JPH02236939A - Scanning type electron microscope - Google Patents

Scanning type electron microscope

Info

Publication number
JPH02236939A
JPH02236939A JP1056987A JP5698789A JPH02236939A JP H02236939 A JPH02236939 A JP H02236939A JP 1056987 A JP1056987 A JP 1056987A JP 5698789 A JP5698789 A JP 5698789A JP H02236939 A JPH02236939 A JP H02236939A
Authority
JP
Japan
Prior art keywords
electron beam
sample
electron
detector
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1056987A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Kenji Morita
憲司 守田
Shohei Suzuki
正平 鈴木
Hiroyasu Shimizu
弘泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1056987A priority Critical patent/JPH02236939A/en
Publication of JPH02236939A publication Critical patent/JPH02236939A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to observe a good image of a sample with resolution faithful to an electron beam spot by installing a secondary electron detector in a gas sealing chamber distant from a position to be irradiated with an electron beam more than the operational distance of an objective lens, and surrounding the secondary electron detector by a secondary electron reflection member. CONSTITUTION:An electron beam locus 4 is deflected by deflectors 10 and 11, and passes through an opening of a pressure restriction member 9 so as to scans a sample target 12. Secondary electrons emitted out of the target 12 repulsively move to a secondary electron detector 6 due to a negative voltage applied to the pressure restriction member 9. The secondary electron collide with gas on their way to increase their number. The secondary electrons are therefore incident to the positively charge electrode of the 6 without being trapped by a secondary electron reflection electrode 7 and a reflected electron shielding electrode 8 having negative potential 8. The electrode of the detector 6 is made of Be and is formed in wedge-shaped on its surface so that distributed noise due to re-reflected electrons, etc., is rarely produced when the secondary electrons are incident thereto.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ガス封入室を備えた走査型電子顕微鏡に関
するものである. 〔従来の技術〕 従来のこの種の装置は、圧力制限孔を有する圧力制限部
材を設けた真空室内に電子線を放出する電子線源と、そ
れから放出された電子線を方向づけて試料に焦点合せを
する合焦装置と、圧力制限孔を通してその直径を越えて
電子線源から放出された電子線を走査する走査装置とを
備えると共に、真空室の外に配置され、且つ圧力制限部
材の圧力制限孔と整合するように試料を保持することが
出来る試料台を、内部に有するガス封入室を備え、電子
線源から放出され、圧力制限孔を通して向けられる電子
線に試料の表面を露出するようになっており、更に試料
台の上に配置された試料から、電子線の照射により放出
された2次電子をガス状媒体に衝突させ、このガス分子
に再度2次電子を放出させることを引き起させ、それに
より放出された2次電子を検出できる検出器が設けられ
ている走査型電子顕微鏡は知られている。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a scanning electron microscope equipped with a gas-filled chamber. [Prior Art] Conventional devices of this type include an electron beam source that emits an electron beam into a vacuum chamber provided with a pressure limiting member having a pressure limiting hole, and a device that directs and focuses the emitted electron beam on a sample. and a scanning device configured to scan the electron beam emitted from the electron beam source through the pressure restriction hole and beyond its diameter, the scanning device being located outside the vacuum chamber and configured to control the pressure restriction of the pressure restriction member. A gas-filled chamber having a sample stage therein capable of holding the sample in alignment with the hole, exposing the surface of the sample to the electron beam emitted from the electron beam source and directed through the pressure-limiting hole. Furthermore, the secondary electrons emitted by the electron beam irradiation from the sample placed on the sample stage collide with the gaseous medium, causing the gas molecules to emit secondary electrons again. Scanning electron microscopes are known which are provided with a detector capable of detecting the secondary electrons emitted by the secondary electrons.

また検出器は、圧力制限孔と試料との間に配置されてい
るのが常である. 〔発明が解決しようとする課題〕 上記の如き従来技術においては、電子線の照射効率向上
のため、ガス状媒体中で電子線が散乱によって太くなる
ことの防止や、レンズ収差を小さくする等の改善をする
場合、対物レンズの作動距離を短くする手段がとられる
Additionally, the detector is usually placed between the pressure limiting hole and the sample. [Problems to be Solved by the Invention] In the conventional technology as described above, in order to improve the irradiation efficiency of the electron beam, it is necessary to prevent the electron beam from becoming thicker due to scattering in the gaseous medium, reduce lens aberration, etc. For improvement, measures are taken to shorten the working distance of the objective lens.

