JPH02236908A - Solid electrolytic thin film and manufacture thereof - Google Patents

Solid electrolytic thin film and manufacture thereof

Info

Publication number
JPH02236908A
JPH02236908A JP1058090A JP5809089A JPH02236908A JP H02236908 A JPH02236908 A JP H02236908A JP 1058090 A JP1058090 A JP 1058090A JP 5809089 A JP5809089 A JP 5809089A JP H02236908 A JPH02236908 A JP H02236908A
Authority
JP
Japan
Prior art keywords
thin film
solid electrolyte
compound
film
anisotropy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1058090A
Other languages
Japanese (ja)
Inventor
Masazo Niwa
丹羽 政三
Nobuyuki Azuma
東信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP1058090A priority Critical patent/JPH02236908A/en
Publication of JPH02236908A publication Critical patent/JPH02236908A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a solid electrolytic thin film having anisotropy of ion conductance by forming a monomolecular film of a prescribed compound on the surface of the water or on the liquid level while being able to transfer it on to a substrate. CONSTITUTION:A hydrophobic part 1 is composed of one piece, two pieces and three pieces of linear chain alkyl, alkenyl, alkynil and fluoroalkyl radicals having the carbon number 10 to 30, a connection part 2 has various constructions according to the number of the alkyl chain, a polarity part 3 has the proper chain length and contains an oligomer or a polymer of the formula 1 at least as a part of its construction for becoming a migration path of ions. By using a material having such a molecular construction, a thin film having a regular lamination construction can be obtained, in which ions migrate only in the arrow direction through the polarity part 3 while the tin film comes to have anisotropy of ion conductance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、各種のセンサ、エレクトロクロミツク素子、
電池における隔膜、電気二重層キャパシタ及びメモリな
どに用いることのできる、固体電解′M薄膜に関する. [従来の技術とその課題] 固体中を、電子ではなくイオンが移動することによって
導電性を示す物質、即ち固体電解質は、全固体型電池を
はじめ、イオンセンサや湿度センサ、エレクトロクロミ
ック素子、’rt気二重層キャバシタ及びメモリなどの
構成要素として不可欠のものであり、これまでに、安定
化ジルコニアなどに代表される、無機系固体電解質や、
ポリエチレンオキシドーアルカリ金属塩ハイブリドなど
に代表される、有機高分子系固体M.―質などが知られ
ている。 「例えば「化学」38巻6号、40G−41
1頁及び418−426頁(1983)など〕 後者の
有機系固体電解質は、イオン電導度の点では、無機系の
ものに比べやや劣るが、成形加工性に優れているため、
工業上の有用性は高い.ところで、従来のこれらの高分
子固体電解質は、高分子と無機塩とを共通の溶媒に溶か
した後、溶媒を蒸発させることによって薄膜化されるが
、そのようにして得られた薄膜は、通常は完全に等方的
である。すなわち、薄膜内部の方向の違いにより(こと
に膜面に対して平行方向と垂直方向とではとでは)、そ
のイオン導電率などの物性において全く差がなく、膜内
においてイオンは、どの方向にも全く同じチカきやすさ
で移動することが出来る。しかし、膜面に対して乎行方
向と垂直方向とでイオン導?1が大きく異なるような、
すなわち異方性を持つ固体電解質薄膜が得゜られるなら
ば、その応用範囲はさらに広がる。例えば、各種センサ
においては,一方向だけにイオンを移動させることによ
り、従来のものよりも、感度および応答速度などにおい
て優れたものが得られるであろうし、エレクトロクコミ
ック素子においても、従来はスタティックドライブしか
出来ないが、異方性固体電解質薄膜を用いることにより
、多くの画素から成る表示素子を、各々独立に駆動させ
ることが容易になる。また、電池においても、その性能
の向上は勿論のこと、立体積層型の電池や、マイクロ電
極を用いた電池などの構成が容易になり、また、それら
の発展型として、メモリや、情報処理などに用いるデバ
イスの構築に際し、有用な素材を提供し得る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to various sensors, electrochromic devices,
This article relates to a solid electrolytic thin film that can be used for diaphragms in batteries, electric double layer capacitors, memories, etc. [Prior art and its problems] Substances that exhibit conductivity through the movement of ions rather than electrons in solids, that is, solid electrolytes, are used in all-solid-state batteries, ion sensors, humidity sensors, electrochromic devices, etc. It is indispensable as a component of RT gas double layer capacitors and memories, and so far, inorganic solid electrolytes such as stabilized zirconia,
Organic polymer solid M. typified by polyethylene oxide alkali metal salt hybrid. - Known for its quality, etc. “For example, Chemistry, Vol. 38, No. 6, 40G-41
1 and pp. 418-426 (1983), etc.] The latter organic solid electrolytes are slightly inferior to inorganic ones in terms of ionic conductivity, but they have excellent moldability, so
It has high industrial utility. By the way, these conventional polymer solid electrolytes are made into thin films by dissolving the polymer and inorganic salt in a common solvent and then evaporating the solvent, but the thin film obtained in this way is usually is completely isotropic. In other words, there is no difference in physical properties such as ionic conductivity due to the difference in direction within the thin film (particularly between parallel and perpendicular directions to the film surface), and there is no difference in which direction ions move within the film. can also move with exactly the same flickering ease. However, is ion conduction in the horizontal direction and perpendicular direction to the membrane surface? 1 is very different,
In other words, if a solid electrolyte thin film with anisotropy can be obtained, its range of applications will further expand. For example, in various sensors, by moving ions in only one direction, it will be possible to obtain better sensitivity and response speed than conventional sensors, and in electrocomic devices, conventional static However, by using an anisotropic solid electrolyte thin film, it becomes easy to independently drive display elements consisting of many pixels. In addition, not only the performance of batteries has improved, but also the construction of vertically stacked batteries and batteries using microelectrodes has become easier. It can provide useful materials for constructing devices used for.

