JPH084165B2 - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH084165B2
JPH084165B2 JP1807187A JP1807187A JPH084165B2 JP H084165 B2 JPH084165 B2 JP H084165B2 JP 1807187 A JP1807187 A JP 1807187A JP 1807187 A JP1807187 A JP 1807187A JP H084165 B2 JPH084165 B2 JP H084165B2
Authority
JP
Japan
Prior art keywords
microwave
laser
plasma
discharge
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1807187A
Other languages
Japanese (ja)
Other versions
JPS63186483A (en
Inventor
順一 西前
憲治 吉沢
正和 滝
至宏 植田
正 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1807187A priority Critical patent/JPH084165B2/en
Priority to EP95108095A priority patent/EP0674471B1/en
Priority to DE3855896T priority patent/DE3855896T2/en
Priority to DE3856348T priority patent/DE3856348T2/en
Priority to EP88101007A priority patent/EP0280044B1/en
Priority to KR1019880000551A priority patent/KR910002239B1/en
Priority to US07/147,726 priority patent/US4890294A/en
Publication of JPS63186483A publication Critical patent/JPS63186483A/en
Publication of JPH084165B2 publication Critical patent/JPH084165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32321Discharge generated by other radiation
    • H01J37/32339Discharge generated by other radiation using electromagnetic radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lasers (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はマイクロ波放電を利用してレーザ励起を行
う気体レーザ装置に関するものである。
TECHNICAL FIELD The present invention relates to a gas laser device that performs laser excitation using microwave discharge.

〔従来の技術〕[Conventional technology]

第9図は例えばJournal of Applied Physics Vol.49,
No.7,July 1978,P.3753に記載された従来の気体レーザ
装置を示す断面図,第10図は第9図におけるB−B断面
図である。図において,(3)はマイクロ波を伝送する
導波管,(31)はこの導波管の一部に設けられた導波管
テーパ,(32)はこの導波管テーパ部の空間に設置され
たパイレツクスガラス製のレーザ放電管,(33)はこの
レーザ放電管の端部に設けられたレーザガス導入口,
(34)は同じくレーザガス排出口,(35)は上記レーザ
放電管(32)を包むように配設された冷却ガス送気管,
(36)はこの冷却ガス送気管の端部に設けられた冷却ガ
ス導入口,(37)は同じく冷却ガス排出口,(38)は上
記レーザ放電管(32)の両端に設けられたブリユースタ
ー窓,(39)はDC放電用の陰極,(40)は同じく陽極で
ある。
Figure 9 shows, for example, the Journal of Applied Physics Vol.49,
No. 7, July 1978, P. 3753, a cross-sectional view showing a conventional gas laser device, and FIG. 10 is a cross-sectional view taken along the line BB in FIG. In the figure, (3) is a waveguide that transmits microwaves, (31) is a waveguide taper provided in a part of this waveguide, and (32) is installed in the space of this waveguide taper part. The laser discharge tube made of pyrex glass (33) is a laser gas inlet provided at the end of this laser discharge tube,
Similarly, (34) is a laser gas discharge port, (35) is a cooling gas gas pipe arranged so as to surround the laser discharge pipe (32),
(36) is a cooling gas inlet provided at the end of the cooling gas supply pipe, (37) is also a cooling gas outlet, and (38) is a bridge provided at both ends of the laser discharge pipe (32). A star window, (39) is a cathode for DC discharge, and (40) is an anode.

