66 through a combination window 41 which is formed in a wall surface, where a microwave electric field in the microwave transmission path 2 is almost eliminated, and extends in the direction of the laser optical axis. Therefore, while transmitted in the transmission path 2, the microwave is combined little by little from the microwave transmission path 2 to the dielectric 66 through the combination window 41 extending in the direction of the laser optical axis and through the side face 661 of the dielectric, and a microwave mode mainly including vertical electric field component to the boundary between the dielectric 66 and plasma is formed. Thereby uniform discharge in the direction of the laser optical axis is obtained to make a compact device of high laser excitation efficiency and high output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はマイクロ波放電を利用してレーザ励起を行な
う気体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gas laser device that performs laser excitation using microwave discharge.

〔従来の技術〕[Conventional technology]

第7図は、例えば特開昭63−186483号公報に記
載された従来の気体レーザ装置を示す斜視図である。図
において、(1〉はマイクロ波を発生するマグネトロン
、ク2〉はマグネ1・ロン(1)で発生したマイクロ波
を伝送する導波管、(3〉はこの導波管の巾を広げるホ
ーン導波管、(4〉はマイクロ波結合窓、(5)はレー
ザ発振用のミラー,(6)はレーザヘッドである。第8
図は第7図B−B線断面図であり、レーザヘッド部(6
)を拡大して詳細に示している。第8図に示されるよう
に、レーザヘフド部《6〉はマイクロ波回路の一種であ
るリッジ導波管型のマイクロ波空胴の構造を持つ。第゜
8図において、(61)はマイクロ波結合窓(4〉に続
く空胴壁、(62).  (63)はこの空胴壁ク61
〉の断面の゛中央部に形成されたりッジ、(64)は一
方のりッジ(62)に形成された溝であり、(65)は
マイクロ波回路の一部を構成する導電体壁であって、溝
(64)の壁面が使用される。〈66〉はこの導電体壁
ク65〉に対向して設けられた、例えばアルミナなどの
誘電体であり、<67〉はこの誘電体(66〉が溝(6
4〉を覆うことにより導電体壁(65)と誘電体〈66
)との間に形成される放電空間であって、この放電空間
(67〉に例えばCOレーザガスなどのレーザ気体が封
入される。また、(68)はりッジ(62),  <6
3)に形成された冷却水路である。
FIG. 7 is a perspective view showing a conventional gas laser device described in, for example, Japanese Patent Application Laid-open No. 186483/1983. In the figure, (1> is a magnetron that generates microwaves, 2> is a waveguide that transmits the microwaves generated by magnetron (1), and (3> is a horn that widens the width of this waveguide. The waveguide, (4> is the microwave coupling window, (5) is the mirror for laser oscillation, and (6) is the laser head. 8th
The figure is a sectional view taken along the line B-B in FIG.
) is enlarged to show details. As shown in FIG. 8, the laser head section <<6>> has a structure of a ridge waveguide type microwave cavity, which is a type of microwave circuit. In Fig. 8, (61) is the cavity wall following the microwave coupling window (4), (62). (63) is this cavity wall 61
The ridge formed in the center of the cross section of Therefore, the wall surface of the groove (64) is used. 〈66〉 is a dielectric material such as alumina, which is provided facing the conductive wall 65〉, and 〈67〉 is a dielectric material such as alumina, which is provided opposite to the conductive wall 65〉.
By covering the conductor wall (65) and the dielectric material <66
), and a laser gas such as CO laser gas is sealed in this discharge space (67).
3) is a cooling water channel formed in

以上のように構成された従来の気体レーザ装置において
、マグネトロン(1)で発生されたマイクロ波は導波管
(2)を通ってホーン導波管(3)で広げられ、ホーン
導波管〈3)の終端の壁面(4)に設けられたマイクロ
波結合窓ク41〉でインピーダンスマッチングをとるこ
とにより効率よくレーザヘッド部(6)に結合される。
In the conventional gas laser device configured as described above, microwaves generated by the magnetron (1) pass through the waveguide (2) and are spread by the horn waveguide (3). 3) is efficiently coupled to the laser head section (6) by performing impedance matching at the microwave coupling window 41 provided on the wall surface (4) at the end of the section.

