JPH02237050A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02237050A
JPH02237050A JP5691389A JP5691389A JPH02237050A JP H02237050 A JPH02237050 A JP H02237050A JP 5691389 A JP5691389 A JP 5691389A JP 5691389 A JP5691389 A JP 5691389A JP H02237050 A JPH02237050 A JP H02237050A
Authority
JP
Japan
Prior art keywords
groove
layer
substrate
isolation
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5691389A
Other languages
Japanese (ja)
Inventor
Shoji Usui
臼井 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5691389A priority Critical patent/JPH02237050A/en
Publication of JPH02237050A publication Critical patent/JPH02237050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To obtain a U-shaped groove isolation formation method, by which a crystal defect is never generated by a method wherein a groove is formed between an element region of the surface of a semiconductor substrate and other element region of the surface, the interior of the groove is filled with a polycrystalline or amorphous silicon layer insulated electrically from the substrate and the surface of the groove is coated with an insulating material film adhered by deposition. CONSTITUTION:A mask is formed on a P-type single crystal Si substrate 1 by a photolithography, an isolation groove is made by a selective ion etching(RIE) method and the surface of this groove is thermally oxidized to form an SiO2 film 2. When a polycrystalline silicon layer 3 is grown by deposition by a reduced CVD method, the deposition is completely proceeded isotropically. Therefore, the groove not only is completely filled but also the final surface of the layer 3 also becomes almost flat. When this layer 3 is etched back by an RIE method, a state that the layer 3 is left only in the groove is obtained. Moreover, an SiO2 layer 4 is applied on the whole surface of the substrate by a CVD method, subsequently, a selective etching is performed by a normal photolithography and an RIE method and an SiO2 layer 4' is left only on the upper part of the groove. Thereby, a U-shaped groove isolation structure is realized.

Description

【発明の詳細な説明】 〔概 要) 本発明は半導体集積回路基板に於ける素子間分離、特に
U字型の溝を絶縁された材料で埋める素子間分離に関し
、 U溝充填材料の表面の絶縁化処理で、基板結晶に歪が生
ずるのを回避することを目的とし、本発明の半導体装置
の製造方法は 半導体基板表面の素子領域と他の素子領域との間に溝を
形成する工程、 咳溝内を基板と電気的に絶縁された多結晶若しくは非晶
質シリコンで充填する工程、 前記溝を充填したシリコンの表面を堆積被着した絶縁材
料皮膜で被覆する工程 を包含して構成される. 〔産業上の利用分野〕 本発明は半導体集積回路基板に於ける素子間分離の中、
U字型の溝を絶縁材料或いは同等の材料で充填する形の
素子間分離に関わる。
[Detailed Description of the Invention] [Summary] The present invention relates to isolation between elements in a semiconductor integrated circuit board, particularly isolation between elements in which a U-shaped groove is filled with an insulated material. Aiming at avoiding distortion in the substrate crystal during insulation treatment, the method for manufacturing a semiconductor device of the present invention includes a step of forming a groove between an element region and another element region on the surface of the semiconductor substrate; The method includes the steps of filling the inside of the groove with polycrystalline or amorphous silicon that is electrically insulated from the substrate, and covering the surface of the silicon filled in the groove with a deposited insulating material film. Ru. [Industrial Application Field] The present invention is applied to isolation between elements in a semiconductor integrated circuit board.
It involves isolation between elements in the form of filling a U-shaped trench with an insulating material or an equivalent material.

半導体基板に各種の素子を作り込んで集積回路を形成す
る場合、素子どうしの間を電気的に絶縁することが必要
である.素子形成層の底面に設けられる基板との間の分
離構造に関しては、分離領域が占める厚さについての制
約はさほど厳しくないが、素子領域相互間の分離即ち素
子間分離では、分離機能が十分なものであることが要求
されると共に、占有面積が小であることも必要である.
素子間分離の方式のうちpn接合によるものは、集積密
度の向上に伴って接合容量の好ましくない影響が大とな
ることから、用いられることが少なくなり、代わって、
素子領域間に溝を掘り、これを絶縁材料で埋める形の素
子間絶縁分離が多く用いられるようになっている。
When forming an integrated circuit by fabricating various elements on a semiconductor substrate, it is necessary to electrically insulate the elements. Regarding the isolation structure between the element forming layer and the substrate provided on the bottom surface, there are not very strict restrictions on the thickness occupied by the isolation region, but for isolation between element regions, that is, isolation between elements, it is necessary to have a sufficient isolation function. In addition to being required to be of great value, it is also necessary that the area occupied be small.
Among element isolation methods, those using pn junctions are less commonly used because the undesirable effects of junction capacitance become more significant as integration density increases, and instead,
Inter-element insulation isolation, in which trenches are dug between element regions and filled with insulating material, is increasingly used.