上記のような従来の気体レーザ装置において,レーザ
放電管(32)中にはレーザガス導入口(33)より例えば
CO2レーザガスのようなレーザ気体が導入され,一方,
導波管(3)中にはTE10モードのマイクロ波が励起され
ている。この導波管(3)は内部に導波管テーパ(31)
を有し,レーザ放電管(32)の設置された位置で導波管
(3)の内径が最小となつているためこの位置でマイク
ロ波の電界が最大となる。この強いマイクロ波電界によ
りレーザ放電管(32)中のレーザ気体が放電破壊し,プ
ラズマを発生し,レーザ媒質が励起される。この時,冷
却ガス送気管(35)中に例えば低温のN2ガスなどを高速
で流し,レーザ放電管(32)を外部から冷却するととも
に,レーザ気体の圧力などの放電条件を適切に選ぶこと
によつてレーザ発振条件が得られ,ブリユースター窓
(38)の外部に図示のないレーザ発振用のミラーを設け
ることによりレーザ発振が行なわれる。
In the conventional gas laser device as described above, the laser gas is introduced into the laser discharge tube (32) through the laser gas inlet (33), for example.
Laser gas such as CO 2 laser gas is introduced, while
A TE 10 mode microwave is excited in the waveguide (3). The waveguide (3) has a waveguide taper (31) inside.
Since the inner diameter of the waveguide (3) is minimum at the position where the laser discharge tube (32) is installed, the microwave electric field is maximum at this position. This strong microwave electric field discharges and destroys the laser gas in the laser discharge tube (32), generating plasma and exciting the laser medium. At this time, for example, low-temperature N 2 gas or the like is caused to flow through the cooling gas supply pipe (35) at high speed to cool the laser discharge pipe (32) from the outside and to appropriately select the discharge conditions such as the pressure of the laser gas. Thus, laser oscillation conditions are obtained, and laser oscillation is performed by providing a laser oscillation mirror (not shown) outside the Brewster window (38).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記のような従来の気体レーザ装置では,閉じたレー
ザ放電管(32)を使用しているために,導電性を持つプ
ラズマが発生するとレーザ放電管(32)中のプラズマを
内導体とする同軸モードのマイクロ波モードが支配的と
なり,プラズマ中のマイクロ波電界はレーザ放電管(3
2)の管壁に平行な成分を主成分とする電界となり,プ
ラズマ中へ侵入するマイクロ波は実質的にレーザ放電管
(32)の管壁つまりプラズマ境界に対して垂直に入射す
るモードとなる。このようにプラズマ境界に対して垂直
に入射するマイクロ波によつて発生する放電においては
マイクロ波電界は放電管壁から内部に向けて減少する
が,放電プラズマが定電圧的な特性を持つために僅かな
電界の差異によつて電流密度が大きく変化し,結果とし
て放電管壁付近に集中した著しく不均一なプラズマが発
生することになる。この様子を第11図の断面図に示す。
図において(31)は導波管テーパ,(32)はレーザ放電
管,(69)はマイクロ波電界の電気力線,(70)はプラ
ズマである。従来のマイクロ波放電を利用した気体レー
ザ装置においては第11図に示されるような不均一なプラ
ズマが発生するために放電全体をレーザ励起に適当な状
態とすることが困難となり,またレーザ共振器モードと
プラズマがオーバラツプせずレーザ出力や効率が低いと
いう問題点があつた。
In the conventional gas laser device as described above, since the closed laser discharge tube (32) is used, when conductive plasma is generated, the plasma in the laser discharge tube (32) is coaxial with the inner conductor. The microwave mode of the mode becomes dominant, and the microwave electric field in the plasma is
An electric field whose main component is a component parallel to the tube wall of 2), and the microwave that penetrates into the plasma becomes a mode in which it is substantially perpendicular to the tube wall of the laser discharge tube (32), that is, the plasma boundary. . In this way, the microwave electric field decreases inward from the wall of the discharge tube in the discharge generated by the microwave incident perpendicularly to the plasma boundary, but because the discharge plasma has a constant-voltage characteristic. A slight difference in the electric field causes a large change in the current density, resulting in the generation of extremely nonuniform plasma concentrated near the wall of the discharge tube. This situation is shown in the sectional view of FIG.
In the figure, (31) is the waveguide taper, (32) is the laser discharge tube, (69) is the electric field lines of the microwave electric field, and (70) is the plasma. In a conventional gas laser device using microwave discharge, it is difficult to put the entire discharge into a state suitable for laser excitation due to the generation of non-uniform plasma as shown in Fig. 11. The mode and plasma did not overlap, and the laser output and efficiency were low.

この発明は上記のような問題点を解決するためになさ
れたもので,空間的に一様なマイクロ波放電プラズマを
発生し,高効率,大出力のレーザ動作を可能とする気体
レーザ装置を得ることを目的とする。
The present invention has been made to solve the above problems, and obtains a gas laser device that generates a spatially uniform microwave discharge plasma and enables high-efficiency and high-power laser operation. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る気体レーザ装置は,例えば導波管など
のマイクロ波回路の一部を構成する導電体壁と,この導
電体壁に対向して設けられた誘電体との間に形成される
空間にマイクロ波放電によるプラズマを発生するレーザ
気体を封入するとともに,上記マイクロ波回路は上記誘
電体とプラズマの境界に垂直な電界成分を有するマイク
ロ波モードを形成するようにしたものである。
The gas laser device according to the present invention is a space formed between a conductor wall forming a part of a microwave circuit, such as a waveguide, and a dielectric provided so as to face the conductor wall. A laser gas for generating plasma due to microwave discharge is enclosed in the microwave circuit, and the microwave circuit forms a microwave mode having an electric field component perpendicular to the boundary between the dielectric and plasma.

