JPH0223703B2 - - Google Patents

Info

Publication number
JPH0223703B2
JPH0223703B2 JP56174766A JP17476681A JPH0223703B2 JP H0223703 B2 JPH0223703 B2 JP H0223703B2 JP 56174766 A JP56174766 A JP 56174766A JP 17476681 A JP17476681 A JP 17476681A JP H0223703 B2 JPH0223703 B2 JP H0223703B2
Authority
JP
Japan
Prior art keywords
fuel
gaseous fuel
intake valve
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56174766A
Other languages
Japanese (ja)
Other versions
JPS5877152A (en
Inventor
Ryuichi Yamashita
Noryuki Kurihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP56174766A priority Critical patent/JPS5877152A/en
Publication of JPS5877152A publication Critical patent/JPS5877152A/en
Publication of JPH0223703B2 publication Critical patent/JPH0223703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は気体燃料エンジンに関するものであ
る。さらに詳しくは、大気圧以上の高圧に加圧し
た可燃性気体を燃料として駆動するようにした4
サイクルエンジンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to gaseous fuel engines. In more detail, 4
It is related to cycle engines.

水素、メタン、エタンなどの気体燃料を4サイ
クルエンジンに用いる場合、この気体燃料を、従
来のエンジンと同様に予め空気と混合してから燃
焼室に供給するようにすると、十分な出力が得ら
れないという不都合がある。これは、例えば水素
燃料の場合、比重の軽い気体であるため、混合気
中に水素の占める体積割合が理論比で約30%にも
なつてガソリンなどの液体燃料に比べて著しく大
きくなり、その結果、燃焼室内において空気の占
める割合が小さくなり、1回当りの燃焼による発
熱量が減つてエンジン出力が低下することになる
からである。
When using gaseous fuel such as hydrogen, methane, or ethane in a four-cycle engine, sufficient power can be obtained by mixing this gaseous fuel with air beforehand and supplying it to the combustion chamber, as in conventional engines. There is an inconvenience that there is no such thing. For example, in the case of hydrogen fuel, since it is a gas with a light specific gravity, the volume ratio of hydrogen in the mixture is approximately 30% of the theoretical ratio, which is significantly larger than that of liquid fuels such as gasoline. As a result, the proportion of air in the combustion chamber becomes smaller, the amount of heat generated by each combustion decreases, and the engine output decreases.

このような問題の対策として、本発明者等は、
先に燃焼室に対し空気供給用の空気吸入弁と高圧
気体燃料を供給するための燃料吸入弁とをそれぞ
れ独立に設けるようにすると共に、空気が必要量
吸入し終る頃から高圧の気体燃料を供給して、た
とえ機関が圧縮行程にかかつても気体燃料を供給
しうるようにしたことにより解決を行つた。しか
しながら、このような独立供給にともなう別の問
題は、得にアイドリング時などのように、高圧に
加圧された気体燃料を部分負荷で燃焼室内に噴出
供給させると、少ない流量であるために噴射され
た気体燃料が音速に達して断熱膨脹を行い、点火
栓等が冷却されたり、気体燃料の吸入量が一定し
なかつたりする現象が発生することである。その
結果、これが失火の原因などのいろいろな不具合
を生ずることになるのである。
As a countermeasure to such problems, the present inventors
First, an air intake valve for supplying air to the combustion chamber and a fuel intake valve for supplying high-pressure gaseous fuel are provided independently, and the high-pressure gaseous fuel is supplied from the time when the required amount of air has been sucked. The solution was to supply the engine with gaseous fuel even during the compression stroke. However, another problem with such independent supply is that when pressurized gaseous fuel is injected into the combustion chamber under partial load, especially during idling, the flow rate is small and the injection is interrupted. When the gaseous fuel is heated up to the speed of sound, it undergoes adiabatic expansion, causing phenomena such as cooling of the ignition plug and uneven intake of gaseous fuel. As a result, this causes various problems such as misfires.

