JPH02236160A - Elastic surface wave apparatus - Google Patents
Elastic surface wave apparatusInfo
- Publication number
- JPH02236160A JPH02236160A JP1057519A JP5751989A JPH02236160A JP H02236160 A JPH02236160 A JP H02236160A JP 1057519 A JP1057519 A JP 1057519A JP 5751989 A JP5751989 A JP 5751989A JP H02236160 A JPH02236160 A JP H02236160A
- Authority
- JP
- Japan
- Prior art keywords
- surface acoustic
- sample
- acoustic wave
- wave device
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 claims abstract description 20
- 229920000620 organic polymer Polymers 0.000 claims abstract description 18
- 238000010897 surface acoustic wave method Methods 0.000 claims description 61
- 230000001902 propagating effect Effects 0.000 abstract description 2
- 239000000758 substrate Substances 0.000 description 16
- 239000013078 crystal Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000030808 detection of mechanical stimulus involved in sensory perception of sound Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
この発明は、固体材料に弾性表面波を励振させて材料表
面の傷の有無を調べたり、基板表面の弾性表面波の伝搬
速度の変化から各種の物理量を測定したりするのに用い
られる弾性表面波装置に関する。This invention relates to an elastic surface that is used to excite surface acoustic waves in a solid material to examine the presence or absence of scratches on the surface of the material, or to measure various physical quantities from changes in the propagation speed of surface acoustic waves on the surface of a substrate. Regarding wave equipment.
従来、金属や単結晶などの固体材料の表面に弾性表面波
を励振させる弾性表面波装置には次のようなものがある
。
第6図に示すものは、圧電セラミック縦型振動子20か
らなるもので、被測定試料2lの表面に弾性表面波23
を励振させて試料表面の小さな傷22を検出する深傷装
置などに利用されている。
第7図に示すものは、被測定試料30の表面上に金属な
どからなるインタディジタル電極(以下、IDT電極と
記す。)31と、ZnOなどの圧電セラミック膜32を
スパッタなどにより成膜したもので、試料表面に励振さ
せた弾性表面波33の音速や減衰を測定するのに利用さ
れている。
また、圧電単結晶基板上にIDT電極を設けたり、サフ
ァイヤやガラスなどの基板上にZnOなどの圧電膜を成
膜したりして構成したものは、基板上や圧電股上に励振
された弾性表面波の伝搬速?や減衰から機械的状態や物
理的状態などの変化を検出す各種センサとして応用され
ている。
第8図は従来のこのようなガスセンサのセンサ部を示し
、圧電単結晶基板40上に相対する一対のIDT電極4
1と一つの帰還増幅器42とからなる発振器が2組構成
されている。そして、片方の発振器のIDT電極41間
には、SO■なとの特定のガスに対して敏感な被膜43
が化学コーティングされ、ガス濃度の変化に対して圧電
単結晶基板40の弾性表面波の速度が変化するようにな
っている。一方、IDT電極40の電極間ピッチをP、
圧電単結晶基板42上の弾性表面波の伝搬速度をVとす
ると、上記発振器の発振周波数fは、f″’qv/2p
となる。そこで、このガスセンサは上記ガスの濃度変化
に反応し、ミキサ44から両方の発振器の発振周波数の
差に相当する周波数の信号が出力される。すなわち、こ
の信号の周波数を測定することによりガス濃度の変化を
検出することができる.