〔作用〕[Action]

この発明に係る気体レーザ装置においては,マイクロ
波入射窓である誘電体に対向してプラズマよりも導電性
の高い導電体壁があるために入射マイクロ波の終端電流
はこの導電体壁を流れ,プラズマ中には上記誘電体と導
電体壁の間を貫通する電流が流れることになり,空間的
に一様なプラズマが発生する。
In the gas laser device according to the present invention, since there is a conductor wall having a higher conductivity than plasma facing the dielectric material that is the microwave entrance window, the terminal current of the incident microwave flows through this conductor wall. A current that penetrates between the dielectric and the conductor wall flows in the plasma, and a spatially uniform plasma is generated.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による気体レーザ装置を
示す概観図であり,(1)はマイクロ波発振器であるマ
グネトロン,(2)は導波管,(3)は導波管(2)の
巾を拡げるホーン導波管,(4)はマイクロ波結合窓,
(5)はレーザ発振用のミラー,(6)はレーザヘツド
部であつて,第2図がレーザヘツド部(6)の詳細を示
す第1図A−Aでの断面図である。第2図に示されるよ
うにレーザヘツド部(6)はマイクロ波回路の一種であ
るリツジ導波管型のマイクロ波空胴の構造を持つ。第2
図において,(61)はマイクロ波結合窓(4)に続く空
胴壁,(62)および(63)はこの空胴壁の断面の中央部
に形成されたリツジ,(64)はこの一方のリツジ(62)
に形成された溝であり,(65)はマイクロ波回路の一部
を構成する導電体壁であつて,この実施例では溝(64)
の壁面が使用される。(66)はこの導電体壁(65)に対
向して設けられた例えばアルミナなどの誘電体であり,
(67)はこの誘電体(66)が上記溝(64)を蓋うことに
より上記導電体壁(65)と誘電体(66)との間に形成さ
れる放電空間であつて,この放電空間(67)に例えばCO
2レーザガスなどのレーザ気体が封入される。また(6
8)はリツジ(62)および(63)に形成された冷却水路
である。
FIG. 1 is a schematic view showing a gas laser device according to an embodiment of the present invention. (1) is a magnetron which is a microwave oscillator, (2) is a waveguide, (3) is a waveguide (2). A horn waveguide that expands the width of the microwave, (4) is a microwave coupling window,
(5) is a mirror for laser oscillation, (6) is a laser head portion, and FIG. 2 is a sectional view taken along the line AA in FIG. 1 showing the details of the laser head portion (6). As shown in FIG. 2, the laser head portion (6) has a structure of a ridge waveguide type microwave cavity which is a kind of microwave circuit. Second
In the figure, (61) is a cavity wall following the microwave coupling window (4), (62) and (63) are ridges formed in the center of the cross section of this cavity wall, and (64) is one of these. Ritsuji (62)
And (65) is a conductor wall forming a part of the microwave circuit. In this embodiment, the groove (64) is formed.
Walls of are used. (66) is a dielectric such as alumina provided facing the conductor wall (65),
(67) is a discharge space formed between the conductor wall (65) and the dielectric (66) by covering the groove (64) with the dielectric (66). (67) for example CO
2 Laser gas such as laser gas is enclosed. Also (6
8) is the cooling water channel formed in the ridges (62) and (63).