本発明の目的は上述のような気体燃料エンジン
における問題を解消し、燃焼室に対し空気を供給
する空気吸入弁と高圧気体燃料を供給する燃料吸
入弁とをそれぞれ独立に設けた気体燃料エンジン
において、その気体燃料の断熱膨脹による冷却及
びそれに伴う失火などの不具合の発生がないよう
にした気体燃料エンジンを提供せんとするもので
ある。
An object of the present invention is to solve the above-mentioned problems in a gaseous fuel engine, and to provide a gaseous fuel engine in which an air intake valve that supplies air to a combustion chamber and a fuel intake valve that supplies high pressure gaseous fuel are each independently provided. It is an object of the present invention to provide a gaseous fuel engine in which the cooling caused by adiabatic expansion of the gaseous fuel and the occurrence of problems such as misfires caused by the cooling are avoided.

上記目的を達成する本発明の気体燃料エンジン
は、燃焼室に空気を供給する空気吸入弁と高圧に
加圧した気体燃料を供給する燃料吸入弁とをそれ
ぞれ独立に設けた4サイクルエンジンであつて、
前記燃料吸入弁の背部に気体燃料通路の容積を拡
大させた受熱可能な膨張室を設け、該膨張室で受
熱して高圧に保たれた状態の気体燃料を、前記燃
料吸入弁の開弁時にその開弁期間にわたつて噴射
される構成にしたものである。
The gaseous fuel engine of the present invention that achieves the above object is a four-cycle engine that is provided with an air intake valve that supplies air to a combustion chamber and a fuel intake valve that supplies highly pressurized gaseous fuel, respectively. ,
An expansion chamber capable of receiving heat is provided at the back of the fuel intake valve by expanding the volume of the gaseous fuel passage, and the gaseous fuel, which has received heat in the expansion chamber and is maintained at a high pressure, is heated when the fuel intake valve is opened. The fuel is injected during the valve opening period.

以下、図に示す本発明の実施例により具体的に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically explained below using embodiments shown in the drawings.

第1図及び第2図は本発明の実施例からなる2
気筒からなる気体燃料エンジンを示すものであつ
て、10はシリンダボデー、12はその内側に2
気筒が並列に形成されたシリンダ、14はこのシ
タンダ12に嵌挿されて上下に往復運動するよう
にしたピストン、16はシリンダボデー10の上
部に装着固定されたシリンダヘツド、18はシリ
ンダヘツドカバー、50はシリンダ12内におい
てピストン14上面とシリンダヘツド16との間
に形成された燃焼室である。
FIG. 1 and FIG. 2 are two examples of embodiments of the present invention.
This shows a gas fuel engine consisting of cylinders, where 10 is a cylinder body and 12 is a cylinder body with 2 cylinders inside.
A cylinder in which cylinders are formed in parallel; 14, a piston fitted into the cylinder 12 and reciprocating up and down; 16, a cylinder head mounted and fixed on the upper part of the cylinder body 10; 18, a cylinder head cover; 50 is a combustion chamber formed within the cylinder 12 between the upper surface of the piston 14 and the cylinder head 16.