第9図は弾性表面波装置を用いた従来の圧力センサのセ
ンサ部を示すもので、第8図のものと同様に、圧電単結
晶基板50上にIDT電極51と帰還増幅器52とから
なる発振器が2組構成され、一方のIDT電極51は圧
電単結晶基板50の周辺部に近く、他方のIDT電極5
1は圧電単結晶基板50の中心部に近く位置している。
更に、圧電単結晶基板50は周辺部に対して中心部がダ
イヤフラム状に薄くなっている。圧電単結晶基板50に
圧力が作用するとひずみが生じるが、このひずみの大き
さは周辺部と中心部とで異なる。弾性表面波の伝搬速度
Vはひずみの大きさによって変化するため、圧電単結晶
基板50のひずみは周辺部と中心部との伝搬速度の差に
よる発振周波数の差としてミキサ53から出力される。
この出力信号の周波数を測定すれば、上記ガスセンサと
同じ原理で圧力を検出することができる。その他、弾性
表面波の伝搬速度Vは基板温度や基板にかかる電界の強
さなどによっても変化するので、弾性表面波装置は温度
センサや電圧センサなどにも応用が可能である。Conventionally, there are the following types of surface acoustic wave devices that excite surface acoustic waves on the surface of solid materials such as metals and single crystals. The one shown in FIG. 6 consists of a piezoelectric ceramic vertical vibrator 20, in which surface acoustic waves 23 are generated on the surface of a sample 2l to be measured.
It is used in deep scratch devices that detect small scratches 22 on the surface of a sample by exciting the laser beam. The one shown in FIG. 7 has an interdigital electrode (hereinafter referred to as an IDT electrode) 31 made of metal or the like and a piezoelectric ceramic film 32 made of ZnO or the like formed by sputtering or the like on the surface of a sample to be measured 30. It is used to measure the sound speed and attenuation of a surface acoustic wave 33 excited on the surface of a sample. In addition, devices constructed by providing an IDT electrode on a piezoelectric single crystal substrate or forming a piezoelectric film such as ZnO on a substrate such as sapphire or glass have an elastic surface excited on the substrate or piezoelectric ridge. Wave propagation speed? It is used as a variety of sensors to detect changes in mechanical and physical conditions based on energy and attenuation. FIG. 8 shows a sensor section of such a conventional gas sensor, in which a pair of IDT electrodes 4 facing each other are placed on a piezoelectric single crystal substrate 40.
1 and one feedback amplifier 42 are configured. Between the IDT electrodes 41 of one oscillator, there is a film 43 that is sensitive to a specific gas such as SO.
is chemically coated so that the surface acoustic wave velocity of the piezoelectric single crystal substrate 40 changes in response to changes in gas concentration. On the other hand, the pitch between the IDT electrodes 40 is P,
When the propagation speed of the surface acoustic wave on the piezoelectric single crystal substrate 42 is V, the oscillation frequency f of the oscillator is f''qv/2p
becomes. Therefore, this gas sensor responds to the change in the concentration of the gas, and the mixer 44 outputs a signal with a frequency corresponding to the difference in the oscillation frequencies of both oscillators. That is, by measuring the frequency of this signal, changes in gas concentration can be detected. FIG. 9 shows a sensor section of a conventional pressure sensor using a surface acoustic wave device. Like the one in FIG. are configured, one IDT electrode 51 is close to the periphery of the piezoelectric single crystal substrate 50, and the other IDT electrode 51 is close to the periphery of the piezoelectric single crystal substrate 50.
1 is located near the center of the piezoelectric single crystal substrate 50. Furthermore, the piezoelectric single crystal substrate 50 is thinner in the center than in the periphery in a diaphragm shape. When pressure is applied to the piezoelectric single crystal substrate 50, strain occurs, and the magnitude of this strain differs between the peripheral portion and the central portion. Since the propagation speed V of the surface acoustic wave changes depending on the magnitude of strain, the strain in the piezoelectric single crystal substrate 50 is output from the mixer 53 as a difference in oscillation frequency due to a difference in propagation speed between the peripheral portion and the center portion. By measuring the frequency of this output signal, pressure can be detected using the same principle as the gas sensor described above. In addition, since the propagation velocity V of the surface acoustic wave changes depending on the substrate temperature, the strength of the electric field applied to the substrate, etc., the surface acoustic wave device can also be applied to temperature sensors, voltage sensors, etc.
ところが、従来の弾性表面波装置にはそれぞれ次のよう
な問題があった.