しかしながら、対物レンズと試料との間に2次電子検出
器が存するので、自ずと試料と検出器との距離が短くな
る。それ故に試料からの2次電子とガス状媒体との接触
が減少して十分な相互作用がなされず、大きな2次電子
信号を得難くなると共に、試料からの後方散乱電子も2
次電子検出器に入りやすくなるために、レンズ収差を小
さくしても観察試料像の分解能があまり向上されなかっ
た. また、電子綿の照射により試料から放出される2次電子
を2次電子を検出器に効率よく吸収させる手段を採ろう
としても、前記の通り2次電子検出器が対物と試料との
間に存する構成になっているため、それに係る制限によ
り対応がむずかしいという欠点があった. 本発明の目的は、高分解能の電子線を試料に照射し、試
料から放出された2次電子をガス状媒体に十分衝突させ
るようにして、より多くの2次電子を2次電子検出器に
効率よく吸収させ、更には2次電子検出器に反射電子が
入射しないようになすことにより、信号に対する応答速
度の早い、電子線スポットに忠実な分解能を持った良好
なる試料像を観察出来る走査型電子8Ji微鏡を提供す
ることにある. 〔課題を解決する為の手段〕 上記目的のために本発明では、不図示の電子線源と該電
子線源から放出される電子線(4)を方向づけて試料(
5)に合焦させる対物レンズ(1)、(2)、(3)と
前記電子線(4)を偏向させて前記試料(5)に走査す
る偏向器(10)、(11)等による電子線走査を真空
状態で可能となす真空室(20)と、前記電子線(4)
の合焦位置に前記試料(5)を対応させて保持する不図
示の試料台と前記電子線(4)の照射により前記試料(
5)から放出される2次電子を検出する検出器(6)を
内装するガス封入室(21)と、を備え、前記真空室(
20)とガス封入室(2l)を圧力制限部材(9)の開
口部を介して係るように成した走査型電子顕微鏡におい
て、 前記2次電子検出!i (6)は、前記試料(5)の電
子線照射位置から少な《とも前記対物レンズ(1)、(
2)、(3)の作動距離以上離れた前記ガス封入室(2
1)内の一部に設け、且つ、2次電子の検出効率を上げ
るために前記2次電子検出器(6)の近傍に包囲するよ
うに配置した2次電子反射部材(7)と電子線照射によ
る反射電子の入射を遮る遮蔽部材(8)とを備え、更に
は前記圧力制限部材(9)は前記対物レンズ(1)、(
2)、(3)の試料側先端部に設けられ、前記圧力制限
部材(9)の開口部を前記対物レンズ(1)、(2)、
(3)の主面より試料側に位置させ、前記偏向器(10
)、(1l)の走査する電子線(4)の偏向支点に設け
たことを課題解決の手段とするものである. 〔作用〕 本発明においては、対物レンズと試料との間には薄い圧
力制限部材のみしか介在させないため、従前のように検
出器が介在している場合と比較すると、対物レンズの作
動距離を大幅に小さく出来る.従って対物レンズの主面
から試料面までの距離を小さく設定することが可能とな
り、大きな開口角が得られるので色収差係数が小さくな
る.次電子のエネルギーが小さい場合における収差は、
小さい偏光$I域においては色収差と回折で決まるので
、前記の如く色収差係数を小さくすることよよって収差
を小さくなし、電子線を細く絞ることができる。
However, since the secondary electron detector exists between the objective lens and the sample, the distance between the sample and the detector naturally becomes shorter. Therefore, the contact between the secondary electrons from the sample and the gaseous medium is reduced, and sufficient interaction does not take place, making it difficult to obtain a large secondary electron signal.
Even if the lens aberration was reduced, the resolution of the observed sample image did not improve much because the secondary electrons easily entered the detector. Furthermore, even if an attempt is made to efficiently absorb the secondary electrons emitted from the sample by the irradiation of the electron beam into the detector, the secondary electron detector is placed between the objective and the sample as described above. However, it has the disadvantage that it is difficult to deal with it due to its limitations. The purpose of the present invention is to irradiate a sample with a high-resolution electron beam and make the secondary electrons emitted from the sample sufficiently collide with the gaseous medium, so that more secondary electrons can be delivered to the secondary electron detector. By efficiently absorbing electrons and preventing backscattered electrons from entering the secondary electron detector, this scanning type has a fast signal response time and can observe a good sample image with a resolution that is faithful to the electron beam spot. Our purpose is to provide electronic 8Ji microscopes. [Means for Solving the Problems] For the above purpose, the present invention provides an electron beam source (not shown) and an electron beam (4) emitted from the electron beam source to direct the sample (
5) The electron beam is focused by the objective lenses (1), (2), (3) and the deflectors (10), (11), etc. which deflect the electron beam (4) and scan it on the sample (5). A vacuum chamber (20) that enables line scanning in a vacuum state, and the electron beam (4)
The sample (5) is irradiated with a sample stage (not shown) that holds the sample (5) in correspondence with the focal position of the electron beam (4).
a gas-filled chamber (21) containing a detector (6) for detecting secondary electrons emitted from the vacuum chamber (5);
20) and the gas-filled chamber (2l) are connected to each other through the opening of the pressure limiting member (9), in which the secondary electron detection! i (6) is a distance from the electron beam irradiation position of the sample (5) to at least the objective lens (1), (
2), said gas-filled chamber (2) which is more than the working distance of (3)
1) A secondary electron reflecting member (7) and an electron beam provided in a part of the interior and surrounding the secondary electron detector (6) in order to increase the detection efficiency of secondary electrons. A shielding member (8) that blocks the incidence of reflected electrons due to irradiation, and the pressure limiting member (9) further includes the objective lens (1), (
2), (3) are provided at the sample side tips, and the opening of the pressure limiting member (9) is connected to the objective lens (1), (2),
(3) is located closer to the sample than the main surface of the deflector (10
), (1l) is provided at the deflection fulcrum of the scanning electron beam (4) as a means of solving the problem. [Function] In the present invention, since only a thin pressure limiting member is interposed between the objective lens and the sample, the working distance of the objective lens is significantly increased compared to the conventional case where a detector is interposed. It can be made smaller. Therefore, it is possible to set the distance from the main surface of the objective lens to the sample surface small, and a large aperture angle can be obtained, resulting in a small chromatic aberration coefficient. The aberration when the energy of the secondary electron is small is
Since the small polarization $I region is determined by chromatic aberration and diffraction, by reducing the chromatic aberration coefficient as described above, the aberration can be reduced and the electron beam can be narrowed down.