レーザヘッド部(6)は第8図に示されるようにリツジ
空胴状になっているため、マイクロ波はりフジ<62)
.  (63)の間に集中する。この集中したマイクロ
波の強い電界によって放電空間《67)に封入されたレ
ーザ気体が放電破壊してプラズマを発生し、レーザ媒質
が励起される。ここで、冷却水路(68)に冷却水を流
し、放電プラズマを冷却すると共に、レーザ気体の圧力
などの放電条件を適切に選ぶことによってレーザ励起条
件が得られ、第7図中のミラー〈5〉及び図示のないも
う一枚のミラーによりレーザ共振器を形成することでレ
ーザ発振光を帰ることができる。
The laser head part (6) has a ridge-cavity shape as shown in Fig. 8, so the microwave beam
.. Concentrate between (63). Due to the strong electric field of the concentrated microwaves, the laser gas sealed in the discharge space (67) is destroyed by discharge to generate plasma, and the laser medium is excited. Here, the laser excitation conditions are obtained by flowing cooling water into the cooling channel (68) to cool the discharge plasma and appropriately selecting the discharge conditions such as the pressure of the laser gas. ) and another mirror (not shown) to form a laser resonator, the laser oscillation light can be returned.

また、このりッジ空胴のようにマイクロ波回路が誘電体
(66〉とプラズマの境界に垂直な電界成分を有するマ
イクロ波モードを形成する場合、誘電体《66)と導電
体壁〈65)は対向して設置されているので導電体壁(
65〉にも垂直な電界成分を有することになり、プラズ
マを貫《電界ができる。この時、導電性を持゛つプラズ
マが発生しても、マイクロ波入射窓である誘電体(66
〉に対向してプラズマよりも数桁導電性の高い導電体壁
〈65〉があるために、入射マイクロ波の終端電流はこ
の導電体壁(65〉を流れ、導電体壁(65〉近傍の電
界は強制的に導電体壁(65)の表面に垂直にされ、プ
ラズマを貫く電界が維持される。このためマイクロ波が
プラズマ中に浸透し、プラズマを貫く電流が流れ、電流
の連続性から空間的に一様な放電プラズマが得られ、レ
ーザ発振が行われる。
In addition, when a microwave circuit forms a microwave mode having an electric field component perpendicular to the boundary between the dielectric material (66) and the plasma, as in this ridge cavity, the dielectric material (66) and the conductor wall <65 ) are installed facing each other, so conductive walls (
65> also has a vertical electric field component, creating an electric field that penetrates the plasma. At this time, even if conductive plasma is generated, the dielectric material (66
Because there is a conductor wall (65) facing the conductor wall (65), which has several orders of magnitude higher conductivity than the plasma, the terminal current of the incident microwave flows through this conductor wall (65), and the current near the conductor wall (65) The electric field is forced perpendicular to the surface of the conductor wall (65), maintaining an electric field through the plasma.This allows the microwave to penetrate into the plasma, causing a current to flow through the plasma, and from the continuity of the current. A spatially uniform discharge plasma is obtained, and laser oscillation is performed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の気体レーザ装置では、導波管の伝送
方向の終端部に結合窓《4〉を設けているため、ホーン
導波管(3〉によりマイクロ波を均一に拡げなければ、
長さ方向、すなわちレーザ光軸方向の放電の均一性を確
保できない。ホーン導波管(3》中では多くのマイクロ
波モードが励振可能であり、方形導波管(2〉からホー
ン導波管(3)につながる場合、ホーン導波管(3)中
ではどうしても中央部分のマイクロ波が強くなる傾向に
ある。
In the conventional gas laser device as described above, since the coupling window (4) is provided at the end of the waveguide in the transmission direction, unless the microwave is spread uniformly by the horn waveguide (3),
Uniformity of discharge in the length direction, that is, in the direction of the laser optical axis cannot be ensured. Many microwave modes can be excited in the horn waveguide (3), and when connecting from the rectangular waveguide (2) to the horn waveguide (3), the central Microwaves tend to be stronger in certain areas.