しかしながら、これまでにそのような異方性を持つ固体
電解質薄膜は得られていなかった。
However, no solid electrolyte thin film with such anisotropy has been obtained so far.

[課題をM決するための手段] 本発明は、この様な状況に鐵み、イオン導電率の異方性
を有する固体電解質を提供するために行われたものであ
って、ポリエチレンオキシドなどの高分子固体電解質に
おいて従来しばしば行われてきたキャスト法などのかわ
りに、膜中の分子配向を制御し易く、層状に積み重なっ
た分子配列が比較的容易に得られるLangmu i 
r−B Iodgett法を製膜手段として採用するこ
とを、課題の解決手段としている.即ち、水面上または
液面上に、固体ffiM質を形成しうる能力を有する化
合物の単分子膜を形成せしめ、それを固体基板上に移し
取ることによって、イオン導電率の異方性を有する固体
電解質蓮膜を得るものである.この方法によって作成さ
れる薄膜の素材としては、イオン導電性を示し、な石か
つ、水面上もしくは適当な液面上に、安定な単分子膜を
形成するものであればなんでも良いが、経験上、好まし
くは、第1図で模式的に示されるような分子構造を持つ
物質を用(1ることにより、容易に、第2図に示したよ
うな、規則的な積層構造を持つ薄膜が得られ、その巾で
イオンは極性部3を通じて、矢印方向にのみ移動を行う
ので、その薄膜はイオン導W1¥.の異方性を持つもの
どなる.ここで、第l図における疎水部1は、1本、2
本又は3本の、炭素数が10−30である、直鎖状のア
ルキル、アルケニル、アルキニル、またはフルオロアル
キル基によって構成される.また、連結部2は、そのア
ルキル鎖の数に応じて多様な構造が可能であり、たとえ
ば以下のようなものが例として挙げられる. また、極性部3は、適当な鎖長を有する、下記のオリゴ
マーまたはボリマーを、少なくともその構造の一部とし
て含むものであり、イオンの移vJ経路となるべき部分
を提供するものである。
[Means for solving the problem] The present invention has been made in order to provide a solid electrolyte having anisotropy of ionic conductivity in view of the above situation. Instead of the casting method that has often been used in the past for molecular solid electrolytes, Langmui makes it easy to control the molecular orientation in the membrane and relatively easily obtain layered molecular arrangements.
The solution to this problem is to use the r-B Iodgett method as a film forming method. That is, by forming a monomolecular film of a compound capable of forming a solid ffiM substance on the water surface or liquid surface and transferring it onto a solid substrate, a solid having anisotropy of ionic conductivity is formed. This is to obtain an electrolyte lotus membrane. The material for the thin film created by this method may be any material that exhibits ionic conductivity, is solid, and forms a stable monomolecular film on the water surface or an appropriate liquid surface, but based on experience, Preferably, a substance having a molecular structure as schematically shown in FIG. 1 is used (1), by which a thin film with a regular laminated structure as shown in FIG. With that width, ions move only in the direction of the arrow through the polar region 3, so the thin film has anisotropy of ion conduction W1.Here, the hydrophobic region 1 in Fig. 1 is 1, 2
Consists of one or three linear alkyl, alkenyl, alkynyl, or fluoroalkyl groups having 10 to 30 carbon atoms. Further, the connecting portion 2 can have various structures depending on the number of alkyl chains thereof, and examples include the following. Furthermore, the polar portion 3 includes at least a part of its structure as an oligomer or polymer as described below having an appropriate chain length, and provides a portion that becomes a vJ path for ion movement.