低圧ガス中での電子線拡散の半径r1/!は次式で得ら
れる. Reimer,  L.(1985)  Scanni
ngElectron Microscopy,Spr
inger−Verlag+  Berlinここで、
r178は強度が2になる半径、Eは電子線エネルギー
、Pは圧力、Tはガス温度、Lはガス中で電子線が走る
距離、Zはガスの原子番号である. 上式よりLを小さくすることによって、拡散する半径r
l/ffiはl, 3/富に比例して小さくなるので前
記の通り対物レンズの作動距離を小さくすることによっ
て、電子線の拡散をより少な《することができる. また試料から2次電子検出器迄の距離を、小さい圧力の
ガス中での2次電子の平均自由行程よりも試料から2次
電子検出器迄の距離を大きくして2次電子が検出器に入
る迄にガス分子と衝突させ、ガス分子からの2次電子放
出を引き起させしめたので、効率良く2次電子の検出が
できる.なお、ガスの圧力(P)と2次電子放出位置か
ら2次検出器までの距jal (D)との関係は次式の
ように保たれることが望ましい. PXD!;2Torr −cm 更に圧力制限部材の形状を円錐形にして負電圧を印加し
たので、試料から放出された2次電子は圧力制限部材に
吸収されることなく、2次電子検出器に向かうようにし
たと共に、2次電子検出器の電極に正電圧を印加し、且
つ2次電子検出器の近傍を負電圧を印加した2次電子反
射部材で包囲したので、より大きな2次電子の検出がで
きる.〔実施例〕 第1図は本発明による一実施例を示す図であって、対物
レンズ及び2次電子検出器周辺の構造説明図である. 第1図において対物レンズの上極(3)及び下極(1)
は試料(5)が60度迄傾けられるように、円錐形に近
い形状にしている.対物レンズのコイル(2)はその先
端迄コイル(2)を巻くことにより電子線軌道(4)に
強い磁場を与えるようにした.i子線軌道(4)は2段
の偏向器(10)、(1l)で偏向され圧力制限部材(
9)の開口部を通って試料(5)のターゲッ}(12)
に走査される.ガス封入室(21)には0.05〜2 
0 Torrの圧力の気体が満たされているが、圧力制
限部材(9)の開口部は小径なので、この開口部から漏
れ出た程度のガスは不図示のボンブで排気され、真空室
(20)内の電子線軌道(4)は高真空に保たれる.タ
ーゲ゛ット(l2)から放出された2次電子は、圧力制
限部材(9)に印加された負電圧のために反発して吸収
されることなく対物レンズ外周測面に設けた2次電子検
出器(6)の方向に向かうようになしている.さらに圧
力制限部材(9)の形状は円錐台形にしてあるので2次
電子の運動をさまたげない.2次電子検出器(6)の方
向に向った2次電子は途中でガスと衝突し、その数を増
して負ポテンシャルの2次電子反射電極(7)、反射電
子遮蔽電極(8)、にトラップされることなく、正の電
位を与えられた2次電子検出器(6)の電極に入射する
.2次電子検出器(6)の電極はBeで表面がくさび形
に加工されているので、2次電子が入射した時、再反射
電子等による分配雑音が発生することは殆どない.ター
ゲッl−(12)からの反射電子は反射電子遮蔽電極(
8)で遮られるため2次電子検出器(6)の電極に入射
することはない.2次電子反射電極(7)、反射電子遮
蔽電極(8)はBe,C,AJ!等の低電子番号の金属
で表面ができているため、反射電子がこれらの電極で吸
収されるので再反射して2次電子検出電極(6)に入射
しない.2次電子反射電極(7)、反射電子遮蔽電極(
8)、圧力制限部材(9)には負電荷が与えられ、2次
電子検出器(6)の電極のみ正電荷が与えられているの
で2次電子検出器(6)の電極の面積が小さくても有効
に2次電子を集められる.その結果2次電子検出器(6
)の静電容量を小さくすることが可能となり、2次電子
検出器の応答速度を速くすることができる。
Radius of electron beam diffusion in low pressure gas r1/! is obtained by the following equation. Reimer, L. (1985) Scanni
ngElectron Microscopy, Spr.
inger-Verlag+ Berlinwhere,
r178 is the radius at which the intensity is 2, E is the electron beam energy, P is the pressure, T is the gas temperature, L is the distance the electron beam travels in the gas, and Z is the atomic number of the gas. By reducing L from the above equation, the radius of diffusion r
Since l/ffi decreases in proportion to l,3/wealth, by reducing the working distance of the objective lens as described above, the diffusion of the electron beam can be further reduced. In addition, the distance from the sample to the secondary electron detector is made larger than the mean free path of secondary electrons in a gas with a small pressure, so that the secondary electrons reach the detector. By colliding with gas molecules before entering the gas, the secondary electrons are emitted from the gas molecules, so secondary electrons can be detected efficiently. Note that it is desirable that the relationship between the gas pressure (P) and the distance jal (D) from the secondary electron emission position to the secondary detector be maintained as shown in the following equation. PXD! ;2Torr -cm Furthermore, since the shape of the pressure limiting member was made conical and a negative voltage was applied, the secondary electrons emitted from the sample were not absorbed by the pressure limiting member and were directed toward the secondary electron detector. At the same time, a positive voltage was applied to the electrode of the secondary electron detector, and the vicinity of the secondary electron detector was surrounded by a secondary electron reflecting member to which a negative voltage was applied, making it possible to detect larger amounts of secondary electrons. .. [Embodiment] FIG. 1 is a diagram showing an embodiment of the present invention, and is a structural explanatory diagram of the vicinity of an objective lens and a secondary electron detector. In Figure 1, the upper pole (3) and lower pole (1) of the objective lens