近年、反応性イオンエッチング(RIE)のように一方
向のみに進行するエッチング技術が開発されたことから
、開口幅に比べ深さが大である断面U字型の溝を掘るこ
とが可能となり、これを絶縁材料で充填する素子間分離
が行われるようになっている。この型の素子間分離はU
溝分離と呼ばれている。
In recent years, with the development of etching techniques that proceed in only one direction, such as reactive ion etching (RIE), it has become possible to dig trenches with a U-shaped cross section that are deeper than the opening width. Inter-element isolation is now performed by filling this with an insulating material. This type of element isolation is U
This is called groove separation.

一方、溝を絶縁材料で充填する技術では、当初基板その
ものを酸化して充填する方法やCVD法で酸化物を堆積
する方法などが行われたが、後に減圧CVD法による被
覆性の優れた多結晶シリコン(ボリSi)の堆積技術が
開発され、これを利用して分離溝を充填することが考え
られた.即ち、分離溝内を全て絶縁材料のみで充填する
ことは必要なく、ボリStのような導電性の材料でも、
その周囲を絶縁材料で包囲すれば充填材料として利用で
きるという考えから、溝の内壁を酸化して絶縁皮膜を形
成し、ポリSiで充填した後、その表面を酸化してポリ
Siを包み込むことが始められた. ?従来の技術と発明が解決しようとする課題〕今日最も
広く用いられている絶縁分離技術の一つは、反応性イオ
ンエッチング(R I E)のように一方向のみに進行
するエッチング法によって断面U字型の溝を掘り、溝の
内壁を酸化して絶縁皮膜を形成した後、減圧CVD法の
ような被覆性の優れた方法でボリSiを堆積して溝を充
填し、その表面を酸化してポリSiを絶縁するものであ
る.該絶縁分離領域の断面構造を模式的に示したものが
第5図である。1はSi基板、2は溝内壁面に形成され
たS i O z膜、3はポリSt、5はポリSiの表
面を被覆するSiO■層である。このボリSt表面のS
iO■層5の形成は熱酸化によって行われるが、Siの
酸化に伴う体積増加のため、素子領域に応力が生じ、結
晶欠陥が発生する。
On the other hand, techniques for filling trenches with insulating materials initially included methods such as oxidizing the substrate itself and depositing oxides, but later, low-pressure CVD methods were used to fill the trenches with insulating materials. A technique for depositing crystalline silicon (Si) has been developed, and it has been considered to use this technique to fill isolation trenches. In other words, it is not necessary to fill the entire isolation trench with only an insulating material, and even with a conductive material such as St.
Based on the idea that if it is surrounded by an insulating material, it can be used as a filling material, so the inner wall of the trench is oxidized to form an insulating film, filled with poly-Si, and then the surface is oxidized to enclose the poly-Si. It was started. ? Prior Art and Problems to be Solved by the Invention] One of the most widely used insulation isolation technologies today is the use of an etching method that progresses in only one direction, such as reactive ion etching (RIE), to After digging a trench in the shape of a letter and oxidizing the inner wall of the trench to form an insulating film, the trench is filled with silicon deposited using a method with excellent coverage such as low-pressure CVD, and the surface is oxidized. This is used to insulate poly-Si. FIG. 5 schematically shows the cross-sectional structure of the insulation isolation region. 1 is a Si substrate, 2 is a SiOz film formed on the inner wall surface of the groove, 3 is polySt, and 5 is an SiO2 layer covering the surface of polySi. S on the surface of this body St
The iO2 layer 5 is formed by thermal oxidation, but due to the increase in volume due to the oxidation of Si, stress is generated in the element region and crystal defects are generated.

素子領域に発生した欠陥は素子の特性を劣化させ、集積
回路の製造歩留りを低下させるから、欠陥発生のない処
理法が求められている。
Since defects occurring in the element region deteriorate the characteristics of the element and lower the manufacturing yield of integrated circuits, a processing method that does not generate defects is required.

本発明の目的は結晶欠陥を生ずることのないU溝分離形
成法を提供することであり、それによって、歩留りよく
集積回路を形成する方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming U-groove isolation that does not cause crystal defects, thereby providing a method for forming integrated circuits with high yield.