(1) 圧電セラミック縦型振動子を用いたものでは
セラミックが剛体であるため、被測定試料が曲面の場合
にその曲面に合わせて振動子を加工しておく必要があり
、試料の曲率ごとに振動子を準備しなければならない。
(2)IDT電極や圧電膜は真空装置内で蒸着やスバッ
タにより試料表面に直接形成されるため、大型の試料や
被測定面に平面を持たない試料に適用することは事実上
不可能である。
(3)圧電単結晶基板や、圧電膜を成膜するサファイヤ
ガラスは剛体であるため曲面上に取り付けることが困難
で、温度センサや電圧センサのように被測定試料に密着
させる必要がある場合には使用が困難である。
この発明はこのような問題を解決するもので、被測定面
やセンサ取付面が曲面の試料、あるいは大型の試料にも
容易に使用することのできる弾性表面波装置を提供する
ことを目的とするものである。However, conventional surface acoustic wave devices have the following problems. (1) In the case of a piezoelectric ceramic vertical vibrator, the ceramic is a rigid body, so if the sample to be measured has a curved surface, the vibrator must be machined to fit the curved surface. A vibrator must be prepared. (2) Because IDT electrodes and piezoelectric films are formed directly on the sample surface by vapor deposition or sputtering in a vacuum device, it is virtually impossible to apply them to large samples or samples that do not have a flat surface to be measured. . (3) Piezoelectric single-crystal substrates and sapphire glass on which piezoelectric films are formed are rigid bodies, so it is difficult to mount them on curved surfaces, so they can be used in cases such as temperature sensors and voltage sensors that need to be in close contact with the sample to be measured. is difficult to use. The present invention solves these problems, and aims to provide a surface acoustic wave device that can be easily used for samples with curved surfaces to be measured or sensor mounting surfaces, or for large samples. It is something.
上記目的を達成するために、この発明の弾性表面波装置
は、有機高分子圧電材料の薄片の一方の面にインタディ
ジタル電極を形成して構成するものとする。この弾性表
面波装置は試料表面に弾性表面波を励振させて傷の有無
を調べたり、試料表面の弾性表面波の伝搬速度や減衰を
測定するために利用できる。
上記弾性表面波装置において、インタディジタル電極を
一方向性トランスジューサで構成するとともに、有機高
分子圧電材料の薄片の音波伝搬方向側の端部を先端に向
かって薄くなるくさび形に形成することにより弾性表面
波の励振効率を高めることができる.
また、この発明の弾性表面波装置は、有機高分子圧電材
料の薄片の一方の面に相対する一対のインタディジタル
電極を形成して構成するものとする。この弾性表面波装
置は上記薄片上の弾性表面波の伝搬速度の変化から試料
の機械的状態や物理的状態の変化を検出するセンサとし
て利用できる。In order to achieve the above object, the surface acoustic wave device of the present invention is constructed by forming an interdigital electrode on one surface of a thin piece of organic polymer piezoelectric material. This surface acoustic wave device can be used to excite surface acoustic waves on the surface of a sample to check for scratches or to measure the propagation speed and attenuation of surface acoustic waves on the sample surface. In the surface acoustic wave device described above, the interdigital electrodes are composed of unidirectional transducers, and the end of the thin piece of organic polymer piezoelectric material in the sound wave propagation direction is formed into a wedge shape that becomes thinner toward the tip. The excitation efficiency of surface waves can be increased. Further, the surface acoustic wave device of the present invention is constructed by forming a pair of interdigital electrodes facing each other on one surface of a thin piece of organic polymer piezoelectric material. This surface acoustic wave device can be used as a sensor for detecting changes in the mechanical state or physical state of the sample from changes in the propagation speed of the surface acoustic waves on the thin piece.
有機高分子圧電材料は、ボリフッ化ビニリデン(PFD
F)やPFDF系共重合体に代表され、柔軟性、耐磨耗
性、耐候性、耐水性など高分子特有の優れた性質がある
.この発明は、この有機高分子圧電材料の薄膜の一方の
面に、電気信号を弾性表面波に、あるいは弾性表面波を
電気信号に変換するIDT電極を形成して弾性表面波装
置を構成するものである。この発明の弾性表面波装置は
被測定試料に接着するだけで試料表面に弾性表面波を励
振し、試料表面の傷の有無を調べたり、弾性表面波の伝
搬速度や減衰から各種の物理量を測定したりすることが
できる。有機高分子圧電材料は数MHz以上の高周波弾
性表面波を発振することも可能で、加工もし易く柔軟で
あることから、球面や曲面などのどのような形状の試料
表面にも接着することができる.
