JPH02236912A - Semiconductive layer formation composite for power cable - Google Patents

Semiconductive layer formation composite for power cable

Info

Publication number
JPH02236912A
JPH02236912A JP5629589A JP5629589A JPH02236912A JP H02236912 A JPH02236912 A JP H02236912A JP 5629589 A JP5629589 A JP 5629589A JP 5629589 A JP5629589 A JP 5629589A JP H02236912 A JPH02236912 A JP H02236912A
Authority
JP
Japan
Prior art keywords
ethylene
olefin copolymer
weight
power cable
alpha olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5629589A
Other languages
Japanese (ja)
Other versions
JP2889267B2 (en
Inventor
Etsuro Fukumori
福森 悦郎
Yoshio Nakagawa
中川 凱夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP5629589A priority Critical patent/JP2889267B2/en
Publication of JPH02236912A publication Critical patent/JPH02236912A/en
Application granted granted Critical
Publication of JP2889267B2 publication Critical patent/JP2889267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a composite for a power cable having good heat resistance and a free-stripping property by uniformly blending a prescribed weight of conductive carbon black to a prescribed wt. of a resin member consisting of a prescribed amount of a polymer, in which a ethylene-alpha olefin copolymer is previously silane-grafted, and a prescribed weight of ethylene-alpha olefin copolymer. CONSTITUTION:Conductive carbon black 15 to 70 pts.wt. is uniformly blended to a resin raw mateiral 100 pts.wt. consisting of a copolymer 30 to 70wt.% in which an ethylene-alpha olefin copolymer is previously silane-grafted, and an ethylene-alpha olefin copolymer 70 to 30wt.%. Then, a composite for a semiconductive layer using no resin raw material such as a chlorine polymer and an ethylene vinyl acetate copolymer having poor thermostability, poor heat resistance and having carbon black not all over due to a high share at the time of kneading while having a freestripping property of a bridging polyethylene insulated power cable is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野】 本発明は電力ケーブル用半導電層形成組成物に係り特に
架橋ポリエチレン絶縁電力ケーブルの外部半導電層の形
成に有用な優れた半導電層形成組成物に関するものであ
る. 〔従来の技術〕 近年、架橋ポリエチレン等の電力ケーブルの端未処理作
業や接続作業を簡略化し、時間を短縮するため外部半導
電層が絶縁体から容易に剥ぎ取り除去出来るいわゆるフ
リーストリッピング性を持うたケーブルが普及しはじめ
ている. この外部半導電層は特公昭55−35806号公報や特
公昭63−32204号公報にみられるように塩素系ボ
リマーやエチレン・酢酸ビニル共重合体を主成分とする
組成物で形成されることが多く提案されている. 上記ポリマーはフリーストリッピング性に関しては良好
な機能を有するが、その半面塩素系ポリマーは押出加工
性が悪いことや化学架橋で通常200℃程度の高圧水蒸
気のパイプ中を通過させるために熱安定性が悪く劣化し
やすくなる.またエチレン−酢酸ビニル共重合体では同
様に耐熱性が悪《架橋工程中で分解して酢酸を発生し、
強度低下で割れ易くなったりケーブルに設けた遮蔽層の
銅テープを腐食させたりする. また従来多用されている化学架橋では架橋装置を保有し
ていない場合設備投資費用が多額になり、節単には製造
出来ない。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a composition for forming a semiconducting layer for power cables, and particularly for forming an excellent semiconducting layer useful for forming an outer semiconducting layer of a crosslinked polyethylene insulated power cable. It concerns the composition. [Prior Art] In recent years, power cables made of cross-linked polyethylene have a so-called free-stripping property that allows the outer semiconducting layer to be easily peeled off and removed from the insulator, in order to simplify the unfinished end work and connection work and reduce the time required. Uta cables are starting to become popular. This outer semiconductive layer may be formed of a composition containing a chlorine polymer or an ethylene/vinyl acetate copolymer as a main component, as shown in Japanese Patent Publication No. 55-35806 and Japanese Patent Publication No. 63-32204. Many have been proposed. The above polymers have a good function in terms of free stripping properties, but on the other hand, chlorine-based polymers have poor extrusion processability and are chemically crosslinked and have poor thermal stability because they are passed through high-pressure steam pipes at about 200°C. It gets worse and deteriorates more easily. Similarly, ethylene-vinyl acetate copolymer has poor heat resistance (decomposes during the crosslinking process to generate acetic acid,
This reduces the strength and makes it more likely to break, or corrodes the copper tape that is the shielding layer on the cable. Furthermore, chemical crosslinking, which has been widely used in the past, requires a large amount of capital investment if crosslinking equipment is not available, and cannot be produced easily.