シリンダヘツド16にはシリンダ12のボア中
心付近に点火栓48がそれぞれ設けられている。
さらにシリンダヘツド16のそれぞれには、1気
筒につき空気を吸入するための2個の空気吸入弁
20,22と、加圧された高圧の気体燃料を吸入
するための1個の燃料吸入弁24と、燃焼後のガ
スを排出するための排気弁26とが設けられてい
る。空気吸入弁20,22は2個のシリンダ1
2,12の各軸心を含む面に対し片側に並び、ま
た燃料吸入弁24と排気弁26とは他側に並列す
るようになつている。各気筒の空気の吸気通路2
8はその下流側が二股状に分岐して各空気吸入弁
20,22に連通し、また吸気通路28の上流側
は吸気箱30に連通している。吸気箱30には不
図示の空気清浄器から空気が流入するようになつ
ており、また吸気通路28内には流量を調節する
絞り弁32が設けられている。空気吸入弁20,
22はカム軸34に固定されたカム35によりバ
ルブリフタ36を介して同時に開閉駆動される。
また排気弁26はカム軸37に固定されたカム3
8によりバルブリフタ(図示せず)を介して開閉
駆動され、開弁時には燃焼後の排気を排気通路4
0に送り出し大気中に排出する。
Each cylinder head 16 is provided with a spark plug 48 near the center of the bore of the cylinder 12.
Further, each cylinder head 16 includes two air intake valves 20 and 22 for intake of air per cylinder, and one fuel intake valve 24 for intake of pressurized high pressure gaseous fuel. , and an exhaust valve 26 for discharging the gas after combustion. Air intake valves 20 and 22 are connected to two cylinders 1
The fuel intake valve 24 and the exhaust valve 26 are arranged on one side with respect to a plane including the respective axes 2 and 12, and the fuel intake valve 24 and the exhaust valve 26 are arranged on the other side. Air intake passage 2 for each cylinder
8 is bifurcated on the downstream side and communicates with each air intake valve 20, 22, and the upstream side of the intake passage 28 is communicated with an intake box 30. Air flows into the intake box 30 from an air purifier (not shown), and a throttle valve 32 for adjusting the flow rate is provided in the intake passage 28. air intake valve 20,
22 are simultaneously driven to open and close by a cam 35 fixed to a camshaft 34 via a valve lifter 36.
Further, the exhaust valve 26 is connected to a cam 3 fixed to a camshaft 37.
8 is driven to open and close via a valve lifter (not shown), and when the valve is opened, the exhaust gas after combustion is sent to the exhaust passage 4.
0 and discharged into the atmosphere.

一方、燃料吸入弁24は排気弁26と並列して
設けられ、上述した排気弁26を駆動するカム軸
37に対し固定されたカム42によりバルブリフ
タ44を介して開閉駆動される。この燃料吸入弁
24には燃料通路46が連通し、この燃料通路4
6は流量制御装置47(アクセル)を介して気体
燃料タンク51に連結されている。気体燃料タン
ク51からは大気圧以上の高圧に加圧された気体
燃料が得られるようになつており、エンジンの負
荷に応じて流量制御装置47により流量を制御さ
れて燃料通路46に供給されるようになつてい
る。また燃料吸入弁24の背部に位置するシリン
ダヘツド16内の燃料通路46はその容積が拡大
された膨脹室46aを構成している。
On the other hand, the fuel intake valve 24 is provided in parallel with the exhaust valve 26 and is driven to open and close via a valve lifter 44 by a cam 42 fixed to a camshaft 37 that drives the exhaust valve 26 described above. A fuel passage 46 communicates with this fuel intake valve 24.
6 is connected to a gaseous fuel tank 51 via a flow rate control device 47 (accelerator). Gaseous fuel pressurized to a high pressure higher than atmospheric pressure is obtained from the gaseous fuel tank 51, and is supplied to the fuel passage 46 with the flow rate controlled by a flow rate control device 47 according to the engine load. It's becoming like that. Further, a fuel passage 46 in the cylinder head 16 located behind the fuel intake valve 24 constitutes an expansion chamber 46a whose volume has been expanded.