?課題を解決するための手段] 上記目的を達成するため、本発明の半導体装置の製造方
法には 半導体基板表面の素子領域と他の素子領域との間に溝を
形成する工程、 該溝内を基板と電気的に絶縁された多結晶若しくは非晶
質Siで充填する工程、及び 前記溝を充填したStの表面を堆積被着した絶縁材料皮
膜で被覆する工程 が包含される。
? Means for Solving the Problem] In order to achieve the above object, the method for manufacturing a semiconductor device of the present invention includes a step of forming a groove between an element region and another element region on the surface of a semiconductor substrate, and a step of forming a groove in the groove. The steps include a step of filling the groove with polycrystalline or amorphous Si that is electrically insulated from the substrate, and a step of covering the surface of the St filled in the groove with a deposited insulating material film.

上記本発明の方法により形成されたU溝分離の断面構造
を模式的に示したものが第1図である。
FIG. 1 schematically shows the cross-sectional structure of the U-groove isolation formed by the method of the present invention.

咳図で、1はSi基板、2はSiO■膜、3はボリSi
であり、4が堆積法により付着的に形成されたSiO■
層である。
In the cough diagram, 1 is the Si substrate, 2 is the SiO film, and 3 is the poly-Si
, and 4 is SiO■ formed adhesively by a deposition method.
It is a layer.

また本発明の第2では、 前記溝を充填したStの表面を堆積被着した絶縁材料皮
膜で被覆する工程として、 前記Siの表面が溝内に沈潜する程度にエッチバックを
進め、次いで前記基板全面に絶縁材料皮膜を堆積被着し
、異方性のエッチング処理によって前記溝内のシリコン
上のみに前記絶縁材料皮膜を残存せしめる処理が行われ
る。
Further, in the second aspect of the present invention, as the step of covering the surface of the St filling the groove with a deposited insulating material film, etching back is performed to such an extent that the surface of the Si sinks into the groove, and then the step of An insulating material film is deposited on the entire surface, and an anisotropic etching process is performed to leave the insulating material film only on the silicon in the groove.

〔作 用〕[For production]

本発明の方法では、溝内のポリSiを熱酸化することが
ないので、体積膨張に伴う歪の発生がなく、素子領域に
結晶欠陥が発生することがない。
In the method of the present invention, since the poly-Si in the trench is not thermally oxidized, strain due to volume expansion does not occur, and crystal defects do not occur in the element region.

したがって、本発明の方法により絶縁分離を施した基板
に形成された素子は良好な特性を有するものとなり、集
積回路の製造歩留りが向上する。
Therefore, an element formed on a substrate subjected to insulation isolation by the method of the present invention has good characteristics, and the manufacturing yield of integrated circuits is improved.

〔実施例〕〔Example〕

第2図(a)〜(d)は、請求項(1)に対応する本発
明の実施例の工程を示す断面模式図である。以下、該図
面を参照しながら該実施例の工程を説明する。
FIGS. 2(a) to 2(d) are schematic cross-sectional views showing steps of an embodiment of the present invention corresponding to claim (1). Hereinafter, the steps of this embodiment will be explained with reference to the drawings.

(a)図の如く、比抵抗10Ωcmのp型単結晶?i基
板1に、フォトリソグラフイによってマスクを形成し、
RIEにより幅1μm、深さ5μmの分藤溝を掘る。こ
れを熱酸化して厚さ1000人のSiO■膜2を形成す
る。
(a) As shown in the figure, is it a p-type single crystal with a resistivity of 10Ωcm? Forming a mask on the i-substrate 1 by photolithography,
A trench with a width of 1 μm and a depth of 5 μm is dug by RIE. This is thermally oxidized to form a SiO2 film 2 with a thickness of 1000 wafers.

減圧CVD法によりポリSiNを1μm堆積成長させる
と、該処理法では完全に等方的に堆積が進行するから、
前記溝は完全に充填されるばかりでなく、最終的なポリ
St表前も殆ど平坦となる。
When poly-SiN is deposited and grown to a thickness of 1 μm using the low-pressure CVD method, the deposition progresses completely isotropically, so
Not only is the groove completely filled, but the final polySt surface is also almost flat.

これをtEでエッチバックすると、Φ)図のように、溝
内のみにポリSi3を残した状態が得られる。
When this is etched back at tE, a state is obtained in which poly-Si3 remains only in the grooves, as shown in figure Φ).