さらにマイクロ波の拡がりがホーンの形状とその先端に
ある負荷インピーダンスの影響を受けるため、放電とマ
イクロ波の相互作用によりマイクロ波の拡がる様子が変
化し、マイクロ波を均一に拡げる条件を求めるのが難し
い。従って、レーザ光軸方向の放電の均一性を確保する
のが難しく、レーザ発振の効率をさらに高めるのが難し
かった。
Furthermore, since the spread of microwaves is affected by the shape of the horn and the load impedance at its tip, the manner in which the microwaves spread changes due to the interaction between the discharge and the microwaves, and it is important to find conditions that spread the microwaves uniformly. difficult. Therefore, it has been difficult to ensure uniformity of discharge in the direction of the laser optical axis, and it has been difficult to further increase the efficiency of laser oscillation.

これと共に、一部に電力が集中し易いから大電力を投入
できず高出力を帰離いという問題点があクたへ この発明は上記のような問題点を解決するためになされ
たもので、レーザの光軸方向の放電の均一性が簿易《、
高効率で大出力の気体レーザ装置を帰ることを目的とす
る。
Along with this, there is a problem that power is easily concentrated in one part, so large amounts of power cannot be input and high output cannot be returned.This invention was made to solve the above problems. , the uniformity of the discharge in the direction of the optical axis of the laser is easy to calculate.
The aim is to create a high-efficiency, high-output gas laser device.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る気体レーザ装置は、マイクロ波伝送路と
マイクロ波回路とをレーザ光軸に沿うように並列配置し
、ヤイクロ波伝送路中のマイクロ波電界がほぼゼロとな
る壁面に設けたレーザ光軸方向に伸びた結合窓を通じて
誘電体の側面方向からマイクロ波を結合するようにした
ものである。
The gas laser device according to the present invention has a microwave transmission line and a microwave circuit arranged in parallel along the laser optical axis, and a laser beam provided on a wall surface where the microwave electric field in the microwave transmission line becomes almost zero. Microwaves are coupled from the sides of the dielectric through a coupling window extending in the axial direction.

〔作用〕[Effect]

この発明における気体レーザ装置は、マイクロ波が伝送
路中を伝送しながら、レーザ光軸方向に伸びた結合窓と
誘電体側面を通じて、マイクロ波伝送路から誘電体へ徐
々にマイクロ波結合を行なうと共に、誘電体とプラズマ
の境界に画直な電界成分が支配的なマイクロ波モードを
形成する。
The gas laser device of the present invention gradually couples the microwaves from the microwave transmission path to the dielectric material through the coupling window extending in the direction of the laser optical axis and the side surface of the dielectric material while the microwaves are transmitted through the transmission path. , a microwave mode dominated by an electric field component directly at the boundary between the dielectric and the plasma is formed.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による気体レーザ装置を示す斜
視図、第2図は第1図A−A線断面図である。この実施
例では、マイクロ波伝送路である方形導波管(2)とマ
イクロ波回路であるレーザヘッド(6)とをレーザ光軸
に沿うように並列配置し、結合窓〈4l〉は導波管(2
》中のマイクロ波電界がほぼゼロとなる壁面に設けられ
、レーザ光軸方向に細長く伸びるように構成されている
。従って導波管〈2》の側面に設けられたマイクロ波結
合窓《41)を通じて誘電体の側面方向からマイクロ波
を結合する。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a perspective view showing a gas laser device according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line A--A in FIG. 1. In this example, a rectangular waveguide (2), which is a microwave transmission path, and a laser head (6), which is a microwave circuit, are arranged in parallel along the laser optical axis, and the coupling window <4l> is used to guide the waveguide. Pipe (2
>> It is installed on the wall surface where the microwave electric field inside is almost zero, and is configured to extend in a long and narrow direction in the direction of the laser optical axis. Therefore, microwaves are coupled from the side surface of the dielectric through the microwave coupling window (41) provided on the side of the waveguide (2).