さらには従来の半導電性組成物ではその混合工程におい
てベースボリマー中にカーボンブラック粒子が均一に混
練り、分散しないためにカーボンの凝集が多く、いかに
分散を良くして、カーボンの凝集を少なく出来るかが課
題になっている。
Furthermore, in conventional semiconductive compositions, carbon black particles are uniformly kneaded and not dispersed in the base polymer during the mixing process, resulting in a lot of carbon agglomeration.How can we improve dispersion and reduce carbon aggregation? has become an issue.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的とするところは、熱安定性、耐熱性の良く
ない塩素系ポリマーやエチレン−酢酸ビニル共重合体の
ような樹脂素材を使用しないで、混練時に高いシェアが
かかってカーボンプツを全く有しないで架橋ポリエチレ
ン絶縁電力ケーブルのフリーストリッピング性をもつ半
導電層用組成物を提供することにある. 〔課題を解決するための手段〕 本発明は、エチレン−αオレフィン共重合体をあらかじ
めシラングラフト化した重合体30〜70重量%とエチ
レン−αオレフィン共重合体70〜30重量%とから成
る樹脂素材100重量部に対して導電性カーボンブラッ
ク15〜70重量部を均一に配合して成ることを特徴と
する電力ケーブル用半導電層形成組成物である. 本発明においてシラングシフト化して使用されるエチレ
ン−αオレフィン共重合体のαオレフインとしては、C
,〜C+Zの例えば、ボリブロピレン、ブテンー1、ペ
ンテン−1、ヘキセン−1、ヘブテン−1、オクテン−
14メチルペンテン−1、4メチルヘキセン−1、4−
4−ジメチルベンテンー11ノネンー1,デセンー1、
ウンデセン−1、及びドデセン−1等が上げられる。
The purpose of the present invention is to eliminate the use of resin materials such as chlorine-based polymers and ethylene-vinyl acetate copolymers, which have poor thermal stability and heat resistance, and to eliminate carbon particles due to high shear during kneading. The object of the present invention is to provide a composition for a semiconducting layer that has free stripping properties for crosslinked polyethylene insulated power cables. [Means for Solving the Problems] The present invention provides a resin comprising 30 to 70% by weight of a polymer obtained by grafting an ethylene-α olefin copolymer with silane and 70 to 30% by weight of an ethylene-α olefin copolymer. This is a semiconductive layer forming composition for a power cable, characterized in that 15 to 70 parts by weight of conductive carbon black is uniformly blended with 100 parts by weight of the material. In the present invention, the α-olefin of the ethylene-α-olefin copolymer used after being silane-shifted is C
, ~C+Z, e.g., polypropylene, butene-1, pentene-1, hexene-1, hebutene-1, octene-1
14 methylpentene-1, 4 methylhexene-1, 4-
4-dimethylbentene-11 nonene-1, decene-1,
Examples include undecene-1 and dodecene-1.

特に望ましいものとして、ブテンー11ペンテンー1、
ヘキセン−1、ヘプテン−1、4メチルペンテン−1が
上げら゛れる。
Particularly desirable are butene-11 pentene-1,
Examples include hexene-1, heptene-1, and 4-methylpentene-1.

本発明に使用されるシラングラフトマーは上記のオレフ
ィン系樹脂に一般式RR’ St Yz  (Rは1価
のオレフィン不飽和炭化水素基、Yは加水分解しうる有
機基、R′は脂肪族不飽和炭化水素以外の1価の炭化水
素基あるいはYと同じもの)で表わされる有機シランを
遊駿ラジカル生成化合物のもとで反応させて得られるも
のである.これは特公昭57−24373号公報及び特
公昭48−1711号公報、特開昭50−24342号
公報等に示されている公知の方法を用いるもので具体的
に例えばポリオレフィン樹脂をベースにビニルトリメト
キシシラン等とDCP (ジクミルパーオキサイド)等
の重合開始作用の強い有機過酸化物を併用することによ
って得られる.シラングラフトマ一の量としては樹脂1
00重量物中30重量%以上が好ましくこれ以下では高
温時形状保持特性、加熱変形率が悪くなる。
The silane graft tomer used in the present invention has the general formula RR' St Yz (R is a monovalent olefinically unsaturated hydrocarbon group, Y is a hydrolyzable organic group, and R' is an aliphatic unsaturated group) to the above-mentioned olefinic resin. It is obtained by reacting an organic silane represented by a monovalent hydrocarbon group other than a saturated hydrocarbon group (or the same group as Y) in the presence of a free radical-forming compound. This method uses a known method disclosed in Japanese Patent Publication No. 57-24373, Japanese Patent Publication No. 48-1711, Japanese Patent Application Laid-open No. 50-24342, etc. It is obtained by combining methoxysilane and other organic peroxides with a strong polymerization initiating effect, such as DCP (dicumyl peroxide). The amount of Silang Graftoma is 1 part resin.
It is preferable that the amount is 30% by weight or more based on the weight of the 00 weight product.If it is less than 30% by weight, the shape retention property at high temperature and the heat deformation rate will deteriorate.