その上にCVD法により、Sing層4を基板全面に被
着する。この状態が(C)図に示されている。
Thereon, a Sing layer 4 is deposited over the entire surface of the substrate by CVD. This state is shown in figure (C).

続いて、通常のフォトリソグラフイとRIEによって選
択エッチングを施し、(d)図の如く、溝上部のみにS
iO■層4′を残す。
Next, selective etching is performed using conventional photolithography and RIE, and S is etched only on the upper part of the groove, as shown in (d).
The iO layer 4' is left.

以上の処理によって第1図に示されたU溝分離構造が実
現する。
Through the above processing, the U-groove isolation structure shown in FIG. 1 is realized.

また、第3図(a)〜(C)は請求項(2)に対応する
本発明の第2の実施例の工程を示す断面模式図である。
Moreover, FIGS. 3(a) to 3(C) are schematic cross-sectional views showing the steps of the second embodiment of the present invention corresponding to claim (2).

?下、該図面を参照しながら、第2の実施例の工程を説
明する. (a)図は第1の実施例と同じ処理によって溝内のみに
ポリSi3を残した状態であり、lはSi基板、2はS
 i O z膜である。この実施例ではエッチバックを
強く施し、ボリSt表面を溝の内部に沈めるようにする
? Below, the steps of the second embodiment will be explained with reference to the drawings. (a) The figure shows a state where poly-Si3 is left only in the groove by the same process as in the first embodiment, l is the Si substrate, 2 is the S
It is an iOz film. In this embodiment, strong etch-back is performed so that the surface of the burr St is sunk into the groove.

(b)図はこれにCVD法でS i O t層4を被着
した状態を示しており、基板面までエッチバックを行う
と、(C)図に示すように、溝内のポリSi上面がSi
O■層4′で被覆された状態が実現する。
Figure (b) shows a state in which a SiOt layer 4 is deposited on this by the CVD method, and when etched back to the substrate surface, the top surface of the poly-Si in the groove is removed as shown in figure (c). is Si
A state covered with the O2 layer 4' is achieved.

この第2の発明ではSiOzll4’を残す処理が、フ
ォトリソグラフィに依ることなく自己整合的に行われる
ので、より狭い領域にU溝分離構造を実現することが可
能である。
In this second invention, since the process of leaving SiOzll4' is performed in a self-aligned manner without relying on photolithography, it is possible to realize a U-groove isolation structure in a narrower area.

第4図(a)〜(e)は上記第2の発明の他の実施例即
ち第3の実施例の工程を示す断面模式図である.以下、
該図面を参照しながら説明する。
FIGS. 4(a) to 4(e) are schematic cross-sectional views showing the steps of another embodiment of the second invention, that is, the third embodiment. below,
This will be explained with reference to the drawings.

この実施例では溝を掘る前に、(a)図の如く、基ヰ反
10の上に1000人のSiN膜11、2000〜30
00大の?リSi層12、1000人の第2のSiN膜
13、lμmのPSG層14を順次堆積しておく。これ
等の堆積層の中、2つのSiN膜はエッチバック工程に
於けるRIE処理のストツパとして設けられたものであ
って、上記各実施例に於いても、説明は省略されている
が、必要に応じて用いられているものである. 本実施例では次のような処理によって溝が形成される。
In this embodiment, before digging a trench, a SiN film 11 of 1000 layers, 2000 to 30
00 large? A second Si layer 12, a second SiN film 13 with a thickness of 1000, and a PSG layer 14 with a thickness of 1 μm are sequentially deposited. Among these deposited layers, the two SiN films were provided as stoppers for the RIE process in the etch-back process, and although their explanation is omitted in each of the above embodiments, they are necessary. It is used depending on the situation. In this embodiment, the grooves are formed by the following process.

先ず、フォトリソグラフィにより形成したレジストパタ
ーン(図示せず)をマスクとしてRIEによりPSG層
14を選択エッチングし、残されたPSG層をマスクと
してSiN膜13に窓を開ける。
First, the PSG layer 14 is selectively etched by RIE using a resist pattern (not shown) formed by photolithography as a mask, and a window is opened in the SiN film 13 using the remaining PSG layer as a mask.

更に、ポリSt層12、SiN膜11にも同様に窓を開
け、この窓を通じて選択的にRIE処理を施して基板1
に溝を掘る。この状態が[有])図に示されている。
Furthermore, windows are similarly opened in the polySt layer 12 and the SiN film 11, and RIE processing is selectively performed through these windows to expose the substrate 1.
dig a trench. This situation is shown in the figure.