さて、上述の気体燃料エンジンについて、その
動作を第3図をも合せて参照することにより説明
する。先ず、吸気行程において、空気吸入弁2
0,22がピストン14の上死点(TDC)前の
所定のクランク角θで開くと、絞り弁32の開度
に対応した空気量が燃焼室50へ流入する。ピス
トン14の下死点(BDC)付近で燃料吸入弁2
4が開き始め、高圧気体燃料が燃焼室50内に噴
射される。ここで、気体燃料タンク51から燃料
通路46を介して供給される高圧気体燃料は膨脹
室46aに至り、ここで膨脹作用を行う。しか
し、ここで行われる膨脹はシリンダヘツド16の
内壁面から受熱しながらの膨脹であるため、温度
降下や圧力降下を起すようなことはなく、受熱し
て高圧を保つた状態で燃料吸入弁24の開弁時に
その開弁期間にわたつてで燃料吸入弁24を介し
て燃焼室50内に噴射される。したがつて、アイ
ドリング時のような部分負荷のときで、気体燃料
の流量が少ないときであつても、燃焼室50内に
噴射されるときは断熱膨脹に基づく点火栓等の冷
却が起こることはないと共に、気体燃料の吸入量
は一定となり、これによつて失火現象等を招くよ
うなことはない。気体燃料が燃焼室50に噴射さ
れるとき、空気吸入弁20,22は開弁期間A内
にあるが、その通路面積が小さくなつているばか
りでなく、吸気通路28内の空気の流動慣性が作
用するため燃焼室50から吸気通路28へ混合気
が逆流するようなことはない。また、同様に燃料
吸入弁24も、その開弁期間にわたつて高圧の気
体燃料を燃焼室50内に噴射し続けるので、燃焼
室50の混合気(空気)が膨張室46a側に逆流
することはなく、そのため膨張室46aが受熱可
能な構成になつていても逆火を起こすことはな
い。下死点をさらに過ぎると圧縮行程に入り、空
気吸入弁20,22は完全に閉じ、一方燃料吸入
弁24の通路面積は増大する。このため気体燃料
は勢い良く燃焼室50内に噴射されることにな
る。
Now, the operation of the above-mentioned gaseous fuel engine will be explained with reference to FIG. 3 as well. First, in the intake stroke, the air intake valve 2
0 and 22 open at a predetermined crank angle θ before the top dead center (TDC) of the piston 14, an amount of air corresponding to the opening degree of the throttle valve 32 flows into the combustion chamber 50. The fuel intake valve 2 near the bottom dead center (BDC) of the piston 14
4 begins to open and high pressure gaseous fuel is injected into the combustion chamber 50. Here, the high-pressure gaseous fuel supplied from the gaseous fuel tank 51 through the fuel passage 46 reaches the expansion chamber 46a, where it performs an expansion action. However, since the expansion performed here is an expansion while receiving heat from the inner wall surface of the cylinder head 16, there is no drop in temperature or pressure, and the fuel intake valve 24 receives heat and maintains a high pressure. When the valve is opened, the fuel is injected into the combustion chamber 50 through the fuel intake valve 24 during the valve opening period. Therefore, even when the flow rate of gaseous fuel is low under partial load such as when idling, cooling of the ignition plug etc. due to adiabatic expansion will not occur when the gaseous fuel is injected into the combustion chamber 50. In addition, the amount of gaseous fuel taken in is constant, and this does not cause misfire phenomena or the like. When gaseous fuel is injected into the combustion chamber 50, the air intake valves 20 and 22 are in the valve opening period A, but not only their passage area has become smaller, but also the flow inertia of the air in the intake passage 28 has increased. Therefore, the air-fuel mixture will not flow back from the combustion chamber 50 to the intake passage 28. Similarly, the fuel intake valve 24 continues to inject high-pressure gaseous fuel into the combustion chamber 50 during its opening period, so that the air-fuel mixture (air) in the combustion chamber 50 does not flow back toward the expansion chamber 46a. Therefore, even if the expansion chamber 46a is configured to receive heat, no flashback will occur. Further past the bottom dead center, the compression stroke begins, and the air intake valves 20, 22 are completely closed, while the passage area of the fuel intake valve 24 increases. Therefore, the gaseous fuel is vigorously injected into the combustion chamber 50.

燃料吸入弁24が閉じた後、所定の点火時期Ig
において点火栓48により点火され、爆発行程に
入る。爆発行程に続き排気弁26が開いて排気行
程になり、既燃焼ガスが排気として排気通路40
へ排出される。
After the fuel intake valve 24 closes, the predetermined ignition timing Ig
It is ignited by the spark plug 48 and enters the explosion stroke. Following the explosion stroke, the exhaust valve 26 opens to enter the exhaust stroke, and the burned gas is discharged into the exhaust passage 40 as exhaust gas.
is discharged to.