その際、IDT電極を一方向性トランスジューサで構成
するとともに、有機高分子圧電材料の薄片の音波伝搬方
向側の端部を先端に向かって薄くなるくさび形に形成し
て薄片端面での音波の反射を小さくすることにより、弾
性表面波の伝搬ロスを抑えて効率よく弾性表面波の励振
と検出とを行うことができる。
また、有機高分子圧電材料の薄片の一方の面に、電気信
号により弾性表面波を発生させる入力用のIDT電極と
、伝搬してきた弾性表面波を電気信号に変換する出力用
IDT電極を相対して設けて弾性表面波装置を構成する
ことにより、どのような場所にでも取り付け可能なセン
サを実現することができる.すなわち、この弾性表面波
装置を被測定試料に接着し、電気信号の入力からの時間
遅れを測定したり、帰還増幅器を用いて発振器を構成し
、その周波数変化を検出したりすることにより、温度セ
ンサ、圧カセンサ、電圧センサなどとして利用できる.
また、出力信号の入力信号から見た減衰の量を測定する
ことで、表面の傷の有無や量、磨耗の状態などを検出で
きる。The organic polymer piezoelectric material is polyvinylidene fluoride (PFD).
F) and PFDF copolymers have excellent properties unique to polymers, such as flexibility, abrasion resistance, weather resistance, and water resistance. This invention constitutes a surface acoustic wave device by forming an IDT electrode for converting an electric signal into a surface acoustic wave or a surface acoustic wave into an electric signal on one surface of a thin film of this organic polymer piezoelectric material. It is. The surface acoustic wave device of this invention excites surface acoustic waves on the sample surface simply by attaching it to the sample to be measured, and can be used to check for scratches on the sample surface and measure various physical quantities from the propagation speed and attenuation of the surface acoustic waves. You can do it. Organic polymer piezoelectric materials can oscillate high-frequency surface acoustic waves of several MHz or more, and are easy to process and flexible, so they can be bonded to any shape of sample surface, such as spherical or curved surfaces. .. In this case, the IDT electrode is configured with a unidirectional transducer, and the end of the thin piece of organic polymer piezoelectric material on the side of the sound wave propagation direction is formed into a wedge shape that becomes thinner toward the tip to reflect the sound wave at the end face of the thin piece. By reducing , it is possible to suppress the propagation loss of the surface acoustic waves and efficiently excite and detect the surface acoustic waves. In addition, on one side of the thin piece of organic polymer piezoelectric material, an input IDT electrode that generates a surface acoustic wave using an electric signal and an output IDT electrode that converts the propagated surface acoustic wave into an electric signal are placed facing each other. By configuring a surface acoustic wave device by installing a sensor, it is possible to realize a sensor that can be installed in any location. In other words, by attaching this surface acoustic wave device to a sample to be measured and measuring the time delay from the input of an electrical signal, or by configuring an oscillator using a feedback amplifier and detecting changes in its frequency, temperature can be measured. It can be used as a sensor, pressure sensor, voltage sensor, etc.
Furthermore, by measuring the amount of attenuation of the output signal relative to the input signal, it is possible to detect the presence or absence of scratches on the surface, the amount of scratches, the state of wear, etc.
第1図はこの発明の第1の実施例の弾性表面波装置1を
示すものである。第1図において、2は有機高分子圧電
材料の方形の薄片で、この薄片2の図の上面に一方向性
トランスジューサで構成したIDT電極3がスパッタ、
蒸着、めっき、パターンエッチングなどの手段で形成し
てある。薄片2の音波伝搬方向(図の矢印P方向)の端
部2aは、先端に向かって薄くなるくさび形に加工して
ある.