次いでPSGjlを除去した後、基板を熱酸化して溝の
内壁をSiO■膜で被覆し、減圧CVD法によりポリS
i層を堆積する。該ポリSi層の厚さは、通常の如く溝
の幅の172〜1倍とする。
After removing the PSGjl, the substrate is thermally oxidized to cover the inner wall of the groove with a SiO film, and polyS is coated by low pressure CVD.
Deposit the i-layer. The thickness of the poly-Si layer is usually 172 to 1 times the width of the groove.

これにRIHによるエッチバックを施し、溝内部にボリ
Sil6を残すのであるが、その際ポリSi表面の高さ
は基板のSi面とは〜′一致させる。
This is etched back by RIH to leave a bulge Sil6 inside the groove, but at this time the height of the poly-Si surface is made to match the height of the Si surface of the substrate.

この状態が(C)図に示されている。This state is shown in figure (C).

続いてCVD法によりSiOz層16を堆積し、エッチ
バックを施す。この処理では第2のSiN膜13がスト
ツパとして機能するので、SiN膜上のS i O z
が全て除去されたところでエッチングを停止すれば、(
d)図の状態となる。
Subsequently, a SiOz layer 16 is deposited by CVD and etched back. In this process, the second SiN film 13 functions as a stopper, so that S i O z on the SiN film
If the etching is stopped when all is removed, (
d) The state shown in the figure is reached.

更にSiN膜を除去し、ポリSiを優先的にエッチング
する条件でRIEを施してポリSi層を除去すれば、(
e)図の如く溝内のポリはその周囲を完全にSingで
覆われた状態となり、U溝分離構造が出来上がる。
Furthermore, if the SiN film is removed and the poly-Si layer is removed by performing RIE under conditions that preferentially etch poly-Si, (
e) As shown in the figure, the poly in the groove is completely covered with Sing, and a U-groove isolation structure is completed.

該第4図の実施例の処理によれば、ボリSt上面のSi
ntの必要な厚さを確実に残すことが出来るので、素子
間分離の効果がより確実となる。
According to the process of the embodiment shown in FIG.
Since the necessary thickness of nt can be reliably left, the effect of isolation between elements becomes more reliable.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、半導体基板の素子
形成領域に応力を生じさせることなく、U溝分離構造を
形成することが出来るので、集積回路構成素子の特性の
劣化が大幅に軽減され、集積回路の製造歩留りが向上す
る。
As explained above, according to the present invention, it is possible to form a U-groove isolation structure without causing stress in the element formation region of a semiconductor substrate, so that the deterioration of the characteristics of integrated circuit elements can be significantly reduced. , the manufacturing yield of integrated circuits is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による素子分離領域の構造を示す断面模
式図、 第2図は本発明の第1の実施例の工程を示す断面模式図
、 第3図は本発明の第2の実施例の工程を示す断面模式図
、 第4図は本発明の第3の実施例の工程を示す断面模式図
、 第5図は従来の素子分離領域の構造を示す断面模式図 であって、 図に於いて ?はSi基板、 2はSiO■膜、 3はボリSi1 4.4′ はCVD−SiOz層、 5は熱酸化SiO■、 10はSt基板、 l1はStN膜、 12はポリSi層、 13は第2のSiN膜、 14はPSG層、 15は熱酸化SiCh、 16はポリSi層、 l7はC V D  S i O z層である。 本発明による素子分離構造を示す断面模式図第1図 従来の素子分離構造を示す断面模式図 第5図 (a) 本発明の第1の実施例の工程を示す断面模式図第 図 本発明の第3の実施例の工程を示す断面模式図第 図(その1) 本発明の第2の実施例の工程を示す断面模式図第 図 本発明の第3の実施例の工程を示す断面模式図第 図(その2)
FIG. 1 is a schematic cross-sectional diagram showing the structure of an element isolation region according to the present invention, FIG. 2 is a schematic cross-sectional diagram showing the steps of the first embodiment of the present invention, and FIG. 3 is a schematic cross-sectional diagram showing the process of the first embodiment of the present invention. 4 is a schematic cross-sectional view showing the process of the third embodiment of the present invention. FIG. 5 is a schematic cross-sectional view showing the structure of a conventional element isolation region. At? is a Si substrate, 2 is a SiO film, 3 is a poly Si14.4' is a CVD-SiOz layer, 5 is a thermally oxidized SiO film, 10 is an St substrate, l1 is a StN film, 12 is a poly-Si layer, and 13 is a poly-Si layer. 2 is a SiN film, 14 is a PSG layer, 15 is a thermally oxidized SiCh, 16 is a poly-Si layer, and 17 is a C V D Si O z layer. FIG. 1 is a schematic cross-sectional view showing a conventional device isolation structure. FIG. Schematic cross-sectional diagram showing the steps of the third embodiment (Part 1) Schematic cross-sectional diagram showing the steps of the second embodiment of the present invention Schematic cross-sectional diagram showing the steps of the third embodiment of the present invention Figure (Part 2)