−(OCl!2CH2煽 (’oc H2C HtC Heh イO C II − C H 2振 C H s {’NHCIIzCHa光 4:N HC H2C H2C Hp光また、この様な
物質を薄膜化する際には、その中に、荷電担休となるべ
きイオンを提供する金属塩を任意の方法で含有させるこ
とが望ましく、好ましくは1− I C I O4t 
 L I B Fag  L i C F ssOi+
LiSCN,NaSCN,N&I.KSCNなどのアル
カリ金属塩を、あらかじめ下相水中に溶かしておき、そ
の水面上に、目的化合物の単分子膜を形成せしめること
によフて、簡便かつ適切に、膜中にイオンを取り込ませ
ることが出来る.あるいはまた、アルカリ金属塩を膜物
質とともに適当な溶媒に溶解させ、それを純水上に滴下
することなどによっても、同様に金属イオンを取り込ま
せることが出来る.一般に、長鎖アルキル基と極性基を
非対称に併せ持つ、いわゆる両親媒性物質は、多くのも
のがLBIIIを作成しやすいことはよく知られている
(例えば、 『新実験化学講座18巻(界面とコロイド
)6章、丸善』等)が、これらの物質の極性基としてイ
オン導電性を有するオリゴマーあるいはボリマーを導入
することによって、同体電解?!薄膜として利用された
例はなく、本発明はそれを行うことを課題解決の手段の
1つの特徴とするものである.また、この様な物パは、
LB法以外の方法、例えばキャスト法などによっても製
膜でき、そのようにして得られた膜は二分子膜が積み重
な・クた構造を取っているために、いくらかはイオン導
N率の異方性を示すが、後で実施例において述べるよう
に、LB法で製膜したものの方が、はるかに高い異方性
を示し、その有用性も大きい. さて、以上述べてきたような手段を講じることにより、
第2図に模式的に示したような規則的な層状構造を持つ
、イオン導電性有機薄膜が得られた。また、特に、下記
一般式(1)で示される両頂媒性化合物を用いることに
より、良好な特性を持つ薄膜が比較的容易に得られるこ
とが、経験上わかった. 一般式(!) ただしnは4以上100以下の自然数であり、Rは炭素
数10−30の直鎖状のアルキル、アルケニル、アルキ
ニルまたはフルオロアルキル基を示す. 実際にこの薄膜が層状構造をしていることは、X線回折
などによって容易に確かめることが出来る.〔作用] このような固体電鯛質薄膜においては、イオンの移動は
極性部、すなわち、オリゴマーあるいはボリマ一部分を
通じてのみ起こり、密に11ff$L,,ている疎水部
を通じてイオンや電子が移動することは極めて困難であ
るために、結果的には、膜而に対して平行方向に間して
はイオン導?lt率が高く、膜面に対して垂直方向に間
してはイオン導電率の低い、すなわち、二次元的にイオ
ンが移動する、異方性固体電解質薄膜が得られることが
わかった。
-(OCl!2CH2 fan('oc H2C HtC Heh IOC II - CH2CH2C H s {'NHCIIzCHa light 4: N HC H2C H2C Hp light Also, when making such a substance into a thin film, It is desirable to contain therein a metal salt that provides ions to be charged carriers by any method, preferably 1-ICIO4t
L I B Fag L i C F ssOi+
LiSCN, NaSCN, N&I. By dissolving an alkali metal salt such as KSCN in the lower phase water in advance and forming a monomolecular film of the target compound on the water surface, ions can be easily and appropriately incorporated into the film. Can be done. Alternatively, metal ions can be incorporated in the same way by dissolving an alkali metal salt together with a membrane material in an appropriate solvent and dropping it onto pure water. In general, it is well known that many so-called amphiphilic substances, which have both a long-chain alkyl group and a polar group asymmetrically, are easy to create LBIII (for example, "New Experimental Chemistry Course Volume 18" Colloids) Chapter 6, Maruzen, etc.) introduced isomeric electrolysis by introducing ionic conductive oligomers or polymers as polar groups of these substances. ! There is no example of it being used as a thin film, and one feature of the present invention is to do so as a means to solve the problem. Also, this kind of thing is
Films can also be formed by methods other than the LB method, such as the casting method, and because the films obtained in this way have a stacked structure of bilayer films, some of the ion conductivity of N is reduced. Although it exhibits anisotropy, as will be described later in Examples, films formed by the LB method exhibit much higher anisotropy and are also more useful. Now, by taking the measures mentioned above,
An ionically conductive organic thin film having a regular layered structure as schematically shown in FIG. 2 was obtained. In addition, it has been found through experience that thin films with good properties can be obtained relatively easily, especially by using an amphipathic compound represented by the following general formula (1). General formula (!) where n is a natural number of 4 to 100, and R represents a linear alkyl, alkenyl, alkynyl, or fluoroalkyl group having 10 to 30 carbon atoms. The fact that this thin film actually has a layered structure can be easily confirmed by X-ray diffraction. [Function] In such a solid electrolyte thin film, ion movement occurs only through the polar part, that is, a part of the oligomer or polymer, and ions and electrons move through the densely packed hydrophobic part. As a result, it is extremely difficult to conduct ions in the direction parallel to the membrane. It has been found that an anisotropic solid electrolyte thin film having a high lt rate and low ionic conductivity in the direction perpendicular to the membrane surface, that is, ions move two-dimensionally, can be obtained.