第3図はこの弾性表面波装置1を深傷装置に応用した使
用例を示している。すなわち、第3図において、中空金
属円筒など探傷を行う必要のある被測定試料4の表面に
、上記弾性表面波装置1をIDT電極3側を下にして接
着する。接着剤は被測定試料4が金属などの導体の場合
には電気的絶縁性のあるものを選ぶ必要がある。また、
接着層の厚さはその影響を少なくするために、励振され
る音波の波長に対して十分薄くする必要がある。
弾性表面波装置1は超音波探傷器5に接続し、図示送波
バルスTが試料表面の傷4aによって反射されて生じた
反射エコーSの振幅と遅れ時間を測定して深傷を行う。
IDT電極3が形成された薄片2は有機高分子圧電材料
であるから柔軟性があり、図の被測定試料4のような曲
面形状にも密着し、音波の励振、検出を効率よく行うこ
とができる。
また、第4図に示すように、一対の弾性表面波装置1,
1を被測定試料4上に対向させて配置すれば、弾性表面
波の伝搬速度や減衰を測定することが可能となる。この
場合も弾性表面波装W1は測定試料の形状を選ばず自由
に接着することができる.
次に、第2図はこの発明の第2の実施例の弾性表面波装
置6を示すものである。この弾性表面波装置6において
は、有機高分子圧電材料の方形の薄片7の図の上面に一
対のIDT電極8,8を第1の実施例と同様にスバッタ
などにより相対して形成してある。
第5図はこの弾性表面波装置6の使用例を示すもので、
曲面を持つ中空円筒などの被測定試料9の表面に、ID
T電極8を形成した面を下にして接着してある,IDT
電極8.8の間を有機高分子圧電材料の薄片7と被測定
試料9との界面に沿って伝搬する弾性表面波の速度Vは
温度や圧力などの因子の影響を受ける.更に弾性表面波
は、被測定試料9の表面の傷や欠陥などによって散乱さ
れ、吸収され、あるいは減衰する。そこで、例えば電気
信号を一方のIDT電極8に入力してから、これが他方
のIDT電極8から出力されるまでの時間をモニタすれ
ば温度変化を検出できるし、第9図に示したように、帰
還増幅器とミキサとを設けて出力信号の発振周波数の変
化をモニタすれば圧力の変化を検出でき、更にその出力
信号の振幅をモニタすれば深傷を行うことができる。FIG. 1 shows a surface acoustic wave device 1 according to a first embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a rectangular thin piece of organic polymer piezoelectric material, and an IDT electrode 3 composed of a unidirectional transducer is sputtered on the upper surface of this thin piece 2 in the figure.
It is formed by means such as vapor deposition, plating, and pattern etching. The end portion 2a of the thin piece 2 in the sound wave propagation direction (direction of arrow P in the figure) is processed into a wedge shape that becomes thinner toward the tip. FIG. 3 shows an example of application of this surface acoustic wave device 1 to a deep wound device. That is, in FIG. 3, the surface acoustic wave device 1 is adhered to the surface of a sample 4 to be measured, such as a hollow metal cylinder, on which flaw detection needs to be performed, with the IDT electrode 3 side facing down. When the sample to be measured 4 is a conductor such as metal, it is necessary to select an adhesive that has electrical insulation properties. Also,
The thickness of the adhesive layer needs to be sufficiently thin relative to the wavelength of the excited sound wave in order to reduce its influence. The surface acoustic wave device 1 is connected to an ultrasonic flaw detector 5, and detects deep flaws by measuring the amplitude and delay time of the reflected echo S generated when the illustrated transmission pulse T is reflected by the flaw 4a on the sample surface. Since the thin piece 2 on which the IDT electrode 3 is formed is made of an organic polymer piezoelectric material, it is flexible and can adhere to a curved surface like the sample to be measured 4 shown in the figure, allowing efficient excitation and detection of sound waves. can. Further, as shown in FIG. 4, a pair of surface acoustic wave devices 1,
1 on the sample to be measured 4 so as to face each other, it becomes possible to measure the propagation speed and attenuation of surface acoustic waves. In this case as well, the surface acoustic wave device W1 can be freely attached to the measurement sample regardless of its shape. Next, FIG. 2 shows a surface acoustic wave device 6 according to a second embodiment of the present invention. In this surface acoustic wave device 6, a pair of IDT electrodes 8, 8 are formed facing each other on the upper surface of a rectangular thin piece 7 of an organic polymer piezoelectric material by sputtering or the like as in the first embodiment. . FIG. 5 shows an example of how this surface acoustic wave device 6 is used.
