JPH02236211A - Furnace top charging method in bellless blast furnace and apparatus thereof - Google Patents
Furnace top charging method in bellless blast furnace and apparatus thereofInfo
- Publication number
- JPH02236211A JPH02236211A JP5616789A JP5616789A JPH02236211A JP H02236211 A JPH02236211 A JP H02236211A JP 5616789 A JP5616789 A JP 5616789A JP 5616789 A JP5616789 A JP 5616789A JP H02236211 A JPH02236211 A JP H02236211A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- chute
- furnace
- bunker
- discharged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 15
- 239000002994 raw material Substances 0.000 claims abstract description 45
- 241000273930 Brevoortia tyrannus Species 0.000 claims description 31
- 239000002801 charged material Substances 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
Landscapes
- Blast Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野1
本発明はベルレス高炉の炉頂装入方法およびその装置に
関する.
〔従来の技術1
第2図は高炉の原料装入によって生ずる高炉内周方向の
鉱石/コークス(0/C)分布偏差の発生状況の一例を
示す図である.高炉装入装置は,対向設置の複数の炉頂
バンカ1.2と、集合シュート3と垂直シュート3aと
、変向の可能な旋回シュート4とからなる.この装入装
置を通して原料を装入すると次のような問題点が生ずる
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a method and apparatus for top charging a bellless blast furnace. [Prior art 1] Figure 2 is a diagram showing an example of the occurrence of ore/coke (0/C) distribution deviation in the inner peripheral direction of the blast furnace, which is caused by charging raw materials into the blast furnace. The blast furnace charging equipment consists of a plurality of furnace top bunkers 1.2 installed opposite each other, a collecting chute 3, a vertical chute 3a, and a rotating chute 4 capable of changing direction. When raw materials are charged through this charging device, the following problems occur.
垂直シュート3a内を通過する原料は、どちらの炉頂バ
ンカ1.2から排出するかで,垂直シュート内の異なる
位置を落下のルートとして退び,その結果偏流を起こす
ようになる。そのために落下する原料は,旋回シュート
4上の異なる位置に落下するから、その偏流の差だけシ
ュート上での移動距離がdi.d2.と変動し、これが
ため移動時間、シュートを離れる原料落下速度,落下の
軌跡が変動し、最終的には炉内堆積位置が変動して装入
物層の炉周方向の装入物の分布偏差、とりわけ第2図の
プロフィル中に見られるような0/C分布の偏差を生じ
るに至る.
以上の説明から判るように,2つの炉頂バンカ1.2の
うち、一方から鉱石を切り出し他方からはコークスを切
出してこれを交互に継続すると5炉周方向0/C分布に
大きな偏りを生ずる原因となる.
円周方向バランスを整える技術として特開昭62−56
507がある.この技術は集合シュートに原料を溜めな
がら排出することによって原料の旋回シュートへの落下
を鉛直方向にすることができる.よってこの方法により
,円周方向のバランスは改良されるが、次の問題点が新
たに発生する.高炉内での装入物の粒度の半径方向分布
は、炉壁側で細かく,炉中心側で粗い方が、炉壁よりの
熱負荷の低減,炉芯活性化による出銑滓の安定等の点で
よい.
ベルレス式装入装置では原料を装入する時旋回シュート
は旋回しなから炉壁側から炉中心の方に向かって装入し
ていく構造になっている.そこで高炉内での装入物の粒
度の半径方向分布を炉壁側で細かく、炉中心側で粗い分
布にするためには垂直シュートから旋回シュートへ落下
する原料粒度の経時変化を第5図(a)のように初期に
粒度が小さく、時間が経つにつれ,粒度が大きくする必
要がある.
バンカーから排出する原科の粒度の経時変化は第5図(
a)に近く理想的である.しかし、特開昭62−565
07のようにバンカーから排出した原料を一度集合シェ
ート上に溜めると、集合シュートから旋回シェートへ落
下する時の原料の粒度の経時変化が第5図(b)のよう
に初期に細かい原料が落下するものの、すぐに粗くなり
,次第に再び細かくなるという,必ずしも理想的ではな
い経時変化に変わってしまう.
