JPH02236146A - Optical type liquid sensor and manufacture thereof - Google Patents

Optical type liquid sensor and manufacture thereof

Info

Publication number
JPH02236146A
JPH02236146A JP5764089A JP5764089A JPH02236146A JP H02236146 A JPH02236146 A JP H02236146A JP 5764089 A JP5764089 A JP 5764089A JP 5764089 A JP5764089 A JP 5764089A JP H02236146 A JPH02236146 A JP H02236146A
Authority
JP
Japan
Prior art keywords
core
optical fiber
optical
path
folded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5764089A
Other languages
Japanese (ja)
Inventor
Kunimitsu Tamura
邦光 田村
Taizo Takatori
鷹取 泰三
Masuo Ishizaka
石坂 満洲雄
Teruo Yamauchi
山内 照夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Hitachi Ltd
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tatsuta Electric Wire and Cable Co Ltd filed Critical Hitachi Ltd
Priority to JP5764089A priority Critical patent/JPH02236146A/en
Publication of JPH02236146A publication Critical patent/JPH02236146A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4295Coupling light guides with opto-electronic elements coupling with semiconductor devices activated by light through the light guide, e.g. thyristors, phototransistors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2552Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends

Abstract

PURPOSE:To obtain a highly sensitive sensor for measuring a mixing rate or the like for an alcohol/gasoline mixed fuel with an easier maintenance in a small size by forming a folded part of a glass optical fiber with a large caliber from a core alone. CONSTITUTION:A linear optical fiber 2' comprising a core alone is placed on a non-heat conductive die 3 to soften the fiber 2' by locally heating a corner part 14 with a small burner 15 or the like, so that the tip 16 of the fiber 2' bends by a dead load thereof. Then, an excess part of the fiber 2' is cut off to form a folded part 2c, which is fused by heat to fibers 2a and 2b comprising a core and a clad. Then, a light emitting element 3 and a photo detector 4 are inserted securely into a body 5 to form a sensor. When the folded part 2c of a sensor thus obtained is exposed into a liquid to be measured, a transmission loss increases according to a refractive index of the liquid. Thus, a mixing ratio of the liquid can be measured with a high sensitivity thereby enabling the obtaining of a small and easy to maintain sensor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば自動車燃料としてのアルコール/ガソ
リン混合燃料の混合比や屈折率等の測定に用いられる、
光学式液体センサ及びその製造方法に関する. 〔従来の技術〕 この種光学式液体センサの内、特に、アルコール/ガソ
リン混合比を測定するのに通した光学式液体センサに関
する従来の技術を説明する.近い将来に、自動車燃料と
して排気公害対策や石油資源対策の必要性からアルコー
ル燃料が普及し、アルコール/ガソリン混合燃料の形で
使用されるものと予想されている.しかし、その混合比
は一定ではなく、供給側又は使用側の事情によって変動
する.この混合比が変わると、それに応じて空燃比、点
火時期、燃料供給速度等のエンジンのパラメータが調整
されないと、始動性、燃焼特性、燃料経済性、運転性、
機関出力、排気性ガス組成が損なわれる.そして、実車
テストを重ねる中で、この混合比を正確に測定でき構造
も簡単な液体センサが望まれるようになっている.この
ような液体センサとして、特開昭57−51920号公
報には第11図に示す光学式液体センサが提案されてい
る.この光学式液体センサaは石英のガラスロッドbと
その両端に配置された発光素子Cと受光素子dとから成
っている.そして、このガラスロッドbは、燃料配管e
の途中に設けられたヘッダfにシールgを介して、接液
状態で挿入されている.この液体センサaの測定原理は