このように構成されたものにあっては、導波管(2)中
には第2図における矢印Eで示す電界ができる。即ち、
TEII!モードが励振され、マイクロ波結合窓(41
)は導波管(2〉中の電界Eに平行な壁面、すなわち電
界がゼロである壁面(4)に設けられた細長いスリット
からなる。このような位置に設けられた結合窓(41)
からレーザヘッド<6〉内にマイクロ波を結合するため
,誘電体《66)の紙面に垂直な方向に細長く伸びた端
面(661)に、この端面(661)に平行な電界成分
が支配的あるマイクロ波が励振され、誘電体(66〉と
放電空間《67)の境界には垂直な電界が生じる。この
誘電体(66〉を通じて放電空間ク67)にマイクロ波
が供給され放電を生じさせる。放電を生じてプラズマが
発生しても、このプラズマを貫く電界が維持され均一な
放電が維持される。導波管(2)中のマイクロ波は、伝
送方向がレーザヘッドク6〉の光軸方向、即ち放電空間
の長手力向と平行であるため、導波管(2)中を伝送し
ながら側面に設けられた結合窓(4l)からレーザヘッ
ド(6)に徐々に結合される。導波管(2)中のマイク
ロ波モードはホーン導波管と異なり、T E I9モー
ドだけしか存在し簿ず、結合の様子は結合窓(41)の
形状で自由に調整することができる。
With such a structure, an electric field is generated in the waveguide (2) as indicated by arrow E in FIG. That is,
TEII! The mode is excited and the microwave coupling window (41
) consists of an elongated slit provided on the wall surface (4) parallel to the electric field E in the waveguide (2>, that is, the wall surface where the electric field is zero).A coupling window (41) provided at such a position
In order to couple microwaves into the laser head <6>, an electric field component parallel to this end face (661) is dominant on the end face (661) of the dielectric body <66> that extends in a direction perpendicular to the plane of the paper. Microwaves are excited, and a vertical electric field is generated at the boundary between the dielectric (66) and the discharge space (67). Microwaves are supplied to the discharge space 67 through this dielectric (66) to generate a discharge. Even if a discharge occurs and a plasma is generated, the electric field that penetrates the plasma is maintained and a uniform discharge is maintained. Since the transmission direction of the microwave in the waveguide (2) is parallel to the optical axis direction of the laser head 6〉, that is, parallel to the longitudinal force direction of the discharge space, the microwaves in the waveguide (2) are It is gradually coupled to the laser head (6) through a coupling window (4l) provided in the laser head (6). Unlike the horn waveguide, the microwave mode in the waveguide (2) is only the T E I9 mode, and the manner of coupling can be freely adjusted by changing the shape of the coupling window (41).

このため、結合窓(41)の幅等を適当に構成すれば、
容易にレーザ光軸方向に均一に結合させることができ、
この方向の放電の分布を均一にできる。このように、深
さ方向にも光軸方向にも放電が均一になるため、放電空
間全体なレーザの励起に適当な状態にすることが容易と
なる。さらに、レーザ発振用ミラー《5〉及び(51)
により構成されるレーザ共振器により効率の良いレーザ
発振を行なわせることができる。また、放電空間(67
)の一部でも放電電力密度が上がり過ぎるとレーザ発扱
の効率が落ちることがある。従って、放電が不均一で電
力集中が一部でも起こっていると、この部分の放電電力
密度により投入電力の上限値が決まるため、放電空間全
体として投入可能な電力が小さくなってしまう。これに
対しこの発明で得られるような電力集中のない均一な放
電では投入可能な電力が大きくなる。従って、この発明
のものにあっては大きな発振出力が得られることになる
Therefore, if the width of the coupling window (41) is configured appropriately,
It can be easily and uniformly coupled in the direction of the laser optical axis.
The distribution of discharge in this direction can be made uniform. In this way, the discharge becomes uniform both in the depth direction and in the optical axis direction, making it easy to bring the entire discharge space into a state suitable for excitation of the laser. Furthermore, laser oscillation mirrors <<5>> and (51)
Efficient laser oscillation can be performed by the laser resonator configured by the following. In addition, the discharge space (67
) If the discharge power density increases too much, the efficiency of laser emission may decrease. Therefore, if discharge is uneven and power concentration occurs even in a part, the upper limit of the input power is determined by the discharge power density in this part, and the power that can be input into the discharge space as a whole becomes smaller. On the other hand, in the case of uniform discharge without power concentration as obtained by the present invention, the power that can be input becomes large. Therefore, with the device of the present invention, a large oscillation output can be obtained.