また,特開昭62−66084には集合シュートから落
下するところに絞り弁を設け,その絞り口の位置を調整
することによって原料の旋回シュートへの落下を鉛直方
向にすることが開示されている.しかし、原料の種類や
排出するバンカ毎に、絞り口位置をかえる必要があるこ
と,特に,原料性状は逐次変化するのでその管理,調整
は困難であり、結果的に鉛直落下を確保できない.
〔発明が解決しようとする課題J
本発明が解決しようとする課題は、次の通りである.
■ 旋回シュートへの原料流の流れの方向を鉛直−にし
、原科流の落下位置を旋回シュートの旋回中心に一致さ
せること.
■ ホッパから旋回シュートへ排出される排出始めから
排出終了までの誹出粒径の分布特性が第5図(b)のよ
うではなく第5図(a)のようにすることで、高炉内に
装入された原料の粒度の半径方向分布を炉壁側で細かく
,炉中心側で粗くすること.
■ どんな種類の原料でも、また排出するバンカがどれ
であっても,さらに,原料性状が経時的に変化していっ
ても,常に鉛直落下を確保することができること.
本発明は以上の3点を同時に満足することのできるベル
レス高炉の炉項装入方法および装置を提供することを目
的とするものである.
[課題を解決するための手段1
上記課題を解決する本発明の技術手段は、炉頂バンカか
ら排出した原料を旋回シュート上方において対向する2
方向から互いに衝突合流させて旋回シュート上に落下さ
せることを特徴とする.対向する2方向は2つの流れの
方向を水平面に投影した時,その交差角が90°〜27
0゜となる方向とすればよい.
また,各炉頂バンカの排出原料を分割した後再合流させ
ることとすれば簡易に上記方法を実現することができる
.
なお,3個以上の炉頂バンカを設け,2個のバンカから
同時に同種の装入物を排出して衝突合流させるとバンカ
の数が増加するが、容易に理想的に実施することが可能
である.
また,上記方法を好適に実施する装置としては、炉頂バ
ンカの排出口と旋回シュートとの間に設けた集合シュー
ト内の各バンカ排出口直下に、排出原料を2分割し次い
で2分割された原料を対向する落下方向に誘導する誘導
路を形成する山形状突起を配設したことを特徹とするベ
ルレス高炉の炉m装入装置が適切である。The raw material passing through the vertical chute 3a retreats through different falling routes within the vertical chute depending on which top bunker 1.2 it is discharged from, resulting in a drift. For this reason, the falling raw materials fall at different positions on the rotating chute 4, so the moving distance on the chute is di. d2. As a result, the travel time, material falling speed leaving the chute, and falling trajectory vary, and ultimately the deposition position in the furnace changes, resulting in a deviation in the distribution of the charge in the direction of the furnace circumference in the charge layer. In particular, this leads to deviations in the 0/C distribution as seen in the profile of FIG. As can be seen from the above explanation, if ore is cut from one of the two furnace top bunkers 1.2 and coke is cut from the other, and this continues alternately, a large deviation will occur in the 0/C distribution in the circumferential direction of the 5 furnaces. Cause. JP-A-62-56 as a technique for adjusting circumferential balance
There is 507. This technology allows the material to fall vertically into the rotating chute by collecting and discharging the material in the collecting chute. Therefore, although this method improves the balance in the circumferential direction, the following new problems arise. The radial distribution of the particle size of the charge in the blast furnace is finer on the furnace wall side and coarser on the furnace center side, which reduces the heat load from the furnace wall and stabilizes the tapped iron slag by activating the furnace core. A point is fine. In the bellless charging system, when charging raw materials, the rotating chute does not rotate, but instead charges from the furnace wall toward the center of the furnace. Therefore, in order to make the radial distribution of the particle size of the charge in the blast furnace finer on the furnace wall side and coarser on the furnace center side, the change over time of the particle size of the raw material falling from the vertical chute to the rotating chute is shown in Figure 5 ( As in a), the particle size needs to be small at the beginning and then increase as time passes. Figure 5 (
This is close to a) and is ideal. However, JP-A-62-565
Once the raw material discharged from the bunker is collected on the collecting chute as shown in Figure 5(b), the particle size of the raw material changes over time as it falls from the collecting chute to the rotating shete, as shown in Figure 5(b). However, it quickly becomes coarse and then gradually becomes finer again, which is not necessarily ideal. Furthermore, Japanese Patent Laid-Open No. 62-66084 discloses that a throttle valve is provided at the point where the raw material falls from the collection chute, and by adjusting the position of the throttle opening, the material falls into the rotating chute in a vertical direction. .. However, it is necessary to change the orifice position depending on the type of raw material and the bunker to be discharged.In