The sample (5) is shaped like a cone so that it can be tilted up to 60 degrees. By winding the coil (2) of the objective lens to its tip, a strong magnetic field was applied to the electron beam trajectory (4). The i-satellite trajectory (4) is deflected by two-stage deflectors (10) and (1l), and the pressure limiting member (
9) through the opening of the sample (5)} (12)
is scanned. 0.05 to 2 in the gas chamber (21)
It is filled with gas at a pressure of 0 Torr, but since the opening of the pressure limiting member (9) has a small diameter, the gas leaking from this opening is exhausted by a bomb (not shown), and the vacuum chamber (20) is filled with gas at a pressure of 0 Torr. The electron beam orbit (4) inside is kept in a high vacuum. The secondary electrons emitted from the target (l2) are repelled due to the negative voltage applied to the pressure limiting member (9) and are not absorbed, but instead reach the secondary electrons provided on the outer surface of the objective lens. It is designed to face the direction of the detector (6). Furthermore, since the pressure limiting member (9) is shaped like a truncated cone, it does not hinder the movement of secondary electrons. The secondary electrons heading toward the secondary electron detector (6) collide with gas on the way, increasing in number and reaching the negative potential secondary electron reflection electrode (7) and backscattered electron shielding electrode (8). Without being trapped, the electrons enter the electrode of the secondary electron detector (6), which is given a positive potential. The electrode of the secondary electron detector (6) is made of Be and has a wedge-shaped surface, so when secondary electrons are incident, there is almost no distribution noise caused by re-reflected electrons. The backscattered electrons from target l-(12) pass through the backscattered electron shielding electrode (
8), so it does not enter the electrode of the secondary electron detector (6). The secondary electron reflection electrode (7) and the reflection electron shielding electrode (8) are Be, C, AJ! Since the surface is made of a metal with a low electron number such as, the reflected electrons are absorbed by these electrodes and are not re-reflected and incident on the secondary electron detection electrode (6). Secondary electron reflecting electrode (7), reflected electron shielding electrode (
8) Since the pressure limiting member (9) is given a negative charge and only the electrode of the secondary electron detector (6) is given a positive charge, the area of the electrode of the secondary electron detector (6) is small. secondary electrons can be collected effectively even if As a result, a secondary electron detector (6
) can be reduced, and the response speed of the secondary electron detector can be increased.