第3図はこの発明の他の実施例による気体レーザ装置を
示すレーザ光軸に垂直な断面図である。
FIG. 3 is a sectional view perpendicular to the laser optical axis showing a gas laser device according to another embodiment of the invention.

この実施例による気体レーザ装置は、導波管(2l)に
円筒導波管を用い、導波管(2l)の側面にレーザヘッ
ド(6)を並列配置したものである。また、図中の矢印
Eで示す導波管中央の電界方向とほぼ平行になる壁面、
すなわち導波管《21)内の電界がほぼゼロとなる面に
、紙面に垂直な方向に細長い結合窓〈42)が設けられ
ている。従って、上記実施例と同様のマイクロ波結合が
行われ、レーザ光軸方向の放電を容易に均一にできる。
The gas laser device according to this embodiment uses a cylindrical waveguide as the waveguide (2l), and has laser heads (6) arranged in parallel on the side surface of the waveguide (2l). In addition, a wall surface that is approximately parallel to the electric field direction at the center of the waveguide, indicated by arrow E in the figure,
That is, an elongated coupling window (42) is provided in the direction perpendicular to the plane of the paper on the plane where the electric field in the waveguide (21) is almost zero. Therefore, the same microwave coupling as in the above embodiment is performed, and the discharge in the direction of the laser optical axis can be easily made uniform.

第4図は、この発明のさらに他の実施例に係るレーザヘ
ッドを示す断面図である。この実施例では、放電空間(
67)として,リッジ(62)の溝部に挿入した偏平な
細長い誘電体管(662)で構成したので、マイクロ波
が誘電体管< 662 )の側面(663)から主に誘
電体管(662)の上部壁面を構成する誘電体部分に結
合される。このように、放電空間(67)へのマイクロ
波の結合は上記実施例とほぼ同様に行われ、放電空間の
レーザ光軸方向にわたって均一な放電を発生できる。ま
た、放電空間(6・7)として周囲が閉じた誘電体管(
 662 )で構成しているため、放電ガスの封止が簡
単である利点がある。
FIG. 4 is a sectional view showing a laser head according to still another embodiment of the invention. In this example, the discharge space (
67) is composed of a flat and elongated dielectric tube (662) inserted into the groove of the ridge (62), so that the microwave is mainly transmitted from the side surface (663) of the dielectric tube (662) to the dielectric tube (662). is bonded to a dielectric portion that constitutes the upper wall surface of. In this way, the microwave is coupled to the discharge space (67) in substantially the same manner as in the above embodiment, and a uniform discharge can be generated across the discharge space in the direction of the laser optical axis. In addition, a dielectric tube with a closed periphery (
662), it has the advantage that the discharge gas can be easily sealed.

第5図はこの発明のさらに他の実施例を示す断面図であ
る。この実施例にあっては、導波管(2〉から結合窓(
41〉を通じた誘電体(66〉へのマイクロ波の結合は
上記実施例と同様に行われ、容易にレーザ光軸方向に均
一な放電を発生できる。また、放電空間(671). 
 <672>を誘電体(66)の両側に設けたため、放
電空間全体にトータルとしてより多くの電力を投入でき
、2本のレーザビームにより出力の大きいビームが得ら
れる。
FIG. 5 is a sectional view showing still another embodiment of the invention. In this example, from the waveguide (2〉) to the coupling window (
41> to the dielectric body (66>) is performed in the same manner as in the above embodiment, and a uniform discharge can be easily generated in the direction of the laser optical axis.Furthermore, the discharge space (671).
Since <672> is provided on both sides of the dielectric (66), more power can be injected into the entire discharge space in total, and a beam with high output can be obtained with the two laser beams.