、第9図に示すようにアルコール/ガソリン混合比に応
じて燃料の屈折率が変化し、この屈折率が変化するとガ
ラスロッドbと混合燃料h間の境界面から混合燃料中へ
屈折して透過する光量が変化することを応用したもので
ある.すなわち、一定出力の発光素子Cに対して、受光
素子dの出力を測定し、キヤリプレーシタンデータと付
き合わせて混合比を知るものである。この光学式液体セ
ンサは応答性に優れており注目されつつある.〔発明が
解決しようとする課題〕 従来の技術で説明した光学式液体センサにおいては、応
答性に優れるものの、ガラスロッドbが直線的であるた
め、ガラスロッドbに入射される光の各モードのほとん
どが最初に液体との境界面に到達した点での入射角によ
って、反射してガラスロンドb中を伝播するものと、屈
折して液体中へ透過するものとに分けられるので、ガラ
スロッドbからの出射光量を液体屈折率との関係を直線
的なものとし、測定感度を良くするためには、かなり大
口径で長いガラスロッドbを用いる必要があり、液体セ
ンサが大型化する(口径約5一一長さ好ましくは5c一
以上)という問題点があった.また、ガラスロッドbを
液体のへッド5または管路を貫通するように取付ける必
要があるため、ガラスロッドbが破損したり、汚れたり
したときの取り換えや保全が容易でないという問題点も
あった. 本発明は、従来の技術の有するこのような問題点に鑑み
てなされたものであり、小型で保守、保全が容易であり
、測定感度の良い光学式液体センサ及びその製造方法を
提供しようとするものである. 〔課題を解決するための手段〕 上記目的を達成するために、本発明の光学式液体センサ
は、大口径のガラス系光ファイバを逆方向に折り返し、
この光ファイバの往路の始端に発光素子を、復路の終端
に受光素子をそれぞれ設け、光ファイバの折り返し部は
検出部として露出させ、往路及び復路の大半は本体内に
密封して収納した光学式液体センサであって、光ファイ
バの往路及び復路はコアとクラッドから成り、折り返し
部はコアのみから成る部分を有するもの又は折り返し部
はコアが露出している部分を有するものである.そして
、折り返し部はコアのみから成る部分を有する光学式液
体センサの製造方法としては、コアのみから成る光ファ
イバで折り返し部を形成し、この折り返し部の両端にコ
アとクラッドから成る往路と復路を融着し、ついで往路
と復路を本体内に密封して収納する製造方法がある. また、折り返し部はコアが露出している部分を有する光
学式液体センサの製造方法としては、コアとクラッドか
ら成る光ファイバを折り曲げ加工して往路、復路及び折
り返し部を形成し、折り返し部の少なくとも一つの折り
返し点をガラス腐食液に接触させて部分的に腐食させて
コアを露出させ、ついで往路と復路を本体内に密封して
収納する製造方法がある. 〔作用〕 光ファイバの折り返し部は伝送ロスが多くなり、この伝
送ロスの程度が液体の屈折率の変化に応じて変化するこ
とで測定が可能となるが、コアのみから成る部分又はコ
アが露出している部分があるとこの伝送ロスがより多く
なり測定感度が上がる.そして、大口径の光ファイバと
したのは、伝送ロスを極小にする通信ケーブルとは異な
り、ある程度の伝送ロスがないと測定できなくなるとい
う意味で、小口径の通信ケーブルと区別するためである
. そして、コアのみから成る光ファイバで折り返し部を形
成し、この折り返し部の両端にコアとクラッドから成る
往路と復路を融着する製造方法によると、折り返し部の
全体がコアのみである光学式光センサとなる. また、コアとクラッドから成る光ファイバを折り曲げ加
工して往路、復路及び折り返し部を形成し、折り返し部
の少なくとも一つの折り返し点をガラス腐食液に接触さ
せて部分的に腐食させる製造方法によると、折り返し部
のコアが部分的に露出している光学式光センサとなる. 〔実施例〕 以下、図面に基づいて本発明の実施例を説明する. 第1図は本発明の光学式液体センサの断面図、第2図は
第1図の光学式液体センサの底面図、第3図及び第4図
は折り返し部の拡大図である.第1図において、光学式
液体センサlは、大口径のガラス系光ファイバ2とこの
光ファイバ2の両端の発光素子3と受光素子4とこれら
を収納する零体5とからなっている. 光ファイバ2は、略平行(多少模状に傾斜していてもよ
い)の往路2aと復路2b,折り返し部2Cで形成され
ている.この折り返し部2Cが接液し、検出部を構成し
ている.この折り返し部2Cでは伝送ロスが多くその伝
送ロスの量は液体の屈折率で左右され、測定感度を決定
するので重要である.なお、折り返し部2Cの形状は図
示のように底部が直線のU字型に限らず、半円形のU字
型でもよい. 第3図において、往路2aと復路2bは屈折率が高いコ
ア6と屈折率が低いクラッド7から成るもので構成され
ているが、折り返し部2C全体はコア6のみから成るも
ので構成されている.また、第4図において、゛往路2
aと復路2b及び折り返し部2cの大部分はコア6とク
ラッド7から成るもので構成されているが、折り返し部
2Cの折り返し点2dはコア6が部分的に露出している
もので構成されている.なお、第4図の例では左右の折
り返し点2dでコア6が露出しているが、左右何れかの
折り返し点2dでコア6が露出しているものでもよい.
また、折り返し部20部分は、第3図と第4図の中間的
なものでもよい.また、この光ファイバ2の材料は石英
ガラスや多成分ガラスのガラス系である.その材質特に
屈折率は測定される液体の屈折率の変化範囲に基づいて
選定される.そして、この光ファイバ2の口径は、通常
の通信ケーブル用の如<0.1m一台のものではなく、
より大口径のものが選定される.ある程度の伝送ロスが
必要なこと及び形状の安定性や加工性から好ましくは0
.5m一以上のものが使用される. 発光素子3は往路2aの始端に、受光素子4は復路2b
の終端に配置され、発光素子3よりの一定量の発光が、
光ファイバ2を通ってどれだけ伝送されたかを受光素子
4で測定し出力とするものである. 零体5は耐蝕金属製のホルダ8とアクリル製のアダプタ
9とからなっている.ホルダ8は全体として6角形状を
しておりその下方に取付ネジ8aが加工されている(第
1図及び第2図参照).この取付ネジ8aで光学式液体
センサl全体を、検出部が接液するようにして配管等に
取付ける.また、このホルダ8には2本の孔8bが加工
されており、この孔8bに光ファイバ2を挿入して接着
剤10等で密封する.アダプタ9は、発光素子3と受光
素子4を収納し、ホルダ8内に挿入されてエポキシ樹脂
等でホルダ8に固着されている.つぎに、上述した光学
式液体センサlの作動を第5図に基づいて説明する.な
お、比較のため、折り返し部2C全体がコア6とクラッ
ド7から成る第5(a)のものと、折り返し部2c全体
がコア6から成る第5(b)のものとについて説明する
. 第5図(a)において、往路2aからの光はコア6とク
ラッド7の境界面で反射しつつ折り返し部2Cに至る.