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板表面の素子領域と他の素子領域との間
に溝を形成する工程、 該溝内を基板と電気的に絶縁された多結晶若しくは非晶
質シリコンで充填する工程、 前記溝を充填したシリコンの表面を堆積被着した絶縁材
料皮膜で被覆する工程 とを包含することを特徴とする半導体装置の製造方法。
(1) A step of forming a groove between an element region and another element region on the surface of a semiconductor substrate, a step of filling the groove with polycrystalline or amorphous silicon electrically insulated from the substrate, and the groove 1. A method for manufacturing a semiconductor device, comprising the step of: coating the surface of silicon filled with silicon with a deposited insulating material film.
(2)請求項(1)の半導体装置の製造方法であって、
前記溝を多結晶若しくは非晶質のシリコンで充填した後
、該溝内のシリコンの表面を、前記溝の縁を形成する前
記半導体基板表面若しくは該表面上に被着した材料層表
面より沈んだものとし、次いで前記基板全面に絶縁材料
皮膜を堆積被着し、異方性のエッチング処理によって前
記溝内のシリコン上のみに前記絶縁材料皮膜を残存せし
めることにより、 前記溝を充填したシリコンの表面を絶縁材料皮膜で被覆
することを特徴とする半導体装置の製造方法。
(2) A method for manufacturing a semiconductor device according to claim (1), comprising:
After filling the trench with polycrystalline or amorphous silicon, the surface of the silicon in the trench is submerged below the surface of the semiconductor substrate or a layer of material deposited on the surface forming the edge of the trench. Then, by depositing an insulating material film on the entire surface of the substrate and leaving the insulating material film only on the silicon in the groove by anisotropic etching treatment, the surface of the silicon filling the groove is 1. A method of manufacturing a semiconductor device, comprising: covering the semiconductor device with an insulating material film.
JP5691389A 1989-03-09 1989-03-09 Manufacture of semiconductor device Pending JPH02237050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5691389A JPH02237050A (en) 1989-03-09 1989-03-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5691389A JPH02237050A (en) 1989-03-09 1989-03-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02237050A true JPH02237050A (en) 1990-09-19

Family

ID=13040709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5691389A Pending JPH02237050A (en) 1989-03-09 1989-03-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02237050A (en)

Similar Documents

Publication Publication Date Title
US6136664A (en) Filling of high aspect ratio trench isolation
US5084408A (en) Method of making complete dielectric isolation structure in semiconductor integrated circuit
US5795811A (en) Method for forming insulating films in semiconductor devices
US6518147B1 (en) Process for manufacturing an SOI wafer by oxidation of buried channels
JPH0449777B2 (en)
JP3363420B2 (en) Method of manufacturing patterned silicon-on-insulator substrate with self-aligned trench
US6849521B2 (en) Method for manufacturing a semiconductor device
US6677193B2 (en) Method of producing semiconductor device and its structure
JPH05849B2 (en)
US6103581A (en) Method for producing shallow trench isolation structure
JPH07176607A (en) Fabrication of semiconductor device
JPH02237050A (en) Manufacture of semiconductor device
KR100214534B1 (en) Method of forming a device isolation structure of semiconductor device
JPH043455A (en) Soi transistor laminated semiconductor device and manufacture thereof
TW415017B (en) Method of improving trench isolation
JP3049904B2 (en) Manufacturing method of dielectric isolation wafer
KR100214530B1 (en) Method for forming trench element isolation structure
KR19990021366A (en) Device Separation Method of Semiconductor Device
KR0172240B1 (en) Method of separating element from semiconductor device
JP3319153B2 (en) Method for manufacturing semiconductor device
JP3367484B2 (en) Semiconductor device and manufacturing method thereof
JP2000031489A (en) Manufacturing semiconductor device
KR19990051399A (en) Device Separation Method of Semiconductor Device
JP3468920B2 (en) Element isolation method for semiconductor device
US20030119294A1 (en) Method for forming wiring in semiconductor device