例えば、前記一般式(T)で示した化合物(RはC+@
Htyで表される直鎖アルキル基、n=10のもの)を
用い、エチレンオキシド単位4個当たりリチウム原子1
個の割合になるようにLiCIO4を取り込ませ、LB
法により10層の薄膜を形成したものでは、膜面に対し
て垂直方向の導電率は1.6X10−”S/cmである
のに対し、膜面に対して下行方向の導電率は3.4X 
10−’S/cmと、l07オーダーの異方性を示した
.また、この固体電解質薄膜を用いることにより、優れ
た応答性を持つセンサを構成することが出来た. [実施例] 以下、本発明を、実施例に基づき、さらに詳細に説明す
る. (実施例!)化合物の合成 一例として、以下に示す構造式の化合物の合成法を示す
.この化合物は、もっとも良好な特性を示す薄膜材料の
うちの1つである. ステアリルアルコール48.54gと、L−グルタミン
m12.12gと、p一トルエンスルホン酸38.85
gヲ、トルエン2001中、還流温度で4時間反応させ
た。
For example, the compound represented by the general formula (T) (R is C+@
1 lithium atom per 4 ethylene oxide units.
Incorporate LiCIO4 in a proportion of LB
In the case of a 10-layer thin film formed by the method, the conductivity in the direction perpendicular to the film surface is 1.6X10-''S/cm, while the conductivity in the direction downward to the film surface is 3. 4X
It showed anisotropy of 10-'S/cm, on the order of 107. Furthermore, by using this solid electrolyte thin film, we were able to construct a sensor with excellent responsiveness. [Examples] Hereinafter, the present invention will be explained in more detail based on Examples. (Example!) As an example of compound synthesis, a method for synthesizing a compound having the structural formula shown below is shown. This compound is one of the thin film materials showing the best properties. 48.54 g of stearyl alcohol, 12.12 g of L-glutamine, and 38.85 g of p-toluenesulfonic acid.
The mixture was reacted in toluene 2001 at reflux temperature for 4 hours.

反応後トルエンを留去し、残渣をアセトンから再結晶す
ることによって、白色鱗片吠のL−グルタミン酸ジヘブ
タデシルエステルp−}ルエンスルホン酸塩40.48
gを得た. (収率68.5$)次に、この合成物10
.05gと、塩化テレフタロイル25.00gを、トリ
エチルアミン( 4.93g>存在下、テトラヒド口フ
ラン!801中、室温で3日間反応させた.副生じたト
リエチルアミン塩酸塩を除去し、溶媒を留去したのち、
n−へブタンから再結晶し、白色塊状結晶の酸クロリド
17.3gを得た,.(収率73.4X) #1後にこ
の合成物6 . 9 4g、ボリオキシエチレン(分子
量458.5) 4.31g,  および、トリエチル
アミン1.298を、テトラヒド口フラン401に溶解
し、室温て7日間反応の後、40℃に昇温しでさらに1
2時間反応させた.  Il生したトリエチルアミン塩
酸塩を除去し、溶媒を留去したのち、残渣をアセトンか
ら再結晶し、目的の、N−(ω−メトキシボリオキシエ
チレンテレフタレート)L−グルタミン酸ジヘブタデシ
ルエステル5.28gを得た. (収率50.H) 赤外吸収( I R ) :  3300Cl−’ (
ν訃H)、1730cr’  (  ν coo  エ
ステル)、  1640cm−’  (  ν c.o
  rミト゛)1100ca+−’  (  V  c
−o−e  X−テル)プロトン核磁気共鳴吸収(NM
R): 第3図に示ず。
After the reaction, toluene was distilled off and the residue was recrystallized from acetone to obtain L-glutamic acid dihebutadecyl ester p-}luenesulfonate of white scales 40.48
I got g. (Yield 68.5 $) Next, this synthetic product 10
.. 05 g and 25.00 g of terephthaloyl chloride were reacted in the presence of triethylamine (4.93 g) in tetrahydrofuran!801 at room temperature for 3 days. After removing the by-produced triethylamine hydrochloride and distilling off the solvent. ,
Recrystallization from n-hebutane gave 17.3 g of acid chloride in the form of white bulk crystals. (Yield 73.4X) After #1, this compound 6. 9 4g, polyoxyethylene (molecular weight 458.5) 4.31g, and triethylamine 1.298g were dissolved in tetrahydrofuran 401, and after reacting at room temperature for 7 days, the temperature was raised to 40°C and further 1.
The reaction was allowed to proceed for 2 hours. After removing the triethylamine hydrochloride formed and distilling off the solvent, the residue was recrystallized from acetone to obtain 5.28 g of the desired N-(ω-methoxyborioxyethylene terephthalate) L-glutamic acid dihebutadecyl ester. Obtained. (Yield 50.H) Infrared absorption (IR): 3300Cl-' (
ν 訃H), 1730cr' (ν coo ester), 1640cm-' (ν c.o
rmit゛) 1100ca+-' (V c
-o-e X-ter) proton nuclear magnetic resonance absorption (NM
R): Not shown in Figure 3.