折り返し部2cに至った光は入射角が小さ《なり、コア
6とクラッド7の屈折率の比できまる臨界角ΦCi以下
となる光は屈折透過光となってクラッド7に至る.さら
に、液体12まで至るためにはクラッド7と液体l2の
屈折率の比できまる臨界角ΦC,以下となる必要がある
.そして、液体l2の屈折率がクラッド7の屈折率に近
づくと臨界角Φc8は大きくなって屈折透過光が多くな
り、伝送ロスが大となうて受光素子4の出力は小さ《な
る.液体l2の屈折率がクラッド7の屈折率から離れる
と臨界角ΦCよは小さ《なって屈折透過光が少なくなり
、伝送ロスが小となって受光素子4の出力は大きくなる
.したがって、液体l2の屈折率の変化に応じて受光素
子4の出力が変化し、混合比等を測定することができる
.しかし、コア6とクラッド7間の屈折透過光は、折り
返し点2dの曲率分だけ入射角が大きくなって、クラッ
ド7から液体l2への屈折透過光となる確率は低くなる
. 第5図(b)において、コア6のみから成る折り返し部
2cによるものは、コア6と液体l2の屈折率の比でき
まる臨界角ΦC,以下となったものはすべて屈折透過光
となって、測定感度は向上する.そして、屈折透過光と
なる確率は液体l2の屈折率の変化に応じた臨界角ΦC
,の変化に左右されて測定感度がよ←なった状態で受光
素子4の出力が変化し、混合比等を測定することができ
る.また、その程度は折り返し部2cにおけるコア6の
みから成る部分の比率によっても左右される. 第6図(a)(b)(c)(d)は、第3図に示される
折り返し部全体がコアのみから成る光学式液体センサの
製造方法を示す図である.第6図(a)において、コア
のみから成る直線状の光ファイバ2′を非熱伝導性の型
13の上に乗せて、コーナ部14を小型バーナ15等で
局部加熱して光ファイバ2′を軟化させる.光ファイバ
2′の先端部l6は自重で略90度折れ曲がる.つぎに
、第6図(b)に示すように、光ファイバ2′の根元部
l8を型l3の側面に沿わせるよう反時計方向90度回
転させる.そして、新たなコーナ部l9を小型バーナ1
5等で局部加熱して、先端部l6を自重で略90度折り
曲げる.そして、第6図(C)において、余分な部分の
光ファイバ2′を切断すると底部が直線のU字型の折り
返し部2Cとなる.そして、コアとクラッドから成る往
路2aと2bを折り返し部2cの両端に当接させて、バ
ーナ15等で折り返し部2cに熱融着させて光ファイバ
2とする.つぎに、第6図(d)において、この光ファ
イバ2の表面にエボキシ樹脂を薄く塗って本体5の孔8
aに挿入する.また、発光素子3と受光素子4も零体5
内に挿入してエポキシ樹脂で固定する. 第6図(e)(f)は、第3図に示される折り返し部全
体がコアのみから成る光学式液体センサの他の製造方法
を示す図である. まず、第6図(e)において、直線状の光ファイバ2′
の一端を、例えばホルダ2oの固定アーム20aに対し
回転可能な把握用アーム20bで水平に保持し、コーナ
部14を小型バーナ15等で加熱して光ファイバ2を軟
化させる.光ファイバ2′の先端部l6は自重で略9o
度折れ曲がる.つぎに、第5図(r)に示すように、ホ
ルダ20の把握用アーム20bを反時計方向に90度回
動して、光ファイバ2′の根本部18を垂直に保持し、
新たなコーナ部l9を小型バーナ15等で局部加熱して
、先端部l6を自重で90度折り曲げる.以下、同様に
して余分な部分の光ファイバ2′を切断すると底部が直
線のU字型光ファイバ2′を得る. 以上の製造方法によれば、往路2a,I路2bと折り返
し部2Cを別に作るので、同一厚みのものを製造でき、
製品毎の測定惑度のばらつきが少なく安定した品質が確
保できる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is used for measuring the mixing ratio, refractive index, etc. of alcohol/gasoline mixed fuel as an automobile fuel, for example.
This article relates to an optical liquid sensor and its manufacturing method. [Prior Art] Among this type of optical liquid sensor, the conventional technology related to an optical liquid sensor used for measuring the alcohol/gasoline mixture ratio will be explained. In the near future, it is expected that alcohol fuel will become popular as a vehicle fuel due to the need to prevent exhaust pollution and oil resources, and will be used in the form of an alcohol/gasoline mixed fuel. However, the mixing ratio is not constant and varies depending on the circumstances on the supply side or the use side. When this mixture ratio changes, engine parameters such as air-fuel ratio, ignition timing, and fuel supply speed must be adjusted accordingly to improve startability, combustion characteristics, fuel economy, and driveability.
Engine output and exhaust gas composition are impaired. As a result of repeated tests on actual vehicles, there has been a desire for a liquid sensor that can accurately measure this mixture ratio and has a simple structure. As such a liquid sensor, an optical liquid sensor shown in FIG. 11 is proposed in Japanese Patent Application Laid-Open No. 57-51920. This optical liquid sensor a consists of a quartz glass rod b, a light emitting element C and a light receiving element d arranged at both ends of the rod b. This glass rod b is connected to the fuel pipe e.