上記のように構成されたこの発明による気体レーザ装
置において,マグネトロン(1)で発生されたマイクロ
波は導波管(2)を通つてホーン導波管(3)で拡げら
れ,マイクロ波結合窓(4)でインピダンスマツチング
をとることにより効率よくレーザヘツド部(6)に結合
される。レーザヘツド部(6)は断面図第2図に示され
るようにリツジ空胴状になつており,マイクロ波はリツ
ジ(62),(63)の間に集中する。この集中したマイク
ロ波の強い電磁界により放電空間(67)に封入されたレ
ーザ気体が放電破壊し,プラズマを発生し,レーザ媒質
が励起される。ここで,冷却水路(68)に冷却水を流
し,放電プラズマを冷却するとともに,レーザ気体の圧
力などの放電条件を適切に選ぶことによつてレーザ波発
振条件が得られ,第1図中のミラー(5)および図示の
ないもう一枚のミラーによりレーザ共振器を形成するこ
とでレーザ発振光を得ることができる。この時,本発明
による気体レーザ装置においてはマイクロ波回路の一部
を構成する導電体壁(65)と,この導電体壁(65)に対
向して設けられ,マイクロ波の入射窓となる誘電体(6
6)との間に形成される放電空間(67)においてマイク
ロ波放電を行なわせるため,マイクロ波の入射はプラズ
マの一面からのみ行なわれることになり,プラズマを内
導体とする同軸モードのマイクロ波モードが支配的とな
る現象は起こらず,所期のマイクロ波モードによる放電
を行なわせることができる。また第2図に示されるリツ
ジ空胴のようにマイクロ波回路が上記誘電体(66)のプ
ラズマの境界に垂直な電界成分を有するマイクロ波モー
ドを形成する場合,誘電体(66)と導電体壁(65)は対
向して設置されているので導電体壁(65)にも垂直な電
界成分を有することになり,プラズマを貫く電界ができ
る。この時,導電性を持つプラズマが発生してもマイク
ロ波入射窓である誘電体(66)に対向してプラズマより
も数桁導電性の高い導電体壁(65)があるために入射マ
イクロ波の終端電流はこの導電体壁(65)を流れ,導電
体壁(65)近傍の電界は強制的に導電体壁(65)の表面
に垂直にされ,上記のプラズマを貫く電界が維持され
る。このため,マイクロ波がプラズマ中に浸透し,プラ
ズマを貫く電流が流れ,電流の連続性から空間的に一様
な放電プラズマが得られる。この様子を第3図の拡大断
面図に示す。図において,(69)はマイクロ波電界の電
気力線,(70)は放電プラズマである。本発明による気
体レーザ装置によれば,第3図に示されるような均一な
放電が得られるので,放電全体をレーザ励起に最適な状
態とすることが容易となり,またレーザ共振器モードと
プラズマのオーバラツプが良好となり,従来のマイクロ
波放電を利用した気体レーザ装置に比べ桁違いに高効
率,大出力のレーザ発振を得ることができる。第4図は
第1図および第2図に示される構成で放電長300mmの装
置をCO2レーザに適用した場合の実験結果のグラフであ
り,横軸は周波数2.45GHzのマイクロ波入力,縦軸はCO2
レーザ出力および効率である。第4図に示されるように
最大出力24W,最大効率10.5%が得られ,第9,10図に示さ
れる従来例において報告されたCO2レーザ出力15mWに対
して3桁以上大きな出力が得られ,また従来例ではパル
ス発振しか得られないのに対し,本発明による装置では
CW発振ができることが確認された。
In the gas laser device according to the present invention configured as described above, the microwave generated by the magnetron (1) is propagated through the waveguide (2) and expanded by the horn waveguide (3), and the microwave coupling window By performing impedance matching in (4), the laser head section (6) is efficiently coupled. The laser head portion (6) is in the shape of a cavity of the ridge as shown in the sectional view of FIG. 2, and the microwave is concentrated between the ridges (62) and (63). The concentrated electromagnetic field of the microwaves causes the laser gas enclosed in the discharge space (67) to be destroyed by electric discharge, generating plasma and exciting the laser medium. Here, the cooling water channel (68) is caused to flow cooling water to cool the discharge plasma, and the laser wave oscillation condition is obtained by appropriately selecting the discharge condition such as the pressure of the laser gas. Laser oscillation light can be obtained by forming a laser resonator with the mirror (5) and another mirror (not shown). At this time, in the gas laser device according to the present invention, the conductor wall (65) forming a part of the microwave circuit and the dielectric wall which is provided so as to face the conductor wall (65) and serves as a microwave incident window. Body (6
Since microwave discharge is generated in the discharge space (67) formed between the microwave and the discharge space (6), microwaves are incident only from one surface of the plasma, and microwaves in the coaxial mode with plasma as the inner conductor are used. The phenomenon in which the mode becomes dominant does not occur, and the desired microwave mode discharge can be performed. Further, when the microwave circuit forms a microwave mode having an electric field component perpendicular to the plasma boundary of the dielectric (66) like the ridge cavity shown in FIG. Since the walls (65) are installed to face each other, the electric conductor wall (65) also has a vertical electric field component, and an electric field penetrating the plasma can be generated. At this time, even if a conductive plasma is generated, there is a conductor wall (65) that is several orders of magnitude more conductive than the plasma, facing the dielectric (66) that is the microwave entrance window. Terminating current flows through the conductor wall (65), the electric field near the conductor wall (65) is forced to be perpendicular to the surface of the conductor wall (65), and the electric field penetrating the plasma is maintained. . For this reason, microwaves penetrate into the plasma, and a current flows through the plasma, resulting in a spatially uniform discharge plasma due to the continuity of the current. This state is shown in the enlarged sectional view of FIG. In the figure, (69) is the electric field lines of the microwave electric field, and (70) is the discharge plasma. According to the gas laser device of the present invention, a uniform discharge as shown in FIG. 3 can be obtained, so that the entire discharge can be easily put into an optimal state for laser excitation, and the laser resonator mode and plasma The overshoot is improved, and it is possible to obtain laser oscillation with high efficiency and high output, which is orders of magnitude higher than that of the conventional gas laser device using microwave discharge. Fig. 4 is a graph of the experimental results when the device with a discharge length of 300 mm is applied to the CO 2 laser in the configuration shown in Fig. 1 and Fig. 2, the horizontal axis is the microwave input of frequency 2.45 GHz, and the vertical axis is Is CO 2
Laser power and efficiency. As shown in Fig. 4, a maximum output of 24 W and a maximum efficiency of 10.5% were obtained, and the CO 2 laser output of 15 mW reported in the conventional example shown in Figs. Also, in the conventional example, only pulse oscillation is obtained, whereas in the device according to the present invention,
It was confirmed that CW oscillation was possible.