く実施例2)LB膜の作成方法 例えば、実施例lにおいて合成゛した化合物を、ベンゼ
ン: エタノール(体積比9:1)tfu合溶媒に溶か
し、テフロンコーティングを施した水槽に満たした水(
但しここには、必要に応じ、t.iclo,などのアル
カリ金属塩を、適当量、例えばO.14Mの濃度で溶か
しておく)の水面上に、Inずつ静かに滴下し、水面上
単分子膜を作成した。なお、このときの水温は20℃で
あフた.次に、ウィルヘルミ型表面圧計によって単分子
膜の表面圧をモニターしながら、水槽上に設けられたバ
リャによって単分子膜のしめる面積を減少せしめ、表面
圧が2 5 mN/mとなったところで、常にその表面
圧を慄つようにバリャをコントロールした。この状態を
保ちつつ、tff浄なる適当な基板、例えば、石英、シ
リコンウエハー アルミナ、金Tt極、サファイヤなど
を、 1 5 0 mm/winの速度で、単分子膜を
貫いて垂直に上下させることによって、その基板上に甲
.分T−膜を積層した。このとき、基板を下げつつある
状態では膜は基板に付着せず、基板を引き上げつつある
ときにのみ膜が付着することが11察され、いわゆるZ
型のLBIIIどなることが分かった.また、 1層累
積する毎に、その膜の2 5 7 nmにおける吸光度
を測定し、層数との相関を調べたところ、第4C21に
示したように、良好な直線関係が得られ、規則的な累積
が行われていることがわかった. (実゜施例3)イオン導電率測定 第5図(a)に示した形状の金エッチングN極1に、実
施例2で示した方法により、実施例lで示した化合物の
LB膜6(IOFI,Llイオンを含む)を作成した.
その上から、第6図(b)に示したように、金電4il
i7を真空蒸着し、イオン導電率測定用の試料とした.
導電率の測定には、横河ヒューレットバツカード419
2Aインビ7ダンスアナライザーを使用し、膜面に対し
て垂直方向の導電率は、第6図に示したように、サンド
イツチタイプのWj.極(電極半径は0.重7ロ、電極
の間隔すなわち膜厚は、?.I X 1 0−”cmで
あった》を用いて測定した.また、膜面に対して平行方
向の導電率は、第7図に示したように、ギャップ電極タ
イプの電極くギャップ@ 4.  5 X 1 0−”
cm)を用いて測定した.測定は真空中、24℃で行っ
た.また、この場合は交流電導度測定であるが、周波数
は10Hzから10MH2の範囲で測定を行った.この
結果、下表に示すように、膜面に対して平7行方向と垂
直方向とで、大きなイオン導電率の異方性を持つ、固体
電解質薄膜が得られたことがわがつた.また、この場合
、リチウムイオンは、エチレンオキシド単位4個につき
1個の割合で取り込まれていることが確認できた. ただし、σエは、膜面に対して垂直方向の導電率、σ7
は、膜面に対して平行方向の導電率を示す.(比較例1
) キャスト法により薄膜化した例を示す.実施例1の方法
により合成した化合物とLIC菖0−を、所定の割合に
なるように混合し、それを、テトラヒドロフラン: ジ
オキサン:水(体積比2:  6:  3)の混合溶媒
に溶解させた.次に、第5図に示したような金電極基板
1上にそれを流延し、室温で徐々に溶媒を蒸発(約1週
問)させ、薄膜とした.L1イオンとの混合比(0/L
i)を種々変えたものを作成し、実施例3と同様にして
、導電率の異方性を検討したところ、下表に示すような
値が得られた.キャスト法においても異方性のある膜が
11られるが、LB法で作成したもの(実施例3)の方
が異方性が大きく、より有用であることが確認できた. [発明の効果] 以上述べてきたことからも明らかであるが、本発明にお
いて、規則的な層状構造を持った薄膜を作成しやすいL
B法を用い、また、膜素材をその方法に適した形に化学
的に修飾を施すことによって、従来得られていなかった
、10▼オーダーにも達するイオン導電率の異方性を持
つ固体電解質薄膜を提供することが出来た.このものは
、特にセンサや、電気二重層キャパシタ及びメモリなど
の素材として有用である. なお、導電率の異方性を持った有機薄膜はこれまでにも
いくつか得られているが、それらは全て電子伝導に基づ
くものであってイオン導電ではなく、本発明のものとは
、性質も用途も異なるものであることを付記しておく.
Example 2) Method for creating an LB film For example, the compound synthesized in Example 1 was dissolved in a mixed solvent of benzene:ethanol (volume ratio 9:1) and tfu, and the mixture was poured into a Teflon-coated water tank filled with water (
However, if necessary, t. an alkali metal salt such as iclo, in an appropriate amount, e.g. (previously dissolved at a concentration of 14 M) was gently dropped onto the water surface to form a monomolecular film on the water surface. The water temperature at this time was 20℃. Next, while monitoring the surface pressure of the monomolecular film using a Wilhelmy type surface pressure meter, the area covered by the monomolecular film was reduced by a barrier provided on the water tank, and when the surface pressure reached 25 mN/m, I controlled the barrier so that I was always afraid of its surface pressure. While maintaining this state, move a suitable TFF-clean substrate such as quartz, silicon wafer alumina, gold Tt electrode, sapphire, etc. vertically up and down through the monomolecular film at a speed of 150 mm/win. Accordingly, A. Minute T-membranes were laminated. At this time, it has been observed that the film does not adhere to the substrate while the substrate is being lowered, and the film adheres only when the substrate is being lifted up, which is the so-called Z
I found out that the model LBIII is loud. In addition, each time one layer was accumulated, the absorbance of the film at 257 nm was measured, and the correlation with the number of layers was investigated. As shown in Section 4C21, a good linear relationship was obtained, indicating a regular It was found that a significant accumulation was occurring. (Example 3) Ionic conductivity measurement An LB film 6 of the compound shown in Example 1 ( IOFI, containing Ll ions) was created.
From above, as shown in Figure 6(b),
i7 was vacuum-deposited and used as a sample for ionic conductivity measurement.
For measuring conductivity, Yokogawa Hewlett Vac Card 419
Using a 2A Invi7 dance analyzer, the conductivity in the direction perpendicular to the film surface was measured using a Sanderch type Wj. The conductivity was measured in the direction parallel to the film surface. As shown in Fig. 7, the gap electrode type electrode has a gap @ 4.5 x 1 0-”