It is inserted into a header f provided midway through a seal g so that it is in contact with liquid. The measurement principle of this liquid sensor a is that, as shown in Figure 9, the refractive index of the fuel changes depending on the alcohol/gasoline mixture ratio, and when this refractive index changes, the interface between the glass rod b and the mixed fuel h This is an application of the fact that the amount of light that is refracted and transmitted into the mixed fuel changes. That is, the output of the light receiving element d is measured with respect to the light emitting element C having a constant output, and the mixture ratio is determined by comparing the output with the differential precipitance data. This optical liquid sensor has excellent responsiveness and is attracting attention. [Problems to be Solved by the Invention] Although the optical liquid sensor described in the prior art has excellent responsiveness, since the glass rod b is linear, each mode of light incident on the glass rod b is Depending on the angle of incidence at the point where most of it first reaches the interface with the liquid, it can be divided into those that are reflected and propagate through the glass rod b and those that are refracted and transmitted into the liquid. In order to make the relationship between the amount of light emitted from the liquid refractive index linear and to improve the measurement sensitivity, it is necessary to use a long glass rod b with a fairly large diameter, which increases the size of the liquid sensor (approx. There was a problem with the length (preferably 5c1 or more). Furthermore, since the glass rod b must be installed so as to pass through the liquid head 5 or the conduit, there is also the problem that it is not easy to replace or maintain the glass rod b if it becomes damaged or dirty. Ta. The present invention has been made in view of these problems with the conventional technology, and aims to provide an optical liquid sensor that is small, easy to maintain, and has good measurement sensitivity, and a method for manufacturing the same. It is something. [Means for Solving the Problems] In order to achieve the above object, the optical liquid sensor of the present invention folds a large diameter glass optical fiber in the opposite direction,
A light emitting element is provided at the starting end of the outward path of this optical fiber, a light receiving element is provided at the end of the incoming path, and the folded part of the optical fiber is exposed as a detection part, and most of the outgoing path and return path is an optical system that is sealed and stored inside the main body. The liquid sensor is a liquid sensor in which the outgoing and returning paths of an optical fiber are made up of a core and a cladding, and the folded portion has a portion consisting only of the core, or the folded portion has a portion where the core is exposed. A method for manufacturing an optical liquid sensor in which the folded part consists of only a core is to form a folded part with an optical fiber made of only a core, and to have an outgoing path and a return path made of the core and cladding at both ends of the folded part. There is a manufacturing method that involves fusing and then sealing the outbound and return routes inside the main body. In addition, as a method for manufacturing an optical liquid sensor in which the folded portion has a portion where the core is exposed, an optical fiber consisting of a core and a cladding is bent to form an outgoing path, a return path, and a folded portion, and at least one of the folded portions is There is a manufacturing method in which one turning point is brought into contact with a glass corrosive solution to partially corrode the glass to expose the core, and then the forward and return paths are sealed and housed within the main body. [Function] The folded part of the optical fiber has a lot of transmission loss, and measurement is possible because the degree of this transmission loss changes according to changes in the refractive index of the liquid. However, if the part consisting only of the core or the core is exposed If there is a part that is exposed, this transmission loss will increase and the measurement sensitivity will increase. The reason for using large-diameter optical fibers is to distinguish them from small-diameter communication cables in the sense that, unlike communication cables that minimize transmission loss, measurements cannot be made without a certain amount of transmission loss. According to a manufacturing method in which a folded part is formed with an optical fiber consisting only of the core, and an outgoing path and a return path made of the core and cladding are fused to both ends of this folded part, optical fibers in which the entire folded part consists only of the core It becomes a sensor. Further, according to a manufacturing method in which an optical fiber consisting of a core and a cladding is bent to form an outward path, a return path, and a folded portion, and at least one folding point of the folded portion is brought into contact with a glass corrosive liquid to partially corrode, It is an optical optical sensor with the core of the folded part partially exposed. [Example] Hereinafter, an example of the present invention will be described based on the drawings. FIG. 1 is a sectional view of the optical liquid sensor of the present invention, FIG. 2 is a bottom view of the optical liquid sensor of FIG. 1, and FIGS. 3 and 4 are enlarged views of the folded portion. In FIG. 1, an optical liquid sensor 1 consists of a large-diameter glass optical fiber 2, a light emitting element 3 and a light receiving element 4 at both ends of the optical fiber 2, and a zero body 5 housing them. The optical fiber 2 is formed of an outgoing path 2a, a returning path 2b, and a folded portion 2C, which are approximately parallel (may be slightly inclined in a pattern). This folded part 2C comes into contact with the liquid and constitutes a detection part. There is a lot of transmission loss in this folded portion 2C, and the amount of transmission loss is influenced by the refractive index of the liquid, which is important because it determines the measurement sensitivity. Note that the shape of the folded portion 2C is not limited to the U-shape with a straight bottom as shown in the figure, but may be a semicircular U-shape. In FIG. 3, the outgoing path 2a and the incoming path 2b are composed of a core 6 with a high refractive index and a cladding 7 with a low refractive index, but the entire folded part 2C is composed of only the core 6. .. In addition, in Fig. 4, "outward route 2"
Most of the return path 2b and the folded portion 2c are composed of the core 6 and the cladding 7, but the folded point 2d of the folded portion 2C is composed of the core 6 partially exposed. There is. In the example of FIG. 4, the core 6 is exposed at the left and right folding points 2d, but the core 6 may be exposed at either the left or right folding point 2d.