particular, since the raw material properties change sequentially, it is difficult to manage and adjust them, and as a result, vertical drop cannot be ensured. [Problems to be solved by the invention J Problems to be solved by the present invention are as follows. ■ Make the direction of the raw material flow into the rotating chute vertical, and align the falling position of the raw material flow with the center of rotation of the rotating chute. ■ By making the distribution characteristics of the extruded particle size from the beginning of discharge to the end of discharge from the hopper to the rotating chute as shown in Fig. 5(a) instead of as shown in Fig. 5(b), it is possible to To make the radial distribution of the particle size of the charged raw material finer on the furnace wall side and coarser on the furnace center side. ■ It must be possible to always ensure vertical fall, regardless of the type of raw material, which bunker it is discharged from, or even if the raw material properties change over time. The object of the present invention is to provide a method and apparatus for charging a bellless blast furnace, which can simultaneously satisfy the above three points. [Means for Solving the Problems 1] The technical means of the present invention for solving the above-mentioned problems is that the raw material discharged from the furnace top bunker is opposed to the above rotating chute.
It is characterized by colliding and merging with each other from different directions and dropping them onto a rotating chute. When the two flow directions are projected onto a horizontal plane, the angle of intersection between the two opposing directions is between 90° and 27°.
The direction should be 0°. In addition, the above method can be easily implemented by dividing the raw material discharged from each furnace top bunker and then recombining it. Note that if three or more top bunkers are provided and the same type of charge is simultaneously discharged from two bunkers and collided and merged, the number of bunkers will increase, but this can be easily and ideally implemented. be. In addition, as a device for suitably carrying out the above method, the discharged raw material is divided into two parts directly below each bunker discharge port in a collection chute provided between the top bunker discharge port and the rotating chute. Appropriate is a bell-less blast furnace charging device that is specially designed to have a chevron-shaped protrusion that forms a guiding path for guiding the raw material in the opposing falling direction.
〔作川J
従来法では、高炉装入原科がバンカから排出されて集合
ホッパを流れる時に,水平方向速度成分が存在すること
が円周方向バランスを悪くする原因であった。[Sakukawa J] In the conventional method, when the blast furnace charging material is discharged from the bunker and flows through the collecting hopper, the presence of a horizontal velocity component causes poor circumferential balance.
第1図は本発明方法の説明図で第1図(a)は平面図,
第1図(b)はその縦断面図である.バンカlの下方に
集合シュート3i3よび垂直シュー}−3aがあり,そ
の下方に図示省略した旋回シェートがある.
バンカ1から排出した原料流5を2分し,再度互いに逆
方向から合流させると,水平方向速度成分を消すことが
でき,鉛直シュート3から旋回シュートへの原料の落下
はほぼ鉛直方向成分のみになる。従って,このようにし
て旋回シュートに供給され次いで高炉内に散布された原
料は高炉内で円周方向の分布偏差がなくなる。Figure 1 is an explanatory diagram of the method of the present invention, and Figure 1 (a) is a plan view.
Figure 1(b) is a longitudinal cross-sectional view. Below the bunker I, there is a collecting chute 3i3 and a vertical shoe}-3a, and below that there is a rotating chute (not shown). By dividing the raw material flow 5 discharged from the bunker 1 into two and remerging them from opposite directions, the horizontal velocity component can be eliminated, and the material falling from the vertical chute 3 to the rotating chute is reduced to almost only the vertical component. Become. Therefore, the raw material supplied to the rotating chute and then spread into the blast furnace has no distribution deviation in the circumferential direction within the blast furnace.
対抗する2方向のなす水平面投影角度の数値θは180
度ならば理想であるが、多少この角度θが増減しても,
90〜270度の範囲ならば原料流の水平方向速度成分
をかなり減少することができる.第4図はこの角度θと
高炉原料の円周方向での層厚の偏差を示したものである
.