第6図はこの発明のさらに他の実施例を示す斜視図であ
る。この実施例では、結合窓(43), (44).《
45)を分割して設けた。このように、細長い結合窓を
複数に分割して設け、例えば各々の結合窓の形状を適当
に設定することで、レーザ光軸方向の放電の均一性をよ
り良くすることも可能になる。
FIG. 6 is a perspective view showing still another embodiment of the invention. In this example, the combining windows (43), (44) . 《
45) was divided and provided. In this way, by dividing the elongated coupling window into a plurality of parts and, for example, appropriately setting the shape of each coupling window, it is possible to improve the uniformity of the discharge in the direction of the laser optical axis.

なお、上記実施例ではマイクロ波伝送路に方形導波管や
円箇導波管を用いたものについて説明したが、リッジ導
波管等その他の伝送路を用いても良いということは言う
までもない。
In the above embodiments, a rectangular waveguide or a circular waveguide is used as the microwave transmission line, but it goes without saying that other transmission lines such as a ridge waveguide may also be used.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、マイクロ波発振器か
らのマイクロ波をマイクロ波伝送路を通じてマイクロ波
回路へ伝送し、このマイクロ波回路中の少なくとも一面
が誘電体で仕切られた空間に上記マイクロ波によりプラ
ズマを発生しレーザ励起を行う気体レーザ装置において
、マイクロ波伝送路とマイクロ波回路とをレーザ光軸に
沿うように並列配置すると共に、マイクロ波伝送路中の
マイクロ波電界がほぼゼロとなる壁面に設けたレーザ光
軸方向に伸びた結合窓を通じて、誘電体の側面方向から
この誘電体中にマイクロ波を結合することにより、レー
ザ光軸方向に均一な放電が辱られ、コンパクトな構成で
,レーザの発振効率が高く、出力も大きな気体レーザ装
置が得ら゛れる効果がある。
As described above, according to the present invention, microwaves from a microwave oscillator are transmitted to a microwave circuit through a microwave transmission line, and the microwave is transmitted to a space in which at least one side of the microwave circuit is partitioned by a dielectric material. In a gas laser device that uses waves to generate plasma and excite the laser, the microwave transmission line and the microwave circuit are arranged in parallel along the laser optical axis, and the microwave electric field in the microwave transmission line is almost zero. By coupling microwaves into the dielectric from the side of the dielectric through a coupling window extending in the direction of the laser optical axis, which is provided on a wall surface, uniform discharge is achieved in the direction of the laser optical axis, resulting in a compact configuration. This has the effect of providing a gas laser device with high laser oscillation efficiency and large output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による気体レーザ装置を示
す斜視図、第2図は第1図A−A線断面図、第3図はこ
の発明の他の実施例に係るレーザヘッドを示す断面図、
第4図および第5図はそれぞれこの発明のさらに他の実
施例に係るレーザヘッドを示す断面図、第6図はこの発
明のさらに他の実施例を示す斜視図、第7図は従来の気
体レーザ装置を示す斜視図、第8図{よ第7図B−Bm
断面図である。 (1)・・・マグネトロン、(2》・・壷導波管、(4
1).(42).(43).(44),<45)●−φ
 マイクロ波結合窓、 (6)・・・レーザヘシド、 
( 66). (682)・・・誘電体、( 681 
), ( 883 )・・争誘電体の側面、(67)・
・番放電空間。 なお、各図中同一符号は同一、又は相当部分を示す。 代  理  人 大  岩  増  雄
FIG. 1 is a perspective view showing a gas laser device according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. 1, and FIG. 3 is a laser head according to another embodiment of the invention. cross section,
4 and 5 are cross-sectional views showing a laser head according to still another embodiment of the present invention, FIG. 6 is a perspective view showing still another embodiment of the present invention, and FIG. 7 is a conventional gas laser head. A perspective view showing the laser device, FIG. 8 {and FIG. 7 B-Bm
FIG. (1)... Magnetron, (2)... Urn waveguide, (4
1). (42). (43). (44),<45)●−φ
microwave coupling window, (6)...laser hesid,
(66). (682)...dielectric, (681
), (883)...Side surface of dielectric material, (67)...
・Number discharge space. Note that the same reference numerals in each figure indicate the same or equivalent parts. Deputy Masuo Iwa, Jindai University