Further, the folded portion 20 may be intermediate between those shown in FIGS. 3 and 4. Further, the material of this optical fiber 2 is glass-based such as quartz glass or multi-component glass. The material, especially the refractive index, is selected based on the range of change in the refractive index of the liquid being measured. The diameter of this optical fiber 2 is not one < 0.1 m like that for ordinary communication cables, but
A larger diameter one is selected. Preferably 0 because a certain amount of transmission loss is required, shape stability and workability.
.. Those with a length of 5 m or more are used. The light emitting element 3 is at the starting end of the outgoing path 2a, and the light receiving element 4 is at the starting end of the outgoing path 2b.
A certain amount of light emitted from the light emitting element 3 is placed at the end of the
The amount of light transmitted through the optical fiber 2 is measured by the light receiving element 4 and output. The zero body 5 consists of a holder 8 made of corrosion-resistant metal and an adapter 9 made of acrylic. The holder 8 has a hexagonal shape as a whole, and a mounting screw 8a is machined at the bottom thereof (see Figs. 1 and 2). Using this mounting screw 8a, attach the entire optical liquid sensor l to a pipe or the like so that the detection part is in contact with the liquid. Further, two holes 8b are machined in this holder 8, and the optical fiber 2 is inserted into these holes 8b and sealed with an adhesive 10 or the like. The adapter 9 accommodates the light emitting element 3 and the light receiving element 4, is inserted into the holder 8, and is fixed to the holder 8 with epoxy resin or the like. Next, the operation of the above-mentioned optical liquid sensor 1 will be explained based on FIG. 5. For comparison, a fifth (a) case in which the entire folded portion 2C consists of a core 6 and a cladding 7 and a fifth (b) case in which the entire folded portion 2c consists of a core 6 will be explained. In FIG. 5(a), the light from the outgoing path 2a is reflected at the interface between the core 6 and the cladding 7 and reaches the folded portion 2C.
The light that reaches the folded part 2c has a small incident angle, and the light that is less than the critical angle ΦCi determined by the ratio of the refractive index of the core 6 and the cladding 7 reaches the cladding 7 as refracted and transmitted light. Furthermore, in order to reach the liquid 12, it is necessary that the angle be less than or equal to the critical angle ΦC, which is determined by the ratio of the refractive index of the cladding 7 and the liquid l2. Then, when the refractive index of the liquid l2 approaches the refractive index of the cladding 7, the critical angle Φc8 becomes large, the amount of refracted and transmitted light increases, the transmission loss becomes large, and the output of the light receiving element 4 becomes small. When the refractive index of the liquid 12 moves away from the refractive index of the cladding 7, the critical angle ΦC becomes smaller, the amount of refracted and transmitted light decreases, the transmission loss decreases, and the output of the light receiving element 4 increases. Therefore, the output of the light-receiving element 4 changes according to the change in the refractive index of the liquid 12, making it possible to measure the mixing ratio and the like. However, the incident angle of the refracted and transmitted light between the core 6 and the cladding 7 increases by the curvature of the folding point 2d, and the probability that the refracted and transmitted light will be transmitted from the cladding 7 to the liquid l2 becomes low. In FIG. 5(b), for the folded portion 2c consisting of only the core 6, all light below the critical angle ΦC determined by the ratio of the refractive index of the core 6 and the liquid l2 becomes refracted and transmitted light. Measurement sensitivity improves. Then, the probability of the light being refracted and transmitted is determined by the critical angle ΦC according to the change in the refractive index of the liquid l2.
The output of the light-receiving element 4 changes when the measurement sensitivity increases depending on the change in , and it is possible to measure the mixing ratio, etc. Further, the degree of this change also depends on the ratio of the portion consisting only of the core 6 in the folded portion 2c. 6(a), 6(b), 6(c), and 6(d) are diagrams showing a method of manufacturing the optical liquid sensor shown in FIG. 3, in which the entire folded portion consists only of a core. In FIG. 6(a), a straight optical fiber 2' consisting only of a core is placed on a non-thermal conductive mold 13, and the corner portion 14 is locally heated with a small burner 15 or the like to form the optical fiber 2'. Soften. The tip l6 of the optical fiber 2' bends approximately 90 degrees under its own weight. Next, as shown in FIG. 6(b), the root portion l8 of the optical fiber 2' is rotated 90 degrees counterclockwise so that it follows the side surface of the mold l3. Then, replace the new corner l9 with the small burner 1.
5, etc., and bend the tip l6 approximately 90 degrees under its own weight. Then, in FIG. 6(C), when the excess portion of the optical fiber 2' is cut, a U-shaped folded portion 2C with a straight bottom is formed. Then, the outward paths 2a and 2b consisting of the core and the cladding are brought into contact with both ends of the folded part 2c, and are thermally fused to the folded part 2c using a burner 15 or the like to form the optical fiber 2. Next, in FIG. 6(d), the surface of this optical fiber 2 is coated with a thin layer of epoxy resin, and the hole 8 of the main body 5 is
Insert into a. Furthermore, the light emitting element 3 and the light receiving element 4 are also zero bodies 5.
Insert it inside and fix it with epoxy resin. FIGS. 6(e) and 6(f) are diagrams showing another method of manufacturing the optical liquid sensor shown in FIG. 3, in which the entire folded portion consists only of a core. First, in FIG. 6(e), a straight optical fiber 2'
One end of the optical fiber 2 is held horizontally by a grasping arm 20b that is rotatable relative to the fixed arm 20a of the holder 2o, for example, and the corner portion 14 is heated with a small burner 15 or the like to soften the optical fiber 2. The tip l6 of the optical fiber 2' is approximately 9o due to its own weight.