第3図は上記方法を好適に達成することのできる集合シ
ェートを示す斜視図である.集合シュート内に突起10
を設ける.この突起10はバンカlの排出口直下にあり
、整流板状をなしており,これによってバンカから排出
した原料を左右に分流する.さらに分流された原料流は
集合シュート3の中心に向かって対抗する方向から再度
合流してくるので互いに流れの水平方向成分を打消し、
垂直シュート3a内のほぼ中心を鉛直に落下するので第
2図におけるdl.d2が等しくなるため炉内で円周方
向の分布偏差がなくなる.また、上述の方法ではバンカ
ーから排出した原料は炉内に装入されるまで、どこの場
所においても溜ることはないので原料の旋回シュートを
通しての粒度の経時変化は第5図(a)のようになって
いる.よって装入原料が炉内に堆積した時、原料粒度の
半径方向分布は、炉壁側で細かく、炉中心側で粗い理想
的なものになった.
〔実施例〕
次の方法によって本発明を試験した.
炉容積 2584m’
送風量 3500Nrn’/min
出銑比 1.44 t/m’・d上記高炉、およ
びその操業において、炉頂装入装置に第3図に示したよ
うな集合シュート上に山形状突起を配設したものを用い
,1つのバンカから排出した原料を山形状突起により分
割した復、再度90゜の角度をもって合流させ旋回シュ
ート上に落下させるようにした。そのときの操業推移を
第6図に示す.
また、次の高炉において試験を行った。The numerical value θ of the horizontal plane projection angle formed by two opposing directions is 180
degree is ideal, but even if this angle θ increases or decreases a little,
In the range of 90 to 270 degrees, the horizontal velocity component of the raw material flow can be significantly reduced. Figure 4 shows this angle θ and the deviation of the layer thickness of the blast furnace raw material in the circumferential direction. FIG. 3 is a perspective view showing a set sheet that can suitably achieve the above method. 10 protrusions inside the collection chute
Establish. This protrusion 10 is located directly below the discharge port of the bunker 1 and has the shape of a rectifying plate, thereby dividing the raw material discharged from the bunker to the left and right. Furthermore, the separated raw material flows rejoin from opposing directions toward the center of the collecting chute 3, so that they cancel out the horizontal components of the flows.
Since it falls vertically approximately at the center of the vertical chute 3a, dl. Since d2 becomes equal, there is no distribution deviation in the circumferential direction within the furnace. In addition, in the above method, the raw material discharged from the bunker does not accumulate anywhere until it is charged into the furnace, so the particle size of the raw material changes over time as it passes through the rotating chute, as shown in Figure 5 (a). It has become. Therefore, when the charged raw material was deposited in the furnace, the radial distribution of the raw material particle size was ideal, finer on the furnace wall side and coarser on the furnace center side. [Example] The present invention was tested by the following method. Furnace volume: 2584 m' Air flow rate: 3500 Nrn'/min Piercing ratio: 1.44 t/m'・d In the above blast furnace and its operation, the top charging device has a mountain-shaped structure on the collecting chute as shown in Figure 3. Using a bunker equipped with protrusions, the raw material discharged from one bunker was divided by the chevron-shaped protrusions, then merged again at an angle of 90° and dropped onto a rotating chute. Figure 6 shows the operational progress at that time. In addition, tests were conducted in the following blast furnaces.
炉容積 4500rn’
送風量 5940Nrr?/min
出銑比 1.48t/rr?・d
上記高炉およびその操業において、炉頂装入装置に第3
図に示したような集合シュート上に山形状突起を配設し
たものを用い、1つのバンカから排出した原料を山形状
突起により分割した後、再度180”の角度をもって合
流させ旋回シュート上に落下させるようにした。その時
の操業推移を第7図に示す.
さらに別の実施例を示す.