Claims (1)

【特許請求の範囲】[Claims]  マイクロ波発振器からのマイクロ波をマイクロ波伝送
路を通じてマイクロ波回路へ伝送し、このマイクロ波回
路中の少なくとも一面が誘電体で仕切られた放電空間に
上記マイクロ波によりプラズマを発生しレーザ励起を行
なう気体レーザ装置において、上記マイクロ波伝送路と
上記マイクロ波回路とをレーザ光軸に沿うように並列配
置すると共に、上記マイクロ波伝送路中のマイクロ波電
界がほぼゼロとなる壁面に設けた上記レーザ光軸方向に
伸びた結合窓を通じて、上記誘電体の側面方向からこの
誘電体中に上記マイクロ波を結合することを特徴とする
気体レーザ装置。
Microwaves from a microwave oscillator are transmitted to a microwave circuit through a microwave transmission line, and a plasma is generated by the microwaves in a discharge space in which at least one side of the microwave circuit is partitioned by a dielectric material, and laser excitation is performed. In the gas laser device, the microwave transmission path and the microwave circuit are arranged in parallel along the laser optical axis, and the laser is provided on a wall surface where the microwave electric field in the microwave transmission path becomes almost zero. A gas laser device characterized in that the microwave is coupled into the dielectric from a side surface of the dielectric through a coupling window extending in the optical axis direction.
JP5853489A 1989-03-10 1989-03-10 Gas laser device Pending JPH02237183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5853489A JPH02237183A (en) 1989-03-10 1989-03-10 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5853489A JPH02237183A (en) 1989-03-10 1989-03-10 Gas laser device

Publications (1)

Publication Number Publication Date
JPH02237183A true JPH02237183A (en) 1990-09-19

Family

ID=13087102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5853489A Pending JPH02237183A (en) 1989-03-10 1989-03-10 Gas laser device

Country Status (1)

Country Link
JP (1) JPH02237183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026796A2 (en) * 1999-02-01 2000-08-09 Tadahiro Ohmi Laser oscillating apparatus, exposure apparatus using the same, and device fabrication method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026796A2 (en) * 1999-02-01 2000-08-09 Tadahiro Ohmi Laser oscillating apparatus, exposure apparatus using the same, and device fabrication method
EP1026796A3 (en) * 1999-02-01 2001-09-12 Tadahiro Ohmi Laser oscillating apparatus, exposure apparatus using the same, and device fabrication method
US6829279B1 (en) 1999-02-01 2004-12-07 Canon Kabushiki Kaisha Laser oscillating apparatus, exposure apparatus using the same and device fabrication method

Similar Documents

Publication Publication Date Title
US7260134B2 (en) Dielectric coupled CO2 slab laser
JP2008509556A (en) Dielectric-coupled carbon dioxide slab laser
EP0412555A1 (en) Gas laser device
US4955035A (en) Microwave-pumped, high-pressure, gas-discharge laser
US4004249A (en) Optical waveguide laser pumped by guided electromagnetic wave
US4651325A (en) RF-pumped infrared laser using transverse gas flow
JP2006525756A (en) Waveguide laser
US20030058913A1 (en) CO2 slab laser having electrode assembly including ventilated insulators
JPH02237183A (en) Gas laser device
JPH033380A (en) Gas laser device
JP2566585B2 (en) Optical waveguide type gas laser device
JPH04307978A (en) High-frequency exciting gas laser having flow in longitudinal direction
JPH07105536B2 (en) Gas laser device
JPH033382A (en) Gas laser device
JPH07105539B2 (en) Gas laser device
JP2566584B2 (en) Gas laser device
JPH084165B2 (en) Gas laser device
JPH04307980A (en) Gas laser
JP2531526B2 (en) Gas laser device
JPH02125481A (en) Gas laser device
JPH07105537B2 (en) Plasma equipment
JP2566586B2 (en) Gas laser device
JP2975788B2 (en) Slab type gas laser device
JPH047111B2 (en)
JPH07105538B2 (en) Gas laser device