JPH02237070A - Formation of charge transfer complex layer - Google Patents

Formation of charge transfer complex layer

Info

Publication number
JPH02237070A
JPH02237070A JP1057217A JP5721789A JPH02237070A JP H02237070 A JPH02237070 A JP H02237070A JP 1057217 A JP1057217 A JP 1057217A JP 5721789 A JP5721789 A JP 5721789A JP H02237070 A JPH02237070 A JP H02237070A
Authority
JP
Japan
Prior art keywords
charge transfer
transfer complex
substrate
layer
complex layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1057217A
Other languages
Japanese (ja)
Inventor
Kaoru Tadokoro
田所 かおる
Chiaki Sato
千秋 佐藤
Seiichi Wakamatsu
若松 誠一
Toyoo Nishiyama
西山 東洋雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1057217A priority Critical patent/JPH02237070A/en
Publication of JPH02237070A publication Critical patent/JPH02237070A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a uniform, dense charge transfer complex layer so as to obtain a memory element provided with the charge transfer complex layer, which is excellent in a voltage- current (VI) characteristic and reproducibility and able to keep a voltage to the layer constant and to prevent the conduction between an upper electrode and a substrate by a method wherein a charge transfer complex compound crystal layer is formed on the primary face of a base, and then the crystal layer is brought into contact with solvent to be treated. CONSTITUTION:For instance, when a substrate 1 formed of Cu is dipped into a TCNQ/ acetonitrile solution, a charge transfer complex layer 13 composed of acicular crystals 11 and prismatic crystals 12 is formed on the surface of the substrate 1. When the substrate is dipped into acetonitrile as it stands still, the prismatic crystals 12 higher than the acicular crystals 11 in solubility are eluted and removed. The prismatic crystals 12 are dissolved into acetonitrile in a process in which the prismatic crystals 12 are eluted and removed, which is grow in other acicular crystals among the existent acicular crystals 11. By this setup, a uniform and dense charge transfer complex layer 13 can be obtained. Even if an upper electrode is formed on the charge transfer complex layer 13 obtained as above for the manufacture of a memory element, a direct conduction between the upper electrode and a substrate 1 is prevented and an excellent V-I characteristic can be obtained.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は、電荷移動錯体層の形成方法の改良に関する。 【従来の技術] 周知の如< 、?,7.8.8−テトラシアノキノジメ
タン(TCNQ).及び無機または有機カチオン類から