An ID is placed on the surface of the sample 9 to be measured, such as a hollow cylinder with a curved surface.
The IDT is glued with the side on which the T electrode 8 is formed facing down.
The velocity V of the surface acoustic wave propagating between the electrodes 8.8 along the interface between the thin piece 7 of the organic polymer piezoelectric material and the sample 9 to be measured is affected by factors such as temperature and pressure. Further, the surface acoustic waves are scattered, absorbed, or attenuated by scratches or defects on the surface of the sample 9 to be measured. Therefore, for example, temperature changes can be detected by monitoring the time from when an electrical signal is input to one IDT electrode 8 until it is output from the other IDT electrode 8, and as shown in FIG. By providing a feedback amplifier and a mixer and monitoring changes in the oscillation frequency of the output signal, changes in pressure can be detected, and furthermore, by monitoring the amplitude of the output signal, deep damage can be performed.
この発明によれば、有機高分子圧電材料の薄片上にID
’T電極を形成して弾性表面波装置を構成することによ
り、弾性表面波装置を被測定試料に接着するだけで、試
料表面の形状を選ばずに深傷や各種状態の変化の検出を
行うことができる。According to this invention, an ID
'By forming a T-electrode to configure a surface acoustic wave device, deep scratches and changes in various conditions can be detected regardless of the shape of the sample surface by simply attaching the surface acoustic wave device to the sample to be measured. be able to.
第1図はこの発明の第1の実施例の構成を示す斜視図、
第2図はこの発明の第2の実施例の構成を示す斜視図、
第3図は第1図の弾性表面波装置の使用例を示す斜視図
、第4図は同じく別の使用例を示す斜視図、第5図は第
2図の弾性表面波装置の使用例を示す断面図、第6図は
従来の弾性表面波装置の使用状態を説明する側面図、第
7図は従来の別の弾性表面波装置の使用状態を説明する
斜視図、第8図は従来の弾性表面波装置の応用例を示す
斜視図、第9図は従来の弾性表面波装置の別の応用例を
示す斜視図である。
■・・・弾性表面波装置、2・・・有機高分子圧電材料
の薄片、3・・・インタディジタル電極、6・・・弾性
表面波装置、7・・・有機高分子圧電材料の薄片、8・
・・インタディジタル電極。
la
第1図
第3図
第2図
wE4図FIG. 1 is a perspective view showing the configuration of a first embodiment of the present invention;
FIG. 2 is a perspective view showing the configuration of a second embodiment of the invention;
3 is a perspective view showing an example of use of the surface acoustic wave device shown in FIG. 1, FIG. 4 is a perspective view showing another example of use, and FIG. 5 is a perspective view showing an example of use of the surface acoustic wave device shown in FIG. 6 is a side view illustrating how a conventional surface acoustic wave device is used, FIG. 7 is a perspective view illustrating how another conventional surface acoustic wave device is used, and FIG. 8 is a side view illustrating how a conventional surface acoustic wave device is used. A perspective view showing an example of application of a surface acoustic wave device. FIG. 9 is a perspective view showing another example of application of a conventional surface acoustic wave device. ■... Surface acoustic wave device, 2... Thin piece of organic polymer piezoelectric material, 3... Interdigital electrode, 6... Surface acoustic wave device, 7... Thin piece of organic polymer piezoelectric material, 8・
...Interdigital electrode. la Figure 1 Figure 3 Figure 2 wE4 Figure
Claims (1)
ジタル電極を形成して構成したことを特徴とする弾性表
面波装置。 2)有機高分子圧電材料の薄片の一方の面に相対する一
対のインタディジタル電極を形成して構成したことを特
徴とする弾性表面波装置。 3)請求項1記載の装置において、インタディジタル電
極を一方向性トランスジューサで構成するとともに、有
機高分子圧電材料の薄片の音波伝搬方向側の端部を先端
に向かって薄くなるくさび形に形成したことを特徴とす