炉容積 2857ぱ
送風量 4980Nrn’/min
出銑比 2. 2 4 t /ゴ・d上記高炉および
その操業において炉頂装入装置に3個の炉頂バンカを設
け、2個のバンカから同時に同種の装入物を排出して集
合シ.−ト上で合流させた.この時どのバンカの組み合
わせでも集合シュート上での原料流の合流角度は120
゜にした.その時の操業推移を第8図に示す.いずれの
高炉においても本発明の実施によって,第6図〜第8図
に示すように、円周方向で8ケ所設置されたスキンフロ
ー温度計の円周方向の偏差が減少した.また,溶銑中S
iの変動の抑制、出銑温度の変動の抑制が可能になり、
従来変動の下側つまり最低出銑温度でも規格をクリアす
るために過剰な熱源を与えていたが、それを低減するこ
とができ、燃料比を低減することができた.
〔発明の効果1
本発明により装入物の円周方向の偏差の低減と炉内にお
ける装入物の粒度の理想的な半径方向分布、つまり、炉
壁側で細かく,炉中心側で粗い分布の確保を同時に達成
できるようにしたので、溶銑中Siおよび出銑温度の変
動の抑制が可能となり、また燃料比も低減することがで
きた.Furnace capacity 4500rn' Air flow rate 5940Nrr? /min Tapping ratio 1.48t/rr?・d In the above blast furnace and its operation, a third
Using a collection chute with chevron-shaped protrusions as shown in the figure, the raw materials discharged from one bunker are divided by the chevron-shaped protrusions, and then merged again at an angle of 180" and dropped onto the rotating chute. The operation progress at that time is shown in Fig. 7. Still another example is shown. During operation, three top bunkers were installed in the top charging device, and the same type of charge was simultaneously discharged from the two bunkers and merged on the collecting sheet.At this time, any combination of bunkers could be used. The convergence angle of the raw material flow on the collecting chute is 120
I set it to ゜. Figure 8 shows the operational trends at that time. In all blast furnaces, by implementing the present invention, the deviation in the circumferential direction of the skin flow thermometers installed at eight locations in the circumferential direction was reduced, as shown in Figs. 6 to 8. In addition, S in hot metal
It is possible to suppress the fluctuations in i and the fluctuations in the tapping temperature,
Previously, an excessive heat source was provided to meet the specifications even at the lower end of the variation, that is, the lowest tapping temperature, but this has been reduced and the fuel ratio has been reduced. [Effect of the invention 1] The present invention reduces the deviation of the charge in the circumferential direction and achieves an ideal radial distribution of the particle size of the charge in the furnace, that is, a fine distribution on the furnace wall side and a coarse distribution on the furnace center side. As a result, it was possible to suppress fluctuations in Si in the hot metal and tap temperature, and also to reduce the fuel ratio.
第1図は本発明の原理説明図、第2図はベルレス高炉の
炉頂部近傍の縦断面図、第3図は実施例の模式斜視図、
第4図は対向流のなす角度の及ぼす影響を示すグラフ,
第5図は垂直シュート3から旋回シュート4へ落下する
時の装入原料粒径の時間変化を示すグラフ、第6図〜第
8図は本発明の効果を示すグラフである.FIG. 1 is an explanatory diagram of the principle of the present invention, FIG. 2 is a longitudinal cross-sectional view of the vicinity of the top of a bellless blast furnace, and FIG. 3 is a schematic perspective view of an embodiment.
Figure 4 is a graph showing the influence of the angle of counterflow,
FIG. 5 is a graph showing the change in particle size of the charged material over time as it falls from the vertical chute 3 to the rotating chute 4, and FIGS. 6 to 8 are graphs showing the effects of the present invention.
Claims (1)
おいて対向する2方向から互いに 衝突合流させて旋回シュート上に落下させることを特徴
とするベルレス高炉の炉頂装入方法。 2 対向する2方向は2つの流れの方向を水平面に投影
した時、その交差角が90°〜 270°となる方向である請求項1記載の方法。 3 各炉頂バンカの排出原料を分割した後再合流させる
請求項1または2記載の方法。 4 3個以上の炉頂バンカを設け、2個のバンカから同
時に同種の装入物を排出して衝突合流させることを特徴
とする請求項1〜2のいずれかに記載の方法。 5 炉頂バンカの排出口と旋回シュートとの間に設けた
集合シュート内の各バンカ排出口直下に、排出原料を2
分割し次いで2分割された原料を対向する落下方向に誘
導する誘導路を形成する山形状突起を配設したことを特
徴とするベルレス高炉の炉頂装入装置。[Claims] 1. A furnace top charging method for a bellless blast furnace, characterized in that raw materials discharged from a furnace top bunker collide and merge with each other from two opposing directions above a rotating chute, and then fall onto the rotating chute. 2. The method according to claim 1, wherein the two opposing directions are directions such that when the two flow directions are projected onto a horizontal plane, their intersection angle is 90° to 270°. 3. The method according to claim 1 or 2, wherein the raw materials discharged from each furnace top bunker are divided and then recombined. 4. The method according to any one of claims 1 to 2, characterized in that three or more furnace top bunkers are provided, and the same type of charges are simultaneously discharged from two bunkers and collided and merged. 5 Two discharged raw materials are placed directly under each bunker outlet in the collection chute provided between the top bunker outlet and the rotating chute.