第2図は圧力制限部材(9)と電子線の軌道との関係を
示す図である。偏向器(10)、(ll)で偏向された
電子線軌道(4)はレンズ(13)で屈折を受け、圧力
制限部材(9)の開口部を通りターゲッ}(12)上を
走査する。電子線軌道(4)は偏向支点を開口部に有す
るため常に開口部を通り、その開口部の径を越えて大き
い領域を走査できる.また、開口部は対物レンズ主面(
13)よりターゲット側にあるため偏向を助ける働きを
するので、小さい偏向電流で大面積を走査できる設計と
した. 第3図は2次電子検出器をガス封入室の他部に設けた状
態を示す他実施例である.尚2次電子検出器は、不図示
のガス封入室の内壁に設けた支持部材によって支持され
ている。
FIG. 2 is a diagram showing the relationship between the pressure limiting member (9) and the trajectory of the electron beam. The electron beam trajectory (4) deflected by the deflectors (10) and (11) is refracted by the lens (13), passes through the opening of the pressure limiting member (9), and scans over the target (12). Since the electron beam trajectory (4) has a deflection fulcrum at the aperture, it always passes through the aperture and can scan a large area beyond the diameter of the aperture. In addition, the aperture is located on the main surface of the objective lens (
13) Since it is located closer to the target and helps deflection, it is designed to be able to scan a large area with a small deflection current. Figure 3 shows another embodiment in which the secondary electron detector is installed in another part of the gas-filled chamber. Note that the secondary electron detector is supported by a support member provided on the inner wall of the gas-filled chamber (not shown).