またシラングラフトマーの架橋度としては、キシレン不
溶残留分としてゲル分率という尺度で言えばゲル分率2
0重量%〜80重量%が好ましい.ゲル分率20重量%
以下では、高温時の形状保持性、加熱変形率が悪く、ゲ
ル分率80重量%以上では成形加工性が悪くなる。
In addition, the degree of crosslinking of the silane graftomer is expressed as a gel fraction of 2
0% to 80% by weight is preferred. Gel fraction 20% by weight
If the gel fraction is below 80% by weight, the shape retention property and heat deformation rate at high temperatures will be poor, and if the gel fraction is 80% by weight or more, the moldability will be poor.

また導電性カーボンブラックの配合量を15〜70重量
部に限定する理由は15重世部未満の場合には導電性が
低く半導電層としての機能を付与することが出来なく、
70重量部を超えた場合は押出加工性が悪くなりa械的
強度が低下し割れ易くなるためである. なおカーボンブラックの種類としてはケッチェンブラッ
ク、ファーネスブラック、アセチレンブラック等の何れ
を使用してもよいが、吸着量比表面積の大きいものがさ
らに効果的である.勿論必要とあらば、酸化防止剤、滑
剤等を添加出来ることはいうまでもない。
The reason why the amount of conductive carbon black is limited to 15 to 70 parts by weight is that if it is less than 15 parts by weight, the conductivity is low and it cannot function as a semiconductive layer.
This is because if it exceeds 70 parts by weight, extrusion processability deteriorates, mechanical strength decreases, and cracking becomes more likely. As for the type of carbon black, any of Ketjen black, furnace black, acetylene black, etc. may be used, but carbon black with a large adsorption amount specific surface area is more effective. Of course, it goes without saying that antioxidants, lubricants, etc. can be added if necessary.

〔実施例〕〔Example〕

表1に示した組成にてシラングラフト化ポリマーを作成
した.エチレン−ブテンー1コボリマーは住友化学工業
製のCN2008、MFR2.1g/10表−2のエチ
レン−プテンー1コポリマーは同じく住友化学工業製の
CN2002、MFR2.2 g/10分である. 混練時に急激に材料温度が上がらない様にするため、バ
ンバリーミキサーのジャケットに水を通して、一括投入
して、材料温度が150゜Cになるまで混練して、ペレ
ット化した. 造粒したベレットを65sφ押出機(絶縁材料)と40
1IIIIφ押出機(半導電材料)で棒状の2色成形品
を成形した. フリーストリッピング性については成形品から1インチ
幅で試験片を取りオートグラフで剥離強度を測定した. ゲル分率は成形品を80℃2時間温水処理して120℃
キシレンに20時間浸漬して残留分として測定した. 加熱変形率はJ I S K6723に準拠して測定し
た.・熱安定性については、ブラベンダーブラストグラ
フにて200゜Cで混練した時15分以内に分解が始ま
ったものをXとし15分以上持ったものを0として評価
した. 表−1 〔発明の効果〕 以上の評価から耐熱性が良く、フリーストリッピング性
を持った電力ケーブル用半導電層形成組成物として良好
なものが得られた。
A silane-grafted polymer was prepared with the composition shown in Table 1. The ethylene-butene-1 copolymer is CN2008, manufactured by Sumitomo Chemical, and has an MFR of 2.1 g/10 minutes.The ethylene-butene-1 copolymer shown in Table 2 is CN2002, also manufactured by Sumitomo Chemical, and has an MFR of 2.2 g/10 minutes. In order to prevent the temperature of the material from rising rapidly during kneading, water was poured into the jacket of a Banbury mixer, and the material was added all at once, and the material was kneaded until the temperature reached 150°C and pelletized. The granulated pellets were transferred to a 65sφ extruder (insulating material) and 40
A rod-shaped two-color molded product was molded using a 1IIIφ extruder (semi-conductive material). Regarding free stripping properties, a 1 inch wide test piece was taken from the molded product and the peel strength was measured using an autograph. The gel fraction was determined by treating the molded product with hot water at 80°C for 2 hours at 120°C.
The residual content was measured after immersion in xylene for 20 hours. The thermal deformation rate was measured in accordance with JIS K6723. - Thermal stability was evaluated using a Brabender Blast Graph when kneaded at 200°C, with an X if it started to decompose within 15 minutes, and a 0 if it lasted for more than 15 minutes. Table 1 [Effects of the Invention] From the above evaluations, a good semiconducting layer forming composition for power cables was obtained which had good heat resistance and free stripping properties.

Claims (1)

【特許請求の範囲】[Claims] (1)エチレン−αオレフィン共重合体をあらかじめシ
ラングラフト化した重合体30〜70重量%とエチレン
−αオレフィン共重合体70〜30重量%とから成る樹
脂素材100重量部に対して導電性カーボンブラック1
5〜70重量部を均一に配合して成ることを特徴とする
電力ケーブル用半導電層形成組成物。
(1) Conductive carbon based on 100 parts by weight of a resin material consisting of 30-70% by weight of a polymer prepared by silane grafting an ethylene-α-olefin copolymer and 70-30% by weight of an ethylene-α-olefin copolymer. black 1
1. A semiconductive layer forming composition for a power cable, characterized in that the composition is uniformly blended in an amount of 5 to 70 parts by weight.
JP5629589A 1989-03-10 1989-03-10 Composition for forming semiconductive layer for power cable Expired - Lifetime JP2889267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5629589A JP2889267B2 (en) 1989-03-10 1989-03-10 Composition for forming semiconductive layer for power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5629589A JP2889267B2 (en) 1989-03-10 1989-03-10 Composition for forming semiconductive layer for power cable

Publications (2)

Publication Number Publication Date
JPH02236912A true JPH02236912A (en) 1990-09-19
JP2889267B2 JP2889267B2 (en) 1999-05-10

Family

ID=13023121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5629589A Expired - Lifetime JP2889267B2 (en) 1989-03-10 1989-03-10 Composition for forming semiconductive layer for power cable

Country Status (1)

Country Link
JP (1) JP2889267B2 (en)

Also Published As

Publication number Publication date
JP2889267B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US5889117A (en) Polymeric compositions for power cables
JPWO2003106554A1 (en) Thermoplastic resin composition, polymer composition, and molded article comprising the composition
JPWO2018180689A1 (en) Flame-retardant crosslinked resin molded article and method for producing the same, silane masterbatch, masterbatch mixture and molded article thereof, and flame-retardant product
JP4399077B2 (en) Adhesive semiconductive resin composition for semiconductive layer inside water-crosslinked polyethylene insulated power cable
JP2001014945A (en) Flaking semiconductive resin composition for outer semiconductive layer of water cross-linking polyethylene insulating power cable
JP2850225B2 (en) Flame retardant resin products with excellent surface scratching and whitening prevention properties
JP3047911B1 (en) Non-halogen flame-retardant resin composition and its applied products
JPS6140255B2 (en)
JPH02236912A (en) Semiconductive layer formation composite for power cable
JP3454704B2 (en) Flexible polyethylene resin composition and coated electric wire
JP6952070B2 (en) Manufacturing method of electric wires and cables
JPH05301996A (en) Flame-retardant resin composition
JPS63205340A (en) Semiconductive mixture
JPS62167339A (en) Flame-retardant resin composition
JP5564850B2 (en) Flame retardant, flame retardant composition and insulated wire
JP7157717B2 (en) Electric wire/cable manufacturing method
JPH04335055A (en) Production of water-crosslinked resin molding
JPS60260637A (en) Semiconducting plastic mixture
JPS6112738A (en) Mixture for semiconductive layer
JPS61238840A (en) Electrically semiconductive mixture
JPH0613623B2 (en) Polyethylene resin composition
JP6490618B2 (en) Flame-retardant crosslinked resin molded body, flame-retardant crosslinked resin composition and production method thereof, flame-retardant silane masterbatch, and flame-retardant molded article
JP3244255B2 (en) Semiconductive resin composition
JPH03276515A (en) Water-tree resisting electric wire and cable
JPS6140348A (en) Mixture for semiconductive layer