1. A top charging device for a bellless blast furnace, characterized in that a chevron-shaped protrusion is provided to form a guide path that divides the raw material and then guides the divided raw material in opposing falling directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5616789A JPH02236211A (en) | 1989-03-10 | 1989-03-10 | Furnace top charging method in bellless blast furnace and apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5616789A JPH02236211A (en) | 1989-03-10 | 1989-03-10 | Furnace top charging method in bellless blast furnace and apparatus thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02236211A true JPH02236211A (en) | 1990-09-19 |
Family
ID=13019540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5616789A Pending JPH02236211A (en) | 1989-03-10 | 1989-03-10 | Furnace top charging method in bellless blast furnace and apparatus thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02236211A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8674889B2 (en) | 2008-06-23 | 2014-03-18 | Nokia Corporation | Tunable antenna arrangement |
JP2015081364A (en) * | 2013-10-22 | 2015-04-27 | 株式会社Ihi | Blast furnace top charging device, and blast furnace |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6311549B2 (en) * | 1979-06-28 | 1988-03-15 | Twin Disc Inc |
-
1989
- 1989-03-10 JP JP5616789A patent/JPH02236211A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6311549B2 (en) * | 1979-06-28 | 1988-03-15 | Twin Disc Inc |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8674889B2 (en) | 2008-06-23 | 2014-03-18 | Nokia Corporation | Tunable antenna arrangement |
JP2015081364A (en) * | 2013-10-22 | 2015-04-27 | 株式会社Ihi | Blast furnace top charging device, and blast furnace |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02236211A (en) | Furnace top charging method in bellless blast furnace and apparatus thereof | |
JPH0225507A (en) | Method and apparatus for charging raw material in bell-less type blast furnace | |
JP3799987B2 (en) | Berless blast furnace top charging equipment | |
EP4276202A1 (en) | Method for charging raw material into blast furnace | |
JPH075941B2 (en) | Blast furnace charging method | |
JP4774578B2 (en) | Central coke charging method in bell-less blast furnace | |
JPH0772286B2 (en) | Topless charging method for bellless blast furnace | |
JP3031741B2 (en) | Bell-less raw material charging method for blast furnace | |
JPH0776368B2 (en) | Method of charging raw material into blast furnace | |
JP2754617B2 (en) | Raw material charging method for bell blast furnace | |
JPH1088208A (en) | Method for charging charged material into bell-less type blast furnace | |
JPH0713553B2 (en) | Raw material charging method for vertical furnace | |
JPS5920412A (en) | Inside swiveling chute for top charger of bell-less furnace | |
JP2023079158A (en) | Raw material charging device and raw material charging method for bell-less blast furnace | |
JP2723644B2 (en) | Blast furnace raw material charging method | |
JPH09235604A (en) | Bell-lens type furnace top charging device for blast furnace | |
JP2996803B2 (en) | Blast furnace operation method by bellless blast furnace | |
JPH04236705A (en) | Method for charging coke into center part of furnace top in blast furnace | |
JPS6138901Y2 (en) | ||
RU1788019C (en) | Charge distributor receiving funnel | |
JPH06271907A (en) | Method for furnace raw material in bell-less blast furnace | |
JPH02205605A (en) | Method and apparatus for charging raw material in bellless blast furnace | |
JP2021175822A (en) | Method for charging center coke | |
US2141506A (en) | Apparatus for charging furnaces | |
JP2003328018A (en) | Method for charging raw material into bellless blast furnace |