It bends frequently. Next, as shown in FIG. 5(r), the gripping arm 20b of the holder 20 is rotated 90 degrees counterclockwise to vertically hold the root portion 18 of the optical fiber 2'.
The new corner l9 is locally heated with a small burner 15, etc., and the tip l6 is bent 90 degrees by its own weight. Thereafter, the excess portion of the optical fiber 2' is cut in the same manner to obtain a U-shaped optical fiber 2' with a straight bottom. According to the above manufacturing method, since the outward path 2a, the I path 2b and the folded portion 2C are made separately, products of the same thickness can be manufactured.
Stable quality can be ensured with little variation in measurement precision for each product.

第7図(a)(b)(c)は、第4図に示される折り返
し点のコアが部分的に露出している光学式液体センサ1
の製造方法を示す図である.第7図(a)において、ま
ず、コアとクラツドから成る直線状の光ファイバから底
面が直線のU字型の折り返し部2C’2有する光ファイ
バ2を製作する.そして、折り返し点2d以外に塗装等
のマスキングを施す(一点鎖線で図示の部分)。ついで
、第7図(b)において、この光ファイバ2の折り返し
部2Cをフッ化水素酸等のガラス腐食剤に浸す.すると
、第7図(c)に示すように、折り返し点2dのみが腐
食され、コアが露出する.以上の製造方法によれば、比
較的容易に部分的にコアが露出する折り返し部2Cを形
成するとができる. つぎに、本発明の光学式液体センサ1をアルコール/ガ
ソリン混合比の測定に適用した場合を説明する. 第8図は検出装置2lの断面図である.検出装it21
には、燃料通路22が設けられ、この燃料通路22内の
燃料を測定する光学式液体センサ1と温度検出器23と
が並列的に内蔵されている.また、プリント基124も
内蔵されてコンパクトにまとめられている.例えば、光
ファイバとして口径0.75m−のものを使用し、U字
型の折り返し部の巾を5−一とすると、光学式液体セン
サ1は長さ25膳一程度まで小型化できる.したがって
、検出装220全体としても40mm角程度以下の小型
のものとすることができる. つぎに、アルコール/ガソリン混合比の測定の場合の光
ファイバ2の測定惑度について、第9図と第lO図に基
づいて説明する. 第9図はアルコール濃度の変化に応じた屈折率の変化を
示すグラフ図、第10図はコアのみから成る折り返し部
の光学式光七ンサの出力の一例を示すグラフ図である.
第9図において、液温によっても変動するが、アルコー
ル濃度が増すにつれて屈折率が減少している.したがっ
て、全アルコール濃度範囲の屈折率の最高値より高いコ
ア1.62(クラッドの屈折率は1.55)の多成分ガ
ラス光ファイバを用いると、全アルコール濃度範囲の測
定が可能となる.しかし、第10図において、折り返し
部2bがコアとクラツドから成るものを用いた場合は、
実線で示すように勾配が緩やかとなって惑度は鈍くなる
.そこで、第3図又は第4図のように折り返し部2d全
体がコアのみからなるものとすると、第lθ図において
点線で示すように勾配が急となって惑度は鋭くなる.な
お、ガラスの材料特にコアは、測定したいアルコールの
種類、濃度範囲や測定惑度に応じて選定すればよい. 〔発明の効果〕 本発明は、以上説明したように構成されているので、次
に記載されるような効果を奏する.大口径のガラス系光
ファイバを逆方向に折り返し、この折り返し部を検出部
として接液させる構造としてきるので、光学式光センサ
全体を小型化することができ、保守・点検も容易である
.さらに、光ファイバの往路及び復路はコアとクラッド
から成り、折り返し部はコアのみから成る部分を有する
もの又は折り返し部はコアが露出している部分を有する
ものとしているので、測定感度を向上させることができ
る. そして、コアのみから成る光ファイバで折り返し部を形
成し、この折り返し部の両端にコアとクラッドから成る
往路と復路を融着し、ついで往路と復路を本体内に密封
して収納する製造方法とすると、均一な厚みのコアが露
出するものを簡単に製作することができる. また、コアとクラッドから成る光ファイバを折り曲げ加
工して往路、復路及び折り返し部を形成し、折り返し部
の少なくとも一つの折り返し点をガラス腐食液に接触さ
せて部分的に腐食させてコアを露出させ、ついで往路と
復路を本体内に密封して収納する製造方法とすると、部
分的にコアが露出するものを簡単に製作することができ
る.
7(a), (b), and (c) show an optical liquid sensor 1 in which the core at the folding point shown in FIG. 4 is partially exposed.