本発明の構成によれば,マイクロ波を閉じ込める金属
壁と放電プラズマが密接しているので,金属壁の外側か
ら自由に効果的な冷却を行うことができ,例えばCO2
ーザなどのレーザ気体の冷却が重要なレーザに適用した
時有利であり,また,磁場の効果を用いていないので,
例えばエキシマレーザなどの高気圧レーザにも適用で
き,磁場発生用の装置が不用であり装置が小型・単純に
なるという利点もある。
According to the configuration of the present invention, since the metal wall for confining the microwave and the discharge plasma are in close contact with each other, effective cooling can be freely performed from the outside of the metal wall, and for example, a laser gas such as a CO 2 laser can be cooled. It is advantageous when applied to lasers where cooling is important, and because the effect of the magnetic field is not used,
For example, it can be applied to high-pressure lasers such as excimer lasers, and there is an advantage that a device for generating a magnetic field is unnecessary and the device is small and simple.

以上一実施例について説明したが,マイクロ波回路の
種類および放電空間(67)の構成方法によつて様々な装
置構成をとることができる。第5図はマイクロ波回路と
してマイクロ波空胴または導波管を用いた場合における
放電空間の構成方法の例を示す断面図であり,図におい
て,(65)はマイクロ波回路の一部を構成する導電体
壁,(66)は誘電体,(67)は放電空間である。第5図
(a)はマイクロ波空胴を誘電体板(66)で仕切ること
により放電空間(67)を形成したものであつて,製造が
容易となる利点がある。第5図(b)は放電空間(67)
以外の空間を誘電体(66)で埋めたものであつて,放電
空間(67)以外での不要な放電を防ぐ働きがある。第5
図(c)は空胴壁に形成した溝を放電空間(67)とした
ものであつて,任意の大きさの放電空間(67)を形成で
きる利点がある。第5図(d)は第5図(c)のものに
リツジ(63)を加えたものであつて,第5図(c)のも
のに比べてより高圧のレーザ気体を放電させることがで
きる,マツチングが容易になるなどの利点がある。第5
図(e)は凹みを有する誘電体(66)を利用したもので
あつて,標準的な形状のマイクロ波空胴を使用して任意
の大きさの放電空間(67)を形成できる利点がある。第
5図(f)は第5図(e)のものにリツジ(63)を加え
たものであつて,第5図(e)のものに比べ高圧のレー
ザ気体を放電させることができる。マツチングが容易に
なるなどの利点がある。第5図(g),(h)はこれら
を組合わせて利用したものを示す。第5図に示したよう
に,マイクロ波回路の一部を形成する導電体壁(65)と
この導電体壁に対向して設けられた誘電体(66)を適当
に選ぶことによつて,かなり自由に放電空間(67)を設
計することができ,上記第3図に示したものと類似の均
一な放電を得ることができる。
Although one embodiment has been described above, various device configurations can be adopted depending on the type of microwave circuit and the method of configuring the discharge space (67). FIG. 5 is a cross-sectional view showing an example of the method of constructing the discharge space when a microwave cavity or a waveguide is used as the microwave circuit. In the figure, (65) constitutes a part of the microwave circuit. Conductor wall, (66) is a dielectric, and (67) is a discharge space. FIG. 5 (a) shows a discharge space (67) formed by partitioning a microwave cavity with a dielectric plate (66), which has an advantage of easy manufacture. Figure 5 (b) shows the discharge space (67).
The space other than that is filled with the dielectric (66) and has a function of preventing unnecessary discharge in the space other than the discharge space (67). Fifth
In FIG. 6C, the groove formed on the cavity wall is used as the discharge space (67), and there is an advantage that the discharge space (67) having an arbitrary size can be formed. FIG. 5 (d) is the one shown in FIG. 5 (c) with a ridge (63) added, and can discharge a laser gas having a higher pressure than that shown in FIG. 5 (c). There are advantages such as easy matting. Fifth
The figure (e) uses a dielectric (66) having a depression, and has an advantage that a discharge cavity (67) of any size can be formed by using a microwave cavity having a standard shape. . FIG. 5 (f) is the one shown in FIG. 5 (e) to which the ridge (63) is added, and the laser gas having a higher pressure than that in FIG. 5 (e) can be discharged. There are advantages such as easy matching. FIGS. 5 (g) and 5 (h) show a combination of these. As shown in FIG. 5, by appropriately selecting the conductor wall (65) forming a part of the microwave circuit and the dielectric (66) provided facing the conductor wall, The discharge space (67) can be designed quite freely, and a uniform discharge similar to that shown in FIG. 3 can be obtained.