〔発明の効果] 以上のように本発明によれば、圧力制限部材と試料との
間に存する2次電子検出器をその間に介在させないよう
になして、対物の主面から試料までの距離を小さ《した
ので、色収差係数が小さくなり、収差が改善され、電子
線をより細く絞ることが出来ると共に、圧力制限部材の
開口部から電子線照射ターゲット迄の距離を短縮して電
子線の拡がりを押さえられるので、高分解能の電子線が
得られる利点がある。
[Effects of the Invention] As described above, according to the present invention, the distance from the main surface of the objective to the sample can be determined without intervening the secondary electron detector between the pressure limiting member and the sample. Because of the small size, the chromatic aberration coefficient is reduced, aberrations are improved, and the electron beam can be narrowed down, and the distance from the opening of the pressure limiting member to the electron beam irradiation target is shortened to reduce the spread of the electron beam. This has the advantage that a high-resolution electron beam can be obtained.

また2次電子検出器を電子線照射ターゲットから所定の
距離をおいた所に設けたので、2次電子の移動によりガ
ス分子との衝突がより多くなされるので、低圧ガスでも
大きな信号が得られる効果がある. 更に、2次電子検出器の近傍を2次電子反射部材で包囲
し、負電荷を与えたので2次電子検出効率が向上するこ
とはもとより、それに基づき2次電子検出器の静電容量
を小さくなして、応答速度を早められる効果もある。
In addition, since the secondary electron detector is installed at a predetermined distance from the electron beam irradiation target, the movement of secondary electrons causes more collisions with gas molecules, making it possible to obtain a large signal even with low-pressure gas. effective. Furthermore, the vicinity of the secondary electron detector is surrounded by a secondary electron reflecting member to give it a negative charge, which not only improves the secondary electron detection efficiency, but also reduces the capacitance of the secondary electron detector. This also has the effect of speeding up the response speed.

尚そのうえ、試料のターゲットへの電子線照射による反
射電子を遮蔽するようにしたので、2次電子検出時、反
射電子が混入せずにすむ.よって電子線のスポットに忠
実な分解能での観察が出来る利点がある.
Furthermore, since the reflected electrons caused by the electron beam irradiation on the target of the sample are shielded, there is no need for the reflected electrons to be mixed in when detecting secondary electrons. Therefore, it has the advantage of being able to observe the electron beam spot with a resolution that is faithful to it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例を示す図.第2図は圧力
制限部材と電子線の軌道との関係を示す説明図、第3図
は本発明による他実施例を示す図である。 〔主要部分の符号の説明〕 l・・・対物レンズ下極、 2・・・励磁コイル、3・
・・対物レンズ上極、 4・・・電子線軌道、5・・・
試料、       6・・・2次電子検出器、7・・
・2次電子反射電極、8・・・反射電子遮蔽電極、9・
・・圧力制限部材、10.1’l・・・走査用偏向器、
12・・・ターゲット、  20・・・真空室、21・
・・ガス封入室.
FIG. 1 is a diagram showing an embodiment according to the present invention. FIG. 2 is an explanatory diagram showing the relationship between the pressure limiting member and the trajectory of the electron beam, and FIG. 3 is a diagram showing another embodiment according to the present invention. [Explanation of symbols of main parts] l... Lower pole of objective lens, 2... Excitation coil, 3...
...Objective lens upper pole, 4...Electron beam trajectory, 5...
Sample, 6... Secondary electron detector, 7...
・Secondary electron reflection electrode, 8... Reflection electron shielding electrode, 9.
...Pressure limiting member, 10.1'l...Scanning deflector,
12...Target, 20...Vacuum chamber, 21.
...Gas filled chamber.

Claims (3)