FIG. In FIG. 7(a), first, an optical fiber 2 having a U-shaped folded portion 2C'2 with a straight bottom surface is manufactured from a straight optical fiber consisting of a core and a cladding. Then, masking such as painting is applied to areas other than the folding point 2d (the area indicated by the dashed line). Next, in FIG. 7(b), the folded portion 2C of the optical fiber 2 is immersed in a glass corrosive agent such as hydrofluoric acid. Then, as shown in FIG. 7(c), only the folding point 2d is corroded and the core is exposed. According to the above manufacturing method, the folded portion 2C in which the core is partially exposed can be formed relatively easily. Next, a case will be described in which the optical liquid sensor 1 of the present invention is applied to measuring the alcohol/gasoline mixture ratio. FIG. 8 is a sectional view of the detection device 2l. Detector it21
is provided with a fuel passage 22, and an optical liquid sensor 1 for measuring the fuel in this fuel passage 22 and a temperature detector 23 are built in parallel. Furthermore, the print base 124 is also built-in, making it compact. For example, if an optical fiber with a diameter of 0.75 m is used and the width of the U-shaped folded portion is 5-1, the optical liquid sensor 1 can be downsized to a length of about 25 m. Therefore, the detection device 220 as a whole can be made small, about 40 mm square or less. Next, the measurement accuracy of the optical fiber 2 in the case of measuring the alcohol/gasoline mixture ratio will be explained based on FIG. 9 and FIG. Figure 9 is a graph showing changes in refractive index in response to changes in alcohol concentration, and Figure 10 is a graph showing an example of the output of an optical optical analyzer with a folded portion consisting only of a core.
In Figure 9, the refractive index decreases as the alcohol concentration increases, although it varies depending on the liquid temperature. Therefore, using a multi-component glass optical fiber with a core of 1.62 (refractive index of the cladding being 1.55), which is higher than the highest value of the refractive index of the entire alcohol concentration range, allows measurement of the entire alcohol concentration range. However, in FIG. 10, if the folded portion 2b is composed of a core and a cladding,
As shown by the solid line, the gradient becomes gentler and the degree of perturbation becomes duller. Therefore, if the entire folded portion 2d is made up of only the core as shown in FIG. 3 or 4, the gradient becomes steeper and the perturbation becomes sharper, as shown by the dotted line in FIG. 1θ. The glass material, especially the core, can be selected depending on the type of alcohol to be measured, the concentration range, and the measurement sensitivity. [Effects of the Invention] Since the present invention is configured as described above, it produces the following effects. A large-diameter glass optical fiber is folded back in the opposite direction, and the folded section is used as a detection section in contact with the liquid, making it possible to downsize the entire optical optical sensor and simplify maintenance and inspection. Furthermore, the forward and return paths of the optical fiber are made up of a core and a cladding, and the folded portion has a portion consisting only of the core, or the folded portion has a portion where the core is exposed, so that measurement sensitivity can be improved. Can be done. A manufacturing method includes forming a folded part with an optical fiber consisting only of a core, fusing an outgoing path and a returning path consisting of a core and a cladding to both ends of this folded part, and then sealing and storing the outgoing path and the returning path in the main body. This allows you to easily produce a core with an exposed core of uniform thickness. Further, an optical fiber consisting of a core and a cladding is bent to form an outward path, a return path, and a folded portion, and at least one folding point of the folded portion is brought into contact with a glass corrosive liquid to partially corrode the core to expose the core. Then, by using a manufacturing method in which the outward and return paths are sealed and stored inside the main body, it is possible to easily manufacture a device in which the core is partially exposed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学式液体センサの断面図、第2図は
第1図の光学式液体センサの底面図、第3図及び第4図
は折り返し部の拡大図、第5図は光学式液体センサの作
動図、第6図は第3図の光学式液体センサの製造方法を
示す図、第7図は第4図の光学式液体センサの製造方法
を示す図、第8図は本発明の光学式液体センサをアルコ
ール/ガソリン混合比の測定に適用した場合の検出装置
の断面図、第9図はアルコール濃度の変化に応じた屈折
率の変化を示すグラフ図、第lO図はコアのみから成る
折り返し部の光学式光センサの出力の一例を示すグラフ
図、第11図は従来の光学式液体センサの断面図である
.なお、図面中の主な符号の説明は下記の通りである. 2・・・光ファイバ 2a一往路 2b−・・復路 2c一・折り返し部(検出部) 3・・・発光素子 図 4・・・受光素子 6・・・コア 7・・・クラッド. 特許出願人 株式会社日立製作所 タック電線株式会社 代理人 弁理士  梶  良 之 第7図 (a) (b) 纂8 (C) 第3[21 (a) 第4 図 図 (b) 第9 図 第10図
FIG. 1 is a sectional view of the optical liquid sensor of the present invention, FIG. 2 is a bottom view of the optical liquid sensor of FIG. 1, FIGS. 3 and 4 are enlarged views of the folded part, and FIG. 5 is an optical Fig. 6 is a diagram showing the manufacturing method of the optical liquid sensor shown in Fig. 3, Fig. 7 is a diagram showing the manufacturing method of the optical liquid sensor shown in Fig. 4, and Fig. 8 is a diagram showing the manufacturing method of the optical liquid sensor shown in Fig. 4. A cross-sectional view of a detection device when the optical liquid sensor of the invention is applied to the measurement of alcohol/gasoline mixture ratio, FIG. 9 is a graph showing changes in refractive index according to changes in alcohol concentration, and FIG. FIG. 11 is a graph showing an example of the output of an optical optical sensor with a folded portion made of only a single piece, and FIG. 11 is a cross-sectional view of a conventional optical liquid sensor. The explanations of the main symbols in the drawings are as follows. 2... Optical fiber 2a - Outward path 2b - Return path 2c - Turning section (detection section) 3... Light emitting element Figure 4... Light receiving element 6... Core 7... Clad. Patent Applicant: Hitachi, Ltd. TAC Wire Co., Ltd. Agent: Yoshiyuki Kaji, Patent Attorney Figure 7 (a) (b) Column 8 (C) 3rd [21 (a) Figure 4 (b) Figure 9 Figure 10

Claims (4)

【特許請求の範囲】[Claims] (1)大口径のガラス系光ファイバを逆方向に折り返し
、この光ファイバの往路の始端に発光素子を、復路の終
端に受光素子をそれぞれ設け、光ファイバの折り返し部
は検出部として露出させ、往路及び復路の大半は本体内
に密封して収納した光学式液体センサであって、光ファ
イバの往路及び復路はコアとクラッドから成り、折り返
し部はコアのみから成る部分を有することを特徴とする
光学式液体センサ。
(1) A large diameter glass optical fiber is folded back in the opposite direction, a light emitting element is provided at the beginning of the outgoing path of this optical fiber, a light receiving element is provided at the end of the incoming path, and the folded part of the optical fiber is exposed as a detection part, Most of the outward and return paths are optical liquid sensors sealed and housed in the main body, the outbound and return paths of the optical fiber are comprised of a core and a cladding, and the folded portion has a portion consisting only of the core. Optical liquid sensor.