なお、上述の実施例では燃料吸入弁24は排気
弁28側のカム軸37によつて駆動されるが、空
気吸入弁側のカム軸34によつて駆動するように
してもよい。この燃料吸入弁の駆動については、
電磁弁による方法も考えられるが、この電磁弁は
この燃料吸入弁の開閉駆動を行うには応答速度が
遅いため、上記実施例のように空気吸入弁又は排
気弁駆動のためのカム軸を利用する機械式とする
のが好ましい。また、空気吸入弁は1気筒につき
必ずしも2個である必要はなく、1個だけであつ
てもよい。また、出力を気体燃料の供給量で制御
する場合は、絞り弁32は不要である。
In the above embodiment, the fuel intake valve 24 is driven by the camshaft 37 on the exhaust valve 28 side, but it may be driven by the camshaft 34 on the air intake valve side. Regarding the drive of this fuel intake valve,
A method using a solenoid valve is also considered, but since this solenoid valve has a slow response speed to drive the opening and closing of this fuel intake valve, it is recommended to use a camshaft to drive the air intake valve or exhaust valve as in the above embodiment. It is preferable to use a mechanical type. Further, the number of air intake valves per cylinder does not necessarily have to be two, and may be only one. Furthermore, when the output is controlled by the amount of gaseous fuel supplied, the throttle valve 32 is not necessary.

上述したように、本発明の気体燃料エンジン
は、燃焼室に空気を供給する空気吸入弁と高圧に
加圧した気体燃料を供給する燃料吸入弁とをそれ
ぞれ独立に設けた4サイクルエンジンであつて、
前記燃料吸入弁の背部に気体燃料通路の容積を拡
大させた受熱可能な膨張室を設けたので、空気吸
入弁と燃料吸入弁とが互いに独立に設けられてい
ても、燃焼室に噴射された気体燃料が断熱膨張に
よつて点火栓などを冷却したり、気体燃料の吸入
量が一定しなかつたりすることをなくし、失火な
どの不具合を解消する。
As described above, the gaseous fuel engine of the present invention is a four-cycle engine that is provided with an air intake valve that supplies air to a combustion chamber and a fuel intake valve that supplies highly pressurized gaseous fuel, respectively. ,
Since an expansion chamber capable of receiving heat is provided at the back of the fuel intake valve by expanding the volume of the gaseous fuel passage, even if the air intake valve and the fuel intake valve are provided independently from each other, the gaseous fuel is not injected into the combustion chamber. This eliminates problems such as misfires by preventing the gaseous fuel from cooling the ignition plug due to adiabatic expansion, and by preventing the intake amount of the gaseous fuel from being inconsistent.

また、本発明の気体燃料エンジンは、上記膨張
室で受熱して高圧に保たれた状態の気体燃料を、
燃料吸入弁の開弁時にその開弁期間にわたつて噴
射する構成にしてあるから、燃焼室の混合気(空
気)が膨張室側に逆流することはなく、そのため
膨張室が受熱可能な構成になつていても逆火を起
こすようなことはない。
Further, the gaseous fuel engine of the present invention is configured to heat the gaseous fuel in the expansion chamber and maintain the gaseous fuel at a high pressure.
Since the structure is such that when the fuel intake valve is opened, the fuel is injected for the duration of the valve opening, so the air-fuel mixture (air) in the combustion chamber does not flow back into the expansion chamber, which allows the expansion chamber to receive heat. Even if it gets old, it won't cause a backfire.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例によるエンジンを一部
断面にした平面図、第2図は第1図の−線断
面図、第3図は各弁のタイミングを示す図であ
る。 20,22……空気吸入弁、24……燃料吸入
弁、26……排気弁、46……燃料通路、46a
……膨脹室、50……燃焼室、51……気体燃料
タンク。
FIG. 1 is a partially sectional plan view of an engine according to an embodiment of the present invention, FIG. 2 is a sectional view taken along the line -- in FIG. 1, and FIG. 3 is a diagram showing the timing of each valve. 20, 22... Air intake valve, 24... Fuel intake valve, 26... Exhaust valve, 46... Fuel passage, 46a
... expansion chamber, 50 ... combustion chamber, 51 ... gaseous fuel tank.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼室に空気を供給する空気吸入弁と高圧に
加圧した気体燃料を供給する燃料吸入弁とをそれ
ぞれ独立に設けた4サイクルエンジンであつて、
前記燃料吸入弁の背部に気体燃料通路の容積を拡
大させた受熱可能な膨張室を設け、該膨張室で受
熱して高圧に保たれた状態の気体燃料を、前記燃
料吸入弁の開弁時にその開弁期間にわたつて噴射
する構成にした気体燃料エンジン。
1. A four-stroke engine that is independently provided with an air intake valve that supplies air to the combustion chamber and a fuel intake valve that supplies highly pressurized gaseous fuel,
An expansion chamber capable of receiving heat is provided at the back of the fuel intake valve by expanding the volume of the gaseous fuel passage, and the gaseous fuel, which has received heat in the expansion chamber and is maintained at a high pressure, is heated when the fuel intake valve is opened. A gaseous fuel engine configured to inject fuel over its valve opening period.
JP56174766A 1981-10-31 1981-10-31 Gaseous fuel engine Granted JPS5877152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56174766A JPS5877152A (en) 1981-10-31 1981-10-31 Gaseous fuel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56174766A JPS5877152A (en) 1981-10-31 1981-10-31 Gaseous fuel engine