【特許請求の範囲】[Claims] (1)電子線源と該電子線源から放出される電子線を方
向づけて試料に合焦させる対物レンズと前記電子線を偏
向させて前記試料を走査する偏向器等による電子線走査
を真空状態で可能となす真空室と、前記電子線の合焦位
置に前記試料を対応させて保持する試料台と前記電子線
の照射により前記試料から放出される2次電子を検出す
る検出器を内装するガス封入室と、を備え、前記真空室
とガス封入室を圧力制限部材の開口部を介して係るよう
に成した走査型電子顕微鏡において、 前記2次電子検出器は、前記試料の電子線照射位置から
少なくとも前記対物レンズの作動距離以上離れた前記ガ
ス封入室内の一部に設け、且つ、2次電子の検出効率を
上げるために前記2次検出器の近傍に包囲するように配
置した2次電子反射部材を有することを特徴とする走査
型電子顕微鏡。
(1) Electron beam scanning is performed in a vacuum using an electron beam source, an objective lens that directs the electron beam emitted from the electron beam source and focuses it on the sample, and a deflector that deflects the electron beam and scans the sample. A vacuum chamber made possible by a vacuum chamber, a sample stage for holding the sample in correspondence with the focused position of the electron beam, and a detector for detecting secondary electrons emitted from the sample by irradiation with the electron beam are installed. A scanning electron microscope comprising: a gas-filled chamber, the vacuum chamber and the gas-filled chamber being connected to each other through an opening of a pressure limiting member; a secondary detector provided in a part of the gas-filled chamber at a distance of at least a working distance of the objective lens or more from the position of the objective lens, and placed surrounding the secondary detector in order to increase detection efficiency of secondary electrons; A scanning electron microscope characterized by having an electron reflecting member.
(2)前記圧力制限部材は、前記対物レンズの試料側先
端部に設けられ、前記圧力制限部材の開口部を前記対物
レンズの主面より試料側に位置させ、前記偏向器の走査
する電子線の偏向支点に設けたことを特徴とする請求項
1記載の走査型電子顕微鏡。
(2) The pressure limiting member is provided at the tip of the objective lens on the sample side, and the opening of the pressure limiting member is positioned closer to the sample than the main surface of the objective lens, and the electron beam scanned by the deflector 2. A scanning electron microscope according to claim 1, wherein the scanning electron microscope is provided at a deflection fulcrum.
(3)前記2次電子検出器は、電子線照射による反射電
子の入射を遮る遮蔽部材を有することを特徴とする請求
項1記載の走査型電子顕微鏡。
(3) The scanning electron microscope according to claim 1, wherein the secondary electron detector has a shielding member that blocks incidence of reflected electrons caused by electron beam irradiation.
JP1056987A 1989-03-09 1989-03-09 Scanning type electron microscope Pending JPH02236939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056987A JPH02236939A (en) 1989-03-09 1989-03-09 Scanning type electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056987A JPH02236939A (en) 1989-03-09 1989-03-09 Scanning type electron microscope

Publications (1)

Publication Number Publication Date
JPH02236939A true JPH02236939A (en) 1990-09-19

Family

ID=13042847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056987A Pending JPH02236939A (en) 1989-03-09 1989-03-09 Scanning type electron microscope

Country Status (1)

Country Link
JP (1) JPH02236939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268224A (en) * 2004-03-16 2005-09-29 Fei Co Electrically-charged particle beam system
JP5005866B2 (en) * 1999-11-29 2012-08-22 カール・ツァイス・エヌティーエス・ゲーエムベーハー Detector for scanning electron microscope with variable pressure and scanning electron microscope having the detector
JPWO2016199738A1 (en) * 2015-06-08 2018-03-29 株式会社ニコン Charged particle beam exposure apparatus and device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5005866B2 (en) * 1999-11-29 2012-08-22 カール・ツァイス・エヌティーエス・ゲーエムベーハー Detector for scanning electron microscope with variable pressure and scanning electron microscope having the detector
JP2005268224A (en) * 2004-03-16 2005-09-29 Fei Co Electrically-charged particle beam system
JPWO2016199738A1 (en) * 2015-06-08 2018-03-29 株式会社ニコン Charged particle beam exposure apparatus and device manufacturing method

Similar Documents

Publication Publication Date Title
US7507962B2 (en) Electron-beam device and detector system
JP4236742B2 (en) Scanning electron microscope
JP3434165B2 (en) Scanning electron microscope
US6501077B1 (en) Scanning electron microscope
JP2000133194A5 (en)
US6642520B2 (en) Scanning electron microscope
JPH09171791A (en) Scanning type electron microscope
CN108352284B (en) Wide-field atmospheric scanning electron microscope
JP2001110351A5 (en)
US7851755B2 (en) Apparatus for detecting backscattered electrons in a beam apparatus
EP0952606B1 (en) Dynamically compensated objective lens-detection device and method
US7351971B2 (en) Charged-particle beam instrument and method of detection
JPWO2019064496A1 (en) Scanning electron microscope
JPH0935679A (en) Scanning electron microscope
JP4874780B2 (en) Scanning electron microscope
JPH02236939A (en) Scanning type electron microscope
JP3432091B2 (en) Scanning electron microscope
US6710340B2 (en) Scanning electron microscope and method of detecting electrons therein
JP4256300B2 (en) Substrate inspection method and substrate inspection apparatus
US20030020016A1 (en) Scanning particle mirror microscope
JP2618924B2 (en) Electron beam processing equipment
JP2002025492A (en) Method and apparatus for imaging sample using low profile electron detector for charged particle beam imaging system containing electrostatic mirror
KR20030043685A (en) Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like
JPH03295141A (en) Detector
JP4792074B2 (en) Substrate inspection method and substrate inspection apparatus