(2)コアのみから成る光ファイバで折り返し部を形成
し、この折り返し部の両端にコアとクラッドから成る往
路と復路を融着し、ついで往路と復路を本体内に密封し
て収納する請求項1記載の光学式液体センサの製造方法
(2) A folded part is formed of an optical fiber consisting only of a core, an outgoing path and a return path consisting of a core and a cladding are fused to both ends of the folded part, and then the outgoing path and the returning path are sealed and stored in the main body. 1. The method for manufacturing an optical liquid sensor according to 1.
(3)大口径のガラス系光ファイバを逆方向に折り返し
、この光ファイバの往路の始端に発光素子を、復路の終
端に受光素子をそれぞれ設け、光ファイバの折り返し部
は検出部として露出させ、往路及び復路の大半は本体内
に密封して収納した光学式液体センサであって、光ファ
イバの往路及び復路はコアとクラッドから成り、折り返
し部はコアが露出している部分を有することを特徴とす
る光学式液体センサ。
(3) A large diameter glass optical fiber is folded back in the opposite direction, a light emitting element is provided at the beginning of the outgoing path of this optical fiber, a light receiving element is provided at the end of the incoming path, and the folded part of the optical fiber is exposed as a detection part, Most of the outward and return paths are optical liquid sensors sealed and housed within the main body, the outbound and return paths of the optical fiber are comprised of a core and a cladding, and the folded portion has a portion where the core is exposed. Optical liquid sensor.
(4)コアとクラッドから成る光ファイバを折り曲げ加
工して往路、復路及び折り返し部を形成し、折り返し部
の少なくとも一つの折り返し点をガラス腐食液に接触さ
せて部分的に腐食させてコアを露出させ、ついで往路と
復路を本体内に密封して収納する請求項3記載の光学式
液体センサの製造方法。
(4) An optical fiber consisting of a core and a cladding is bent to form an outward path, a return path, and a folded portion, and at least one folding point of the folded portion is brought into contact with a glass corrosive liquid to partially corrode the core to expose the core. 4. The method of manufacturing an optical liquid sensor according to claim 3, wherein the outgoing and returning paths are sealed and stored in the main body.
JP5764089A 1989-03-08 1989-03-08 Optical type liquid sensor and manufacture thereof Pending JPH02236146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5764089A JPH02236146A (en) 1989-03-08 1989-03-08 Optical type liquid sensor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5764089A JPH02236146A (en) 1989-03-08 1989-03-08 Optical type liquid sensor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02236146A true JPH02236146A (en) 1990-09-19

Family

ID=13061489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5764089A Pending JPH02236146A (en) 1989-03-08 1989-03-08 Optical type liquid sensor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02236146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534562U (en) * 1991-10-16 1993-05-07 日本電子機器株式会社 Optical alcohol sensor
WO1994024543A1 (en) * 1993-04-15 1994-10-27 Japan Energy Corporation Total reflection type sensor for measuring refraction index

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534562U (en) * 1991-10-16 1993-05-07 日本電子機器株式会社 Optical alcohol sensor
WO1994024543A1 (en) * 1993-04-15 1994-10-27 Japan Energy Corporation Total reflection type sensor for measuring refraction index
US5565978A (en) * 1993-04-15 1996-10-15 Japan Energy Corporation Total-reflection type refractive index sensor

Similar Documents

Publication Publication Date Title
US4050895A (en) Optical analytical device, waveguide and method
CN109974758B (en) Optical fiber sensor for simultaneously measuring three parameters of sea water temperature, salt depth and preparation method thereof
Chen et al. Review of femtosecond laser machining technologies for optical fiber microstructures fabrication
Wang et al. A high-temperature humidity sensor based on a singlemode-side polished multimode-singlemode fiber structure
Suhadolnik et al. Optical fiber reflection refractometer
CN108572047A (en) A kind of optical fiber air pressure sensing device based on multiple Fabry-Perot micro chambers
CN109974789A (en) A kind of high integration mini optical fibre seawater thermohaline depth sensor based on MEMS technology and membrane material
CN111610471A (en) Magnetic field and temperature sensor with metalized fiber bragg grating cascaded F-P structure
US7062125B2 (en) Prismatic reflection optical waveguide device
JPH01257245A (en) Measuring apparatus for mixing ratio of fuel for internal combustion engine
CN208595984U (en) A kind of high sensitivity optical fiber temperature sensor
JPH02236146