Publications (2)

Publication Number Publication Date
JPS5877152A JPS5877152A (en) 1983-05-10
JPH0223703B2 true JPH0223703B2 (en) 1990-05-25

Family

ID=15984294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56174766A Granted JPS5877152A (en) 1981-10-31 1981-10-31 Gaseous fuel engine

Country Status (1)

Country Link
JP (1) JPS5877152A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228423A (en) * 1991-10-12 1993-07-20 Honda Giken Kogyo Kabushiki Kaisha Dual-fuel engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941202A (en) * 1971-12-15 1974-04-18
JPS5618030A (en) * 1979-07-19 1981-02-20 Ishishiba Service Kk Gas diesel engine with supercharger for vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941202A (en) * 1971-12-15 1974-04-18
JPS5618030A (en) * 1979-07-19 1981-02-20 Ishishiba Service Kk Gas diesel engine with supercharger for vehicle

Also Published As

Publication number Publication date
JPS5877152A (en) 1983-05-10

Similar Documents

Publication Publication Date Title
US6557520B2 (en) Multi-zone combustion chamber and method for combustion control in compression-ignited reciprocating engines
JPS6022170B2 (en) Combustion accelerator for multi-cylinder internal combustion engines
US4532899A (en) Internal combustion engine fuel-injection system
US4167161A (en) Directional auxiliary intake injection for internal combustion engine
US4478180A (en) Crankchamber precompression type two-cycle internal combustion engine
US3937188A (en) Two-cycle jet ignition engine with prechamber in piston
JP2761412B2 (en) In-cylinder internal combustion engine
GB1591050A (en) Internal combustion engine
JPH0223703B2 (en)
US4526139A (en) Internal combustion engine
JPS644054B2 (en)
JPH0330539U (en)
JPH0123659B2 (en)
JPS63246411A (en) Two-cycle fuel injection internal combustion engine
JPS59158328A (en) Internal-combustion engine
JPH062558A (en) Gas fuel engine
JP2000282867A (en) Internal combustion engine
JPS5851373Y2 (en) 2-stroke internal combustion engine
USRE30236E (en) Clean spark ignition internal combustion engine
JPS5813069Y2 (en) Stratified combustion type crank chamber compression type 2-stroke engine
JPH1136872A (en) Combustion chamber structure of cylindrical injection type 2-stroke engine
JPH0460166A (en) Six-cycle diesel engine
JPH0631146Y2 (en) Combustion chamber structure of two-cycle internal combustion engine
JPS62291467A (en) Starting device for gas valve type large gas engine
JPS61145307A (en) Starter device for two-cycle engine