なる錯塩類が電気伝導性化合物類として知られて0る。 これらは最近メモリーあるいはコンデンサー用材料とし
て大きな興味がもたれている。 U S P . 4507672号( 190)は、C
uとTCNQによる錯塩を用いたメモリ素子の作成方法
とその特性を開示している。即ち、この公報には、中性
アセブターであるTCNQ溶液と銅基板を接触させ、鋼
基板上に金属塩のIll!を形成した後、この薄膜に電
気的なポテンシャルを加えると第1の抵抗状態から第2
の抵抗状態にスイッチングすることが;己載されている
。 第2図は、上記メモリ素子の断面図を示す。図中の1は
、下部電極の働きを有する例えば銅からなる金属基板で
ある。この金属基板1上には、多結晶性の電荷移動錯体
層(以下、錯体層と呼ぶ)2及び上部電極3を形成した
構成となっている。 なお、4.5は夫々導電性ペーストを示す。 こうした構成のメモリ素子において、金属五板1と上部
電極3の間に直列抵抗(図示せず)を介して錯体層2に
電圧を加えると、第3図に示すような電圧・電流(Vl
)特性が得られる。つまり、錯体層2のVl特性はしき
い値電圧±V+  (V)で不連続に変化し、例えば高
抵抗状態にある錯体層2に印加する電圧がしきい値電圧
+Vs(V)を越えると、高抵抗状態から低抵抗状態に
ロードラインに沿って変化する。 上記メモリ素子は、次のようにして製造される。 ■まず、基板上の酸化層.有機物を取り除く。 ■次に、荊紀基板を中性アクセブター分子(TCNQ)
で飽和している生成アセトニトリル,またはメタノール
やTCNQの可溶な溶媒中に浸す。この結果、直ちに酸
化還元が起り、多結晶膜が基板上に成長する。この反応
は、基板と薄膜で構成されている板をア七トニトリル溶
液より取出すことで終結する。 ■次に、前記基板を洗浄用アセトニトリルを用いて洗浄
する。この洗浄の目的は、Cu,TCNQからなる前記
薄膜中の中性アクセブター分子(T C N Q)を取
除くためである。 ■次に、前記基板を真空乾燥し、洗浄用アセトニトリル
を除去する。 ■前記錯体層上に圧着法もしくはスパッタ法により上部
電極を形成し、メモリ素子を製造する。 なお、上部電極の材質としては、アルミニウム.金,イ
ンジウムなどが用いられる。 このようにして得られるメモリ素子は、ICメモリと比
べ比較的容易に製造できるという利点を有する。 [発明が解決しようとする課題〕 しかしながら、従来技術によれば、以下に述べる問題点
を有する。 ■錯体層2自体に隙間が多いため、錯体層2{;電圧を
加えても、良好なVl特性を示さなかったり、素子間の
再現性が見られないという問題点があった。 ■前記錯体層2上の上部電極3と基板1との間隔が一定
とならず、錯体層2に対する電圧の一定に印加されない
という間巧点があった。 ■上部電極3と基板1とが直接導通する部分が生じると
いう問題点があった。 本発明は上記事情に鑑みてなされたもので、均一かつち
密で、良好な■1特性,素子間の再現性を示し、更に錯
体層に対する電圧が一定でしかも上部電極と基板との導
通を回避しえる電荷移動錯体層の形成方法を提供するこ
とを目的とする。 [al!Xiを解決するための手段] 本発明者等は、従来法で基板上に形成した電荷移動錯体
層の表面を電子顕微鏡で観察したところ、第5図( 5
000倍)及び第6図( 1(it)O倍)に示すよう
な粒子構造の写真が得られた.この写真により、前記錯
体層は一様でなく、針状結晶と、角柱状結晶から構成さ
れていることが確認された(但し、u板の処理条件によ
り必ずしもこれらの結晶のみではない)。なお、上記錯
体層を更に詳しく観察すると、針状結晶はほぼ成長方向
に揃っているが、ち密性に欠けていた。また、角柱状結
晶は夫々大きさが一定でないとともにその配向方向が不
揃いで、しかも隙間が多く、ち密さに欠けることが確認
できた。こうしたことから、本発明者等は、針状結晶と
角柱状結晶との有機溶媒(例えばアセトニトリル)に対
する溶解度に差異があることに看目し、結品構埠の不均
一化の原因となる角柱状結晶を除去して針状結晶のみを
残し、均一.ち密性のある電荷移動錯体層を形成するに
ヱっな。即ち、本発明は、電子供与体となる組成物の基
材上に、電子受容体となる組成物を溶媒中に溶解した溶
液を接触させて前記基材主面に[T移動錯体化合物の結
晶層を形成する第1の工程と、この結晶層に溶剤を接触
させて上記結晶層の処理を行う第2の工程とを具備する
ことを特徴とする電荷移動錯体層の形成方法である。 [作用] 本発明において、例えばアセトニトリルに対する溶解度
は角柱状結晶の方が針状結品より大きい。 従って、角柱状結晶と針状結品がらなる錯体層を静置状
聾のアセトニトリル中に長時間浸漬することにより、主
として上層にある角柱状結晶のみを溶出(溶解)除去す
ることができる。また、角柱状結晶を(溶解)除去する
過程でアセトニトリル中に溶解した角柱状結晶を原料と
して針状結晶の隙間の基板露出面に新たな針状結晶が成
長し、その結果均一でち密な電荷移動錯体層が得られる
。 以下、本発明の実施例について説明する。 [実施例1] 第1図(A)〜(C)を参照して説明する。但し、従来
(第2図)と同部材のものは同符号を付して説明する。 ■まず、例えばCuからな基板1をアセトン中で超音波
洗浄し、油脂分を除去した。次に、フッ化水素酸により
表面の酸化層を除去した。つづいて、前記基板1を、ア
セトニトリル50mj!に対してT C N Q 10
Qmgを溶解したTCNQ/アセトニトリル溶液に浸漬
した。更に、浸漬してから反応温度20℃で30〜40
秒(反応時間)経過した後、基板1を溶液中から取出し
た(第1図(A)図示)。 この結果、碁板1表面に針状結晶11と角柱状結晶l2