第6図はマイクロ波回路として同軸線路またはストリ
ツプ線路を用いた場合の実施例を示す断面図である。第
6図(a)は同軸線路の外導体をマイクロ波回路の一部
を構成する導電体壁(65)として利用した実施例を示
し,第6図(b)は同軸線路の内導体を導電体壁(65)
とした実施例であり,第6図(c)はストリツプ線路を
使用したものを示す。第6図に示した同軸線路およびス
トリツプ線路はカツトオフ周波数を持たないため,例え
ば2.45GHzのマイクロ波を用いた場合,マイクロ波空胴
を使用した装置に比べて装置全体として小型な装置構成
をとることができる利点がある。なお第6図(a),
(b),(c)の各々の場合について第5図に示した放
電空間の構成方法に準じて様々な装置構成をとることが
できることはいうまでもない。
FIG. 6 is a sectional view showing an embodiment in which a coaxial line or a strip line is used as the microwave circuit. FIG. 6 (a) shows an embodiment in which the outer conductor of the coaxial line is used as a conductor wall (65) forming a part of the microwave circuit, and FIG. 6 (b) shows the inner conductor of the coaxial line being made conductive. Body wall (65)
FIG. 6 (c) shows an example using a strip line. Since the coaxial line and the strip line shown in FIG. 6 do not have a cutoff frequency, for example, when a microwave of 2.45 GHz is used, the entire device has a smaller device configuration than a device using a microwave cavity. There is an advantage that can be. Note that FIG. 6 (a),
It goes without saying that various device configurations can be taken according to the method of configuring the discharge space shown in FIG. 5 for each of the cases (b) and (c).

第7図はマイクロ波回路として表面波線路を用いた場
合の実施例を示す断面図である。第7図(a)は導体平
板を導電体壁(65)とし,誘電体平板を誘電体(66)と
して放電空間(67)を形成すると同時に表面波線路を構
成するようにした実施例を示し,第7図(b)は導体円
柱を導電体壁(65)とし,この導体円柱を囲む誘電体管
を誘電体(66)として放電空間(67)を形成すると同時
に表面波線路を構成するようにした実施例を示す。第7
図に示されるように,表面波線路を用いると最低限の構
成要素でマイクロ波回路と放電空間を同時に構成でき,
装置が簡単になるという利点がある。第7図(a),
(b)の実施例においても第5図に示した放電空間の構
成方法に準じて様々な装置構成をとることができる。
FIG. 7 is a sectional view showing an embodiment in which a surface wave line is used as a microwave circuit. FIG. 7 (a) shows an embodiment in which a conductor plate is used as a conductor wall (65) and a dielectric plate is used as a dielectric (66) to form a discharge space (67) and at the same time to form a surface wave line. In FIG. 7 (b), the conductor cylinder is used as the conductor wall (65), and the dielectric tube surrounding the conductor cylinder is used as the dielectric (66) to form the discharge space (67) and simultaneously construct the surface wave line. An example will be shown. Seventh
As shown in the figure, the surface wave line enables the microwave circuit and the discharge space to be constructed at the same time with the minimum number of components.
This has the advantage of simplifying the device. FIG. 7 (a),
Also in the embodiment of (b), various device configurations can be adopted in accordance with the method of configuring the discharge space shown in FIG.

これまでの実施例ではマイクロ波回路の一部を構成す
る導電体壁(65)と,この導電体壁に対向して設けられ
た誘電体との間に形成される放電空間(67)のほぼ全体
にプラズマを発生させる例を示したが,放電空間(67)
の一部のみにプラズマを発生させることもできる。第8
図はマイクロ波回路の一部に凸部(71)を設け,この凸
部(71)によつて放電空間(67)の一部に発生する強電
磁界部においてプラズマ(70)を発生させる実施例を示
す断面図であつて,第8図(a)は放電空間(67)の外
部に凸部(71)を設けた例を示し,第8図(b)は放電
空間(67)の内部に凸部(71)を設けた例を示す。第8
図の構成により放電空間(67)の一部のみに放電プラズ
マを集中させることができ,3軸直交型のレーザ装置を得
ることが容易になる。高圧のレーザ気体を放電させるこ
とができる,高放電々力密度のプラズマ発生が容易にな
るなどの利点が生ずる。
In the above-described embodiments, the discharge space (67) formed between the conductor wall (65) forming a part of the microwave circuit and the dielectric provided facing the conductor wall is almost the same. An example of generating plasma throughout was shown, but the discharge space (67)
It is also possible to generate plasma only in a part of. 8th
The figure shows an embodiment in which a convex portion (71) is provided in a part of the microwave circuit, and a plasma (70) is generated in the strong electromagnetic field portion generated in a part of the discharge space (67) by the convex portion (71). Fig. 8 (a) shows an example in which a convex portion (71) is provided outside the discharge space (67), and Fig. 8 (b) shows inside the discharge space (67). The example which provided the convex part (71) is shown. 8th
With the configuration shown in the figure, the discharge plasma can be concentrated only in a part of the discharge space (67), which makes it easy to obtain a three-axis orthogonal laser device. There are advantages such as being able to discharge high-pressure laser gas and facilitating generation of plasma with high discharge power density.