る弾性表面波装置。[Scope of Claims] 1) A surface acoustic wave device characterized in that it is constructed by forming an interdigital electrode on one surface of a thin piece of organic polymer piezoelectric material. 2) A surface acoustic wave device characterized in that it is constructed by forming a pair of interdigital electrodes facing each other on one surface of a thin piece of organic polymer piezoelectric material. 3) In the device according to claim 1, the interdigital electrode is constituted by a unidirectional transducer, and the end of the thin piece of organic polymer piezoelectric material on the side of the sound wave propagation direction is formed into a wedge shape that becomes thinner toward the tip. A surface acoustic wave device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1057519A JPH02236160A (en) | 1989-03-09 | 1989-03-09 | Elastic surface wave apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1057519A JPH02236160A (en) | 1989-03-09 | 1989-03-09 | Elastic surface wave apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02236160A true JPH02236160A (en) | 1990-09-19 |
Family
ID=13057984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1057519A Pending JPH02236160A (en) | 1989-03-09 | 1989-03-09 | Elastic surface wave apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02236160A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7249818B1 (en) | 1999-10-12 | 2007-07-31 | Hewlett-Packard Development Company, L.P. | Print head apparatus with malfunction detector |
-
1989
- 1989-03-09 JP JP1057519A patent/JPH02236160A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7249818B1 (en) | 1999-10-12 | 2007-07-31 | Hewlett-Packard Development Company, L.P. | Print head apparatus with malfunction detector |
US7717531B2 (en) | 1999-10-12 | 2010-05-18 | Hewlett-Packard Development Company, L.P. | Print head apparatus with malfunction detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100706561B1 (en) | Method and device for operating a microacoustic sensor array | |
US6420816B2 (en) | Method for exciting lamb waves in a plate, in particular a container wall, and an apparatus for carrying out the method and for receiving the excited lamb waves | |
US9465012B2 (en) | Measurement method using a sensor; sensor system and sensor | |
US6564649B1 (en) | Ultrasonic doppler flow-meter | |
US6142948A (en) | Vibration displacement detecting system | |
JP3162376B2 (en) | Analysis equipment | |
JPH02236160A (en) | Elastic surface wave apparatus | |
US6393920B1 (en) | Sound pressure sensing device | |
JP2005064919A (en) | High-temperature ultrasonic probe | |
JP3341091B2 (en) | Ultrasonic displacement sensor | |
JP3038584B2 (en) | Ultrasonic object detection device | |
Li et al. | Ultrasonic thin‐walled tube wave devices for sensor applications | |
US6340347B1 (en) | Vibration displacement sensing device | |
KR100924417B1 (en) | Electro acoustic sensor for high pressure environment | |
JP2006038584A (en) | Chemical sensor and measuring instrument | |
JP3667426B2 (en) | Sensor | |
JPH0611492A (en) | Elastic surface wave device | |
JP3407343B2 (en) | Method and apparatus for measuring film thickness | |
JP4738621B2 (en) | Pulse detector | |
JPH07198428A (en) | Surface acoustic wave sensor | |
JP2000329613A (en) | Oscillatory displacement detector | |
Philibert et al. | Ultrasonic Surface Wave Transducers Made of Piezoelectric Polylactic Acid for Structural Health Monitoring | |
JP2004298368A (en) | Ultrasonograph | |
Scandelari et al. | A sensor for liquids characterization based on elastic surface waves generated with a P (VF2-VF3) film in a non-piezoelectric media | |
JPH1145147A (en) | Ultrasonic touch panel |