からなる電6i7移動錯体層l3が形成されていること
が確認された(第1図(A)図示)。ここで、針状結晶
11は主として基板1上に整然と形成されたが、角柱状
結晶12は主として針状結品11上に形成され、その配
列.傾斜等はランダムであった。 なお、上記アセトニトリルは、精製し、N2バルブリン
グを行ったものを用いた。 ■次に、この基板1を40mlのアセトニトリルへ静置
した状態のまま洗浄温度20”Cで1時間(洗浄時間)
浸漬した。この結果、まず角柱状結晶12が除去されて
第1図(B)に示すような状態になり、最終的に針状結
晶tiからなる電荷移動錯体層l3が形成された(第1
図(C)図示)。ここで、角柱状結晶l2を(溶解)除
去する過程で、アセトニトリル中に溶解した角柱状結晶
l2を原料として針状結晶11の隙間の基板露出面に新
たな針状結晶が成長し、その結果均一でち密な電荷移動
錯体層l3が得られた。なお、赤外分光法により、電荷
移動錯体層l3がC u−T C N Qであることを
確認した。 この後、真空乾燥を行ってアセトニトリルを除去した後
、アルミニウムを前記錯体層上に蒸着して上部電極を形
成することによりメモリ素子が得られる。 しかして、実施例1によれば、銅よりなる基板1をTC
NQ/アセトニトリル溶液に浸漬した後、所定の条件下
でアセトニトリルへ浸漬するため、針状結晶11に比べ
て溶解度の高い角柱状結晶l2が溶出,除去される。ま
た、角柱状結晶l2を溶出.除去する過程でアセトニト
リル中に角柱状結晶l2が溶解するが、これが既存の針
状結晶11の隙間に入って別な針状結晶が成長する。こ
れにより、均一.ち密な電荷移動錯体層l3を得ること
ができる.また、こうして得られた電荷移動錯体層13
上に上部電極3を形成してメモリ素子を製作しても、上
部電極3と基板1が直接導通することがなく、良好なV
l特性が得られた。第7図は、上記実施例1により形成
された電荷移動錯体層の粒子構造を示す走査型電子顕微
fit(SEM)によ゜る写真( 1000倍)を示す
。前述した第5図,!6図(従来)及び前記第7図より
、本発明による錯体層薄膜の表面が従来と比べてはるか
に均一でち密であることが確認できた。更に、第4図は
、上記メモリ素子のV!特性を示す。 [実施例2] まず、実施例1と同様に基板を処理した後、この基板を
TCNQ/アセトアニリル溶液に30〜40秒程度浸漬
した。つづいて、基板を70’Cの40m lアセトニ
トリル中へ静置した状態のまま士数分浸漬し、角柱状結
晶を除去して電荷移動錯体層を形成した。その後、上記
実施例1と同様、真空乾燥、上部電極の形成等を行って
、メモリ素子を製造した。 実施例2によれば、実施例1と比べてより一層均一でち
密な薄膜が得られた。第8図は、実施例2により形成さ
れた電荷移動錯体層薄膜の粒子構造を示す走査型電子顕
微[1’!(SEM)による写真( 1000倍)を示
す。 【実施例3〕 まず、ガラスからなる基板の一方の面に、複数本のスト
ライプ状の銅製下n電極を形成した。次に、この下部電
極上に、上記実施例で述べた方法により電葡移動錯体層
を形成した。次いで、前記下部電極に交差するようにア
ルミニウムからなる上部電極を複数個形成し、複数個の
メモリ素子を製造した。 かかる実施例3によれば、実施例1と同様均一でち密な
電荷移動錯体層が得られ、良好なVI特性を示した。 なお、上記実施例の1〜3の他、実施例4〜9について
も実施例1と同様に下記第1表に示すような条件下で実
験を行ったところ、いずれも再現性のある安定なサンプ
ルが得られた。 第  1 表 [発明の効果] 以上詳述した如く本発明によれば、均一かつち密で、良
好なIV特性.素子間の再現性を示し、更に錯体層に対
する電圧が一定でしかも上部電極と基板との導通を回避
しえる電荷移動錯体層の形成方法を提供できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a method for forming a charge transfer complex layer. [Prior art] As is well known? , 7.8.8-tetracyanoquinodimethane (TCNQ). Complex salts consisting of inorganic or organic cations are known as electrically conductive compounds. These materials have recently attracted great interest as materials for memory or capacitors. U.S.P. No. 4507672 (190) is C
A method for producing a memory element using a complex salt of u and TCNQ and its characteristics are disclosed. That is, in this publication, a copper substrate is brought into contact with a TCNQ solution, which is a neutral acetate, and a metal salt Ill! is deposited on a steel substrate. After forming, applying an electrical potential to this thin film changes it from the first resistance state to the second resistance state.