〔発明の効果〕〔The invention's effect〕

以上のようにこの発明によれば,マイクロ波回路の一
部を構成する導電体壁と,この導電体壁に対向して設け
られた誘電体との間に形成される空間にマイクロ波放電
によるプラズマを発生するレーザ気体を封入するととも
に,上記マイクロ波回路を上記誘電体とプラズマとの境
界に垂直な電界成分を有するマイクロ波モードを形成す
るようにしたので,空間的に一様なマイクロ波放電プラ
ズマを発生できるようになり,放電全体をレーザ励起に
適当な状態とすることができ,レーザ共振器モードとプ
ラズマのオーバラツプが良好になり,高効率,大出力の
気体レーザ装置が得られる効果がある。
As described above, according to the present invention, the microwave discharge is generated in the space formed between the conductor wall forming a part of the microwave circuit and the dielectric provided so as to face the conductor wall. Since the laser gas for generating plasma is enclosed and the microwave circuit is configured to form a microwave mode having an electric field component perpendicular to the boundary between the dielectric and plasma, a spatially uniform microwave is generated. The discharge plasma can be generated, the entire discharge can be put into a state suitable for laser excitation, the laser cavity mode and plasma overlap can be improved, and a gas laser device with high efficiency and high output can be obtained. There is.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による気体レーザ装置を示
す概観図,第2図は同じく第1図A−Aでの断面図,第
3図は同じ実施例における放電の様子を説明する断面
図,第4図は同じ実施例におけるレーザ発振特性を示す
グラフ,第5図は本発明の他の実施例を示す断面図,第
6図は本発明のまた別の実施例を示す断面図,第7図は
本発明のさらに別の実施例を示す断面図,第8図は本発
明のさらに別の実施例を示す断面図,第9図は従来の気
体レーザ装置を示す断面図,第10図は同じく第9図B−
Bでの断面図,第11図は従来の気体レーザ装置における
放電の様子を説明する断面図である。 図において,(65)はマイクロ波回路の一部を構成する
導電体壁,(66)は誘電体,(67)は放電空間,(70)
は放電プラズマ,(71)はマイクロ波回路の一部に設け
られた凸部である。 なお,各図中同一符号は同一または相当部分を示す。
FIG. 1 is a schematic view showing a gas laser device according to an embodiment of the present invention, FIG. 2 is a sectional view of the same FIG. 1A-A, and FIG. 3 is a sectional view for explaining the state of discharge in the same embodiment. 4 and 5 are graphs showing laser oscillation characteristics in the same embodiment, FIG. 5 is a sectional view showing another embodiment of the present invention, and FIG. 6 is a sectional view showing another embodiment of the present invention. FIG. 7 is a sectional view showing still another embodiment of the present invention, FIG. 8 is a sectional view showing still another embodiment of the present invention, FIG. 9 is a sectional view showing a conventional gas laser device, and FIG. The figure is also FIG. 9B-
FIG. 11 is a sectional view taken along the line B, and FIG. 11 is a sectional view for explaining the state of discharge in the conventional gas laser device. In the figure, (65) is a conductor wall forming a part of the microwave circuit, (66) is a dielectric, (67) is a discharge space, and (70) is a discharge space.
Is discharge plasma, and (71) is a convex part provided in a part of the microwave circuit. The same reference numerals in each figure indicate the same or corresponding parts.

フロントページの続き (72)発明者 植田 至宏 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社応用機器研究所内 (72)発明者 柳 正 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社応用機器研究所内Front page continuation (72) Inventor Yoshihiro Ueda 8-1-1 Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture Sanryu Electric Co., Ltd. Applied Equipment Laboratory (72) Inventor Tadashi Yanagi 8-1-1 Tsukaguchihonmachi, Amagasaki City, Hyogo Prefecture No. 1 Sanritsu Electric Co., Ltd. Applied Equipment Laboratory