cm). Measurements were performed in vacuum at 24°C. Also, in this case, AC conductivity was measured, and the measurement was performed at a frequency in the range of 10 Hz to 10 MH2. As a result, as shown in the table below, it was found that a solid electrolyte thin film with large ionic conductivity anisotropy in the parallel and perpendicular directions to the film surface was obtained. Furthermore, in this case, it was confirmed that one lithium ion was incorporated for every four ethylene oxide units. However, σe is the electrical conductivity in the direction perpendicular to the film surface, σ7
indicates the conductivity in the direction parallel to the film surface. (Comparative example 1
) An example of thinning film using the casting method is shown. The compound synthesized by the method of Example 1 and LIC irises were mixed at a predetermined ratio, and the mixture was dissolved in a mixed solvent of tetrahydrofuran: dioxane: water (volume ratio 2: 6: 3). .. Next, it was cast onto a gold electrode substrate 1 as shown in FIG. 5, and the solvent was gradually evaporated at room temperature (for about a week) to form a thin film. Mixing ratio with L1 ion (0/L
Various versions of i) were prepared and the anisotropy of conductivity was examined in the same manner as in Example 3, and the values shown in the table below were obtained. Although films with anisotropy can also be produced by the casting method, it was confirmed that the film created by the LB method (Example 3) has greater anisotropy and is more useful. [Effects of the Invention] As is clear from what has been described above, in the present invention, it is easy to create a thin film with a regular layered structure.
By using Method B and chemically modifying the membrane material to suit the method, we have created a solid electrolyte with ionic conductivity anisotropy of the order of 10▼, which has never been achieved before. We were able to provide a thin film. This material is particularly useful as a material for sensors, electric double layer capacitors, and memories. Although several organic thin films with conductivity anisotropy have been obtained so far, all of them are based on electronic conduction, not ionic conduction, and the present invention is based on the properties Please note that both have different uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、イオン導電率の異方性を持つ薄膜を構成し得
る物質の化学構造を示す模式図である.第2[!Iは、
本発明の薄膜における規則的層状構造と、その中でのイ
オン伝導経路を示す模式図である. 第3図は、典型的な試料の一つである、N−(6》−メ
トキシボリオキシエチレンテレフタレート)L−グルタ
ミン酸ジヘブタデシルエステルの、プロトン核磁気共鳴
スペクトル図である.第4図は、累積されたLB膜の層
数と、その膜の2 5 7 nmにおける吸光度の関係
をグラフにした相関図である。 第5図は、導電率の測定のための電極の形状を示す模式
図である. 第6図および第7図は、膜面に対して垂直方向および膜
面に対して平行方向のイオン電導度を測定する方法をそ
れぞれ図示しk模式図である.l.疎水部   2.連
結部   3.極性部4.金エッチング電極    5
.支持基板6.LB膜   7.金電F!i    8
.  インピーダンスアナライザ 篤2口
Figure 1 is a schematic diagram showing the chemical structure of a substance that can form a thin film with anisotropy of ionic conductivity. Second [! I am
FIG. 1 is a schematic diagram showing the regular layered structure of the thin film of the present invention and the ion conduction paths within it. Figure 3 is a proton nuclear magnetic resonance spectrum diagram of N-(6》-methoxyboryoxyethylene terephthalate) L-glutamic acid dihebutadecyl ester, which is one of the typical samples. FIG. 4 is a graph showing the relationship between the accumulated number of LB film layers and the absorbance of the film at 257 nm. FIG. 5 is a schematic diagram showing the shape of an electrode for measuring conductivity. FIGS. 6 and 7 are schematic diagrams illustrating methods for measuring ionic conductivity in a direction perpendicular to the membrane surface and in a direction parallel to the membrane surface, respectively. l. Hydrophobic part 2. Connecting part 3. Polar part 4. Gold etched electrode 5
.. Support substrate 6. LB film 7. Kinden F! i8
.. Impedance analyzer Atsushi 2 ports

Claims (6)

【特許請求の範囲】[Claims] (1)水面上または液面上に、固体電解質を形成しうる
能力を有する化合物の単分子膜を形成せしめ、それを固
体基板上に移し取ることによって得られる、イオン導電
率の異方性を有する固体電解質薄膜。
(1) Anisotropy of ionic conductivity obtained by forming a monomolecular film of a compound capable of forming a solid electrolyte on the water or liquid surface and transferring it onto a solid substrate. solid electrolyte thin film.
(2)固体電解質を形成しうる能力を有する化合物が、
疎水部として少なくとも1本の炭素数10〜30の直鎖
アルキルまたはアルケニルまたはアルキニルまたはフル
オロアルキル基をもち、かつ、極性部として下記に示す
繰り返し構造のうちの1種以上を有する化合物である、
請求項1記載の固体電解質薄膜。 (繰り返し構造) ▲数式、化学式、表等があります▼ ▲数式、化学式、表等があります▼ ただしnは任意の自然数。
(2) A compound having the ability to form a solid electrolyte is
A compound having at least one linear alkyl, alkenyl, alkynyl, or fluoroalkyl group having 10 to 30 carbon atoms as a hydrophobic part, and one or more of the repeating structures shown below as a polar part,
The solid electrolyte thin film according to claim 1. (Repeating structure) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ ▲There are mathematical formulas, chemical formulas, tables, etc.▼ However, n is any natural number.
(3)固体電解質を形成しうる能力を有する化合物が、
下記一般式( I )で示される化合物である、請求項1
記載の固体電解質薄膜。 (一般式 I ) ▲数式、化学式、表等があります▼ ただしnは4以上100以下の自然数であり、Rは炭素
数10−30の直鎖状のアルキル、アルケニル、アルキ
ニルまたはフルオロアルキル基を示す。
(3) A compound having the ability to form a solid electrolyte is
Claim 1, which is a compound represented by the following general formula (I)
The solid electrolyte thin film described. (General Formula I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ However, n is a natural number from 4 to 100, and R represents a linear alkyl, alkenyl, alkynyl, or fluoroalkyl group having 10 to 30 carbon atoms. .
(4)アルカリ金属イオンを含む水を下相水として用い
、その水面上に、固体電解質を形成しうる能力を有する
化合物の単分子膜を形成することを特徴とする、請求項
1、2または3記載の、固体電解質薄膜の製造方法。
(4) Water containing alkali metal ions is used as the lower phase water, and a monomolecular film of a compound having the ability to form a solid electrolyte is formed on the water surface. 3. The method for producing a solid electrolyte thin film as described in 3.
(5)固体電解質を形成しうる能力を有する化合物とア
ルカリ金属塩との混合溶液を水面上に滴下して単分子膜
を形成させることを特徴とする、請求項1、2または3
記載の、固体電解質薄膜の製造方法。
(5) Claim 1, 2 or 3, characterized in that a mixed solution of a compound capable of forming a solid electrolyte and an alkali metal salt is dropped onto the water surface to form a monomolecular film.
The method for producing a solid electrolyte thin film described above.
(6)請求項4または5に記載の方法で製造された、請
求項2または3に記載の固体電解質薄膜。
(6) The solid electrolyte thin film according to claim 2 or 3, produced by the method according to claim 4 or 5.
JP1058090A 1989-03-10 1989-03-10 Solid electrolytic thin film and manufacture thereof Pending JPH02236908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058090A JPH02236908A (en) 1989-03-10 1989-03-10 Solid electrolytic thin film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058090A JPH02236908A (en) 1989-03-10 1989-03-10 Solid electrolytic thin film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02236908A true JPH02236908A (en) 1990-09-19

Family

ID=13074245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058090A Pending JPH02236908A (en) 1989-03-10 1989-03-10 Solid electrolytic thin film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02236908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273890A (en) * 2005-03-28 2006-10-12 Tokyo Institute Of Technology Anisotropic ion conductive polymer membrane
JP2009076331A (en) * 2007-09-20 2009-04-09 Toyota Central R&D Labs Inc Polymer nanosheet integrated electrolyte membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273890A (en) * 2005-03-28 2006-10-12 Tokyo Institute Of Technology Anisotropic ion conductive polymer membrane
JP2009076331A (en) * 2007-09-20 2009-04-09 Toyota Central R&D Labs Inc Polymer nanosheet integrated electrolyte membrane

Similar Documents

Publication Publication Date Title
Marra Direct measurement of the interaction between phosphatidylglycerol bilayers in aqueous electrolyte solutions
Horowitz et al. High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications
Benz et al. Reversible electrical breakdown of lipid bilayer membranes: a charge-pulse relaxation study
JP3802556B2 (en) Polymers obtained from perhalogenated sultone derived monomers.
Wieczorek et al. A basic investigation of anhydrous proton conducting gel electrolytes
Laredo et al. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au (111) surface
CN101434612A (en) Metal organic framework compound material, as well as preparation and application thereof
JPH07118480A (en) Polymer solid electrolyte
Eggers et al. Ion channels from linear and branched bola-amphiphiles
Lin et al. Electrically addressable, biologically relevant surface-supported bilayers
JPH02236908A (en) Solid electrolytic thin film and manufacture thereof
Jain et al. Lyotropic phase behavior of poly (ethylene oxide)− poly (butadiene) diblock copolymers: Evolution of the random network morphology
Luo et al. Both dielectrics and conductance anomalies in an open-framework cobalt phosphate
JP2008037823A (en) Ion conductor, compound or its salt, twin continuous cubic liquid crystal and electrochemical device
US5019451A (en) Non-centrosymmetric, multi-layer Langmuir-Blodgett films
Zhu et al. Methacrylated self-organizing 2, 3, 4-tris (alkoxy) benzenesulfonate: A new concept toward ion-selective membranes
JP5552667B2 (en) Compound having polymerizable property capable of taking bicontinuous cubic liquid crystal structure and ion conductive polymer having bicontinuous cubic liquid crystal structure
JPH02236905A (en) Solid electrolytic thin film
EP1096251A1 (en) Film responsive to bicarbonate ion
Żukowska et al. Effect of gel composition on the conductivity of proton-conducting gel polymeric electrolytes doped with H3PO4
Martin et al. Effect of anionic lipids on mammalian plasma cell membrane properties
Do et al. Bicontinuous Cubic and Hexagonal Columnar Liquid Crystalline Ion-Conductors at Room Temperature in Ion-Doped Dendritic Amphiphiles
US20050119431A1 (en) Novel cationic polymers containing amidinium groups and their use
Itoh et al. Solid polymer electrolytes based on comblike polymers
Wu et al. Temperature Controlled Self-Folding Design Using Thermo-Sensitive Hydrogel Pnipam