Switching to the resistive state is self-contained. FIG. 2 shows a cross-sectional view of the memory element. 1 in the figure is a metal substrate made of copper, for example, which functions as a lower electrode. On this metal substrate 1, a polycrystalline charge transfer complex layer (hereinafter referred to as a complex layer) 2 and an upper electrode 3 are formed. Note that 4.5 indicates a conductive paste. In a memory element having such a configuration, when a voltage is applied to the complex layer 2 through a series resistor (not shown) between the metal five plate 1 and the upper electrode 3, the voltage and current (Vl
) characteristics are obtained. In other words, the Vl characteristic of the complex layer 2 changes discontinuously at the threshold voltage ±V+ (V), and for example, when the voltage applied to the complex layer 2 in a high resistance state exceeds the threshold voltage +Vs (V), , changes along the load line from a high resistance state to a low resistance state. The above memory device is manufactured as follows. ■First, the oxide layer on the substrate. Remove organic matter. ■Next, the Jingki substrate is converted into a neutral acceptor molecule (TCNQ).
The product is saturated with acetonitrile, or a solvent in which methanol or TCNQ is soluble. As a result, oxidation-reduction occurs immediately and a polycrystalline film grows on the substrate. The reaction is terminated by removing the plate consisting of the substrate and the thin film from the a7tonitrile solution. (2) Next, the substrate is cleaned using acetonitrile for cleaning. The purpose of this cleaning is to remove neutral acceptor molecules (TCNQ) in the thin film made of Cu and TCNQ. (2) Next, the substrate is vacuum dried to remove the cleaning acetonitrile. (2) An upper electrode is formed on the complex layer by a pressure bonding method or a sputtering method to manufacture a memory element. The material of the upper electrode is aluminum. Gold, indium, etc. are used. The memory element thus obtained has the advantage that it can be manufactured relatively easily compared to IC memory. [Problems to be Solved by the Invention] However, the prior art has the following problems. (2) Since there are many gaps in the complex layer 2 itself, there was a problem that even when a voltage was applied, the complex layer 2 did not exhibit good Vl characteristics or that reproducibility between devices was not observed. (2) The spacing between the upper electrode 3 on the complex layer 2 and the substrate 1 was not constant, and the voltage applied to the complex layer 2 was not constant. (2) There was a problem that there was a portion where the upper electrode 3 and the substrate 1 were directly electrically connected. The present invention was made in view of the above circumstances, and exhibits uniform and dense properties, good (1) characteristics, and reproducibility between elements, and furthermore, the voltage applied to the complex layer is constant, and conduction between the upper electrode and the substrate is avoided. An object of the present invention is to provide a method for forming a charge transfer complex layer that can be used as a charge transfer complex layer. [al! Means for Solving Xi] The present inventors observed the surface of a charge transfer complex layer formed on a substrate by a conventional method using an electron microscope, and found that FIG.
Photographs of the particle structure as shown in Figure 6 (1(it)Ox) were obtained. From this photograph, it was confirmed that the complex layer was not uniform and was composed of needle-like crystals and prismatic crystals (however, depending on the processing conditions of the U-plate, it was not necessarily made up of only these crystals). Further, when the above complex layer was observed in more detail, it was found that the needle-like crystals were almost aligned in the growth direction, but lacked compactness. In addition, it was confirmed that the prismatic crystals were not uniform in size and orientation direction, had many gaps, and lacked compactness. For this reason, the present inventors noticed that there is a difference in the solubility of needle-like crystals and prismatic crystals in organic solvents (e.g., acetonitrile), and found that the Remove the columnar crystals and leave only the needle-like crystals, making them uniform. It is possible to form a dense charge transfer complex layer. That is, in the present invention, a solution of a composition that is an electron acceptor dissolved in a solvent is brought into contact with a base material of a composition that is an electron donor, and crystals of a T-transfer complex compound are formed on the main surface of the base material. A method for forming a charge transfer complex layer, comprising a first step of forming a layer, and a second step of treating the crystal layer by bringing a solvent into contact with the crystal layer. [Function] In the present invention, for example, the solubility of prismatic crystals in acetonitrile is greater than that of needle-like crystals. Therefore, by immersing a complex layer consisting of prismatic crystals and needle-like crystals in static acetonitrile for a long time, only the prismatic crystals in the upper layer can be eluted (dissolved) and removed. In addition, in the process of removing (dissolving) the prismatic crystals, new acicular crystals grow on the exposed surface of the substrate in the gaps between the acicular crystals using the prismatic crystals dissolved in acetonitrile as a raw material, resulting in uniform and dense charge. A mobile complex layer is obtained. Examples of the present invention will be described below. [Example 1] This will be explained with reference to FIGS. 1(A) to 1(C). However, the same members as those of the conventional device (FIG. 2) will be described with the same reference numerals. (2) First, a substrate 1 made of, for example, Cu was ultrasonically cleaned in acetone to remove oil and fat. Next, the oxide layer on the surface was removed using hydrofluoric acid. Subsequently, the substrate 1 was treated with 50mj of acetonitrile! for T C N Q 10
It was immersed in a TCNQ/acetonitrile solution in which Qmg was dissolved. Furthermore, after immersion, at a reaction temperature of 20°C, 30 to 40
After seconds (reaction time) had elapsed, the substrate 1 was taken out from the solution (as shown in FIG. 1(A)). As a result, a needle crystal 11 and a prismatic crystal l2 are formed on the surface of the Go board 1.
It was confirmed that an electron 6i7 transfer complex layer 13 was formed (as shown in FIG. 1(A)). Here, the acicular crystals 11 were mainly formed in an orderly manner on the substrate 1, but the prismatic crystals 12 were mainly formed on the acicular crystals 11, and their arrangement. The slope etc. were random. Note that the acetonitrile used was purified and subjected to N2 bulb ringing. ■Next, this substrate 1 was left standing in 40 ml of acetonitrile at a cleaning temperature of 20"C for 1 hour (cleaning time).
Soaked. As a result, first, the prismatic crystals 12 were removed, resulting in a state as shown in FIG.
Figure (C) (Illustrated). Here, in the process of (dissolving) and removing the prismatic crystals 12, new acicular crystals grow on the exposed surface of the substrate in the gaps between the acicular crystals 11 using the prismatic crystals 12 dissolved in acetonitrile as a raw material. A uniform and dense charge transfer complex layer l3 was obtained. In addition, it was confirmed by infrared spectroscopy that the charge transfer complex layer 13 was C u-T CN Q. Thereafter, acetonitrile is removed by vacuum drying, and then aluminum is deposited on the complex layer to form an upper electrode, thereby obtaining a memory element. According to the first embodiment, the substrate 1 made of copper is
After being immersed in the NQ/acetonitrile solution, the prismatic crystals 12, which have a higher solubility than the needle crystals 11, are eluted and removed because they are immersed in acetonitrile under predetermined conditions. In addition, prismatic crystals l2 were eluted. During the removal process, the prismatic crystals 12 are dissolved in the acetonitrile, which enters the gaps between the existing needle crystals 11 and another needle crystal grows. This ensures uniformity. A dense charge transfer complex layer l3 can be obtained. Moreover, the charge transfer complex layer 13 obtained in this way
Even if a memory element is manufactured by forming the upper electrode 3 thereon, the upper electrode 3 and the substrate 1 will not be directly electrically connected, and a good V
l characteristics were obtained. FIG. 7 shows a photograph (1000 times magnification) taken by a scanning electron microscope (SEM) showing the particle structure of the charge transfer complex layer formed in Example 1. Figure 5 mentioned above! From FIG. 6 (conventional) and FIG. 7, it was confirmed that the surface of the complex layer thin film according to the present invention was much more uniform and dense than the conventional one. Furthermore, FIG. 4 shows the V! of the above memory element. Show characteristics. [Example 2] First, a substrate was treated in the same manner as in Example 1, and then the substrate was immersed in a TCNQ/acetanilyl solution for about 30 to 40 seconds. Subsequently, the substrate was immersed in 40 ml of acetonitrile at 70'C for several minutes in a stationary state to remove the prismatic crystals and form a charge transfer complex layer. Thereafter, vacuum drying, formation of an upper electrode, etc. were performed in the same manner as in Example 1, to manufacture a memory element. According to Example 2, a more uniform and dense thin film was obtained compared to Example 1. FIG. 8 shows a scanning electron microscope [1'! (SEM) photograph (1000x) is shown. Example 3 First, a plurality of striped lower n-electrodes made of copper were formed on one surface of a substrate made of glass. Next, a cell transfer complex layer was formed on this lower electrode by the method described in the above example. Next, a plurality of upper electrodes made of aluminum were formed to intersect with the lower electrode, thereby manufacturing a plurality of memory elements. According to Example 3, a uniform and dense charge transfer complex layer was obtained as in Example 1, and exhibited good VI characteristics. In addition to Examples 1 to 3 above, experiments were also conducted for Examples 4 to 9 under the conditions shown in Table 1 below in the same manner as Example 1, and all results were reproducible and stable. Sample obtained. Table 1 [Effects of the Invention] As detailed above, according to the present invention, uniform, dense, and good IV characteristics can be obtained. It is possible to provide a method for forming a charge transfer complex layer that exhibits device-to-device reproducibility, maintains a constant voltage across the complex layer, and avoids conduction between the upper electrode and the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(C)は本発明の電荷移動錯体層の形成
方法を工程順に示す説明図、第2図は従来のメモリ素子
の断面図、第3図はこのメモリ素子のVIR性図、第4
図は本発明に係るメモリ素子のVIQ性図、第5図及び
第6図は夫々従来の電荷移動錯体層の粒子構造をSEM
で撮影した写真、第7図及び第8図は夫々本発明に係る
電荷移動錯体層の粒子構造をSEMで撮影した写真であ
る。 1・・・基板、3・・・上部電極、1l・・・針状結晶
、l2・・・角柱状結晶、l3・・・電荷移動錯体層。 第1図 出願人代理人 弁理士 鈴江武彦 第2図 ′¥h4図 第5図 第6図
Figures 1 (A) to (C) are explanatory diagrams showing the method of forming a charge transfer complex layer of the present invention in the order of steps, Figure 2 is a sectional view of a conventional memory element, and Figure 3 is a VIR characteristic of this memory element. Figure, 4th
The figure shows the VIQ characteristic diagram of the memory element according to the present invention, and FIGS. 5 and 6 show the particle structure of the conventional charge transfer complex layer, respectively.
7 and 8 are SEM photographs of the particle structure of the charge transfer complex layer according to the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Substrate, 3... Upper electrode, 1l... Needle crystal, l2... Prismatic crystal, l3... Charge transfer complex layer. Figure 1 Applicant's agent Patent attorney Takehiko Suzue Figure 2 '\h4 Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)電子供与体となる組成物の基材上に、電子受容体
となる組成物を溶媒中に溶解した溶液を接触させて前記
基材主面に電荷移動錯体化合物の結晶層を形成する第1
の工程と、この結晶層に溶剤を接触させて上記結晶層の
処理を行う第2の工程とを具備することを特徴とする電
荷移動錯体層の形成方法。
(1) A solution of the electron acceptor composition dissolved in a solvent is brought into contact with the base material of the electron donor composition to form a crystalline layer of the charge transfer complex compound on the main surface of the base material. 1st
A method for forming a charge transfer complex layer, comprising the steps of: and a second step of treating the crystal layer by bringing a solvent into contact with the crystal layer.
(2)前記第1の工程により電荷移動錯体化合物の第1
の結晶と第2の結晶との複合結晶層が前記基材面上に形
成され、前記第2の工程により第2の結晶を前記溶剤に
溶解し第1の結晶のみからなる電荷移動錯体の結晶層を
前記基材面上に形成する請求項1記載の電荷移動錯体層
の形成方法。
(2) The first step of forming a charge transfer complex compound in the first step
A composite crystal layer of the crystal and the second crystal is formed on the base material surface, and the second crystal is dissolved in the solvent in the second step to form a charge transfer complex crystal consisting only of the first crystal. The method for forming a charge transfer complex layer according to claim 1, wherein the layer is formed on the surface of the substrate.
JP1057217A 1989-03-09 1989-03-09 Formation of charge transfer complex layer Pending JPH02237070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1057217A JPH02237070A (en) 1989-03-09 1989-03-09 Formation of charge transfer complex layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1057217A JPH02237070A (en) 1989-03-09 1989-03-09 Formation of charge transfer complex layer

Publications (1)

Publication Number Publication Date
JPH02237070A true JPH02237070A (en) 1990-09-19

Family

ID=13049362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1057217A Pending JPH02237070A (en) 1989-03-09 1989-03-09 Formation of charge transfer complex layer

Country Status (1)

Country Link
JP (1) JPH02237070A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057345A1 (en) * 1998-04-30 1999-11-11 Asahi Kasei Kogyo Kabushiki Kaisha Functional element for electric, electronic or optical device and method for manufacturing the same
US6716773B2 (en) 2001-09-21 2004-04-06 Catalysts & Chemicals Industries Co., Ltd. Process for producing semiconductor substrates
US6810575B1 (en) 1998-04-30 2004-11-02 Asahi Kasai Chemicals Corporation Functional element for electric, electronic or optical device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057345A1 (en) * 1998-04-30 1999-11-11 Asahi Kasei Kogyo Kabushiki Kaisha Functional element for electric, electronic or optical device and method for manufacturing the same
GB2352562A (en) * 1998-04-30 2001-01-31 Asahi Chemical Ind Functional element for electric, electronic or optical device and method for manufacturing the same
GB2352562B (en) * 1998-04-30 2003-10-08 Asahi Chemical Ind Functional element for use in an electric, an electronic or an optical device and method for producing the same
US6810575B1 (en) 1998-04-30 2004-11-02 Asahi Kasai Chemicals Corporation Functional element for electric, electronic or optical device and method for manufacturing the same
US6716773B2 (en) 2001-09-21 2004-04-06 Catalysts & Chemicals Industries Co., Ltd. Process for producing semiconductor substrates

Similar Documents

Publication Publication Date Title
Hickmott Impurity conduction and negative resistance in thin oxide films
JP3055791B2 (en) Electrodes for electrical ceramic oxide equipment
DE2217538C3 (en) Method of making interconnections in a semiconductor device
JP2008504690A (en) Metal ceramic thin film on base metal electrode
DE19515347C2 (en) Electrode structure and capacitor with materials with high dielectric constant
Sato et al. Polarized memory effect in the device including the organic charge‐transfer complex, copper‐tetracyanoquinodimethane
EP0528281A2 (en) Structure of circuit having at least a capacitor and process of fabrication
KR930004110B1 (en) Manufacturing method of conductive layer with enlarged surface area
US6127283A (en) Method of electrophoretic deposition of ferroelectric films using a trifunctional additive and compositions for effecting same
DE102005009511B3 (en) A semiconductor memory device and method of manufacturing a semiconductor memory device
Park et al. Bistable switching in Zr ZrO2 Au junctions
DE60103048T2 (en) METHOD FOR PRODUCING ULTRA-THIN POLYMER FOILS
WO2004034421A2 (en) Method for electric field assisted deposition of films of nanoparticles
EP0035536A1 (en) Method of manufactoring adjustable thick film capacitors.
JPH02237070A (en) Formation of charge transfer complex layer
US3351500A (en) Method of forming a transistor and varistor by reduction and diffusion
JP3002605B2 (en) Method for manufacturing solid electrolytic capacitor
JPH02239662A (en) Forming method for charge-transfer complex layer
SU320228A1 (en) Method for obtaining fusion-diffusion pneumatic junction
JPH03104281A (en) Organic thin film element
Manfield Thin film circuits—Part II. The development of thin film resistors and capacitors for microcircuits
JPH03125478A (en) Electronic element manufacturing method, using organic semiconductor
JPH02244673A (en) Electronic element using organic semiconductor and manufacture thereof
JP2001244482A (en) Semiconductor element and manufacturing method therefor
JPH0770441B2 (en) Solid electrolytic capacitor