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波回路中のマイクロ波放電により
プラズマを発生しレーザ励起を行う気体レーザ装置にお
いて,上記マイクロ波回路の一部を構成する導電体壁
と,この導電体壁に対向して設けられた誘電体との間に
形成される空間に上記プラズマを発生するレーザー気体
を封入するとともに,上記マイクロ波回路は,上記誘電
体とプラズマとの境界に垂直な電界成分を有するマイク
ロ波モードを形成するものであることを特徴とする気体
レーザ装置。
1. In a gas laser device for generating plasma by microwave discharge in a microwave circuit to excite laser, a conductor wall constituting a part of the microwave circuit, and a conductor wall facing the conductor wall. A laser gas for generating the plasma is sealed in a space formed between the dielectric and the microwave circuit, and the microwave circuit has a microwave mode having an electric field component perpendicular to a boundary between the dielectric and the plasma. A gas laser device for forming a gas laser device.
【請求項2】マイクロ波回路がマイクロ波空胴または導
波管であることを特徴とする特許請求の範囲第1項記載
の気体レーザ装置。
2. The gas laser device according to claim 1, wherein the microwave circuit is a microwave cavity or a waveguide.
【請求項3】マイクロ波回路が同軸線路またはストリツ
プ線路であることを特徴とする特許請求の範囲第1項記
載の気体レーザ装置。
3. The gas laser device according to claim 1, wherein the microwave circuit is a coaxial line or a strip line.
【請求項4】マイクロ波回路が表面波線路であることを
特徴とする特許請求の範囲第1項記載の気体レーザ装
置。
4. The gas laser device according to claim 1, wherein the microwave circuit is a surface wave line.
【請求項5】マイクロ波回路の一部に凸部を設け,この
凸部により発生する強電磁界部に上記プラズマを発生す
るレーザ気体を封入したことを特徴とする特許請求の範
囲第1項記載の気体レーザ装置。
5. A microwave circuit according to claim 1, wherein a convex portion is provided in a part of the microwave circuit, and the strong electromagnetic field generated by the convex portion is filled with laser gas for generating the plasma. Gas laser device.
JP1807187A 1987-01-26 1987-01-28 Gas laser device Expired - Fee Related JPH084165B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1807187A JPH084165B2 (en) 1987-01-28 1987-01-28 Gas laser device
EP95108095A EP0674471B1 (en) 1987-01-26 1988-01-23 Laser Plasma apparatus
DE3855896T DE3855896T2 (en) 1987-01-26 1988-01-23 Plasma device
DE3856348T DE3856348T2 (en) 1987-01-26 1988-01-23 Laser plasma device
EP88101007A EP0280044B1 (en) 1987-01-26 1988-01-23 Plasma apparatus
KR1019880000551A KR910002239B1 (en) 1987-01-26 1988-01-25 Laser system
US07/147,726 US4890294A (en) 1987-01-26 1988-01-25 Plasma apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1807187A JPH084165B2 (en) 1987-01-28 1987-01-28 Gas laser device

Publications (2)

Publication Number Publication Date
JPS63186483A JPS63186483A (en) 1988-08-02
JPH084165B2 true JPH084165B2 (en) 1996-01-17

Family

ID=11961432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1807187A Expired - Fee Related JPH084165B2 (en) 1987-01-26 1987-01-28 Gas laser device

Country Status (1)

Country Link
JP (1) JPH084165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208384A (en) * 1990-01-10 1991-09-11 Mitsubishi Electric Corp Gas laser

Also Published As

Publication number Publication date
JPS63186483A (en) 1988-08-02

Similar Documents

Publication Publication Date Title
CA1150812A (en) Method of producing a discharge in a supersonic gas flow
Bridges et al. Ion laser plasmas
US4955035A (en) Microwave-pumped, high-pressure, gas-discharge laser
Nishimae et al. Development of CO2 laser excited by 2.45-GHz microwave discharge
US4651325A (en) RF-pumped infrared laser using transverse gas flow
US4677637A (en) TE laser amplifier
US5379317A (en) Microwave-excited slab waveguide laser with all metal sealed cavity
JPH084165B2 (en) Gas laser device
US4710941A (en) Perforated electrodes for efficient gas transfer in CW CO2 waveguide lasers
JPH09172214A (en) Rectangular emission gas laser
JP2566584B2 (en) Gas laser device
US6711201B2 (en) Truncated ridge waveguide for all-metal gas laser excitation
JPH0673319B2 (en) Plasma equipment
JP2566585B2 (en) Optical waveguide type gas laser device
JPH033380A (en) Gas laser device
JP2566583B2 (en) Carbon dioxide laser device
JP2001168431A (en) Laser and microwave generator
JPS6016114B2 (en) Gas waveguide laser generator
JP2531526B2 (en) Gas laser device
JPH07105536B2 (en) Gas laser device
JP2566586B2 (en) Gas laser device
JPH07105535B2 (en) Gas laser device
Hall et al. RF excitation of diffusion cooled and fast axial flow lasers
US6442185B1 (en) All-metal, DC excited laser with RF pre-ionization
JPH0724315B2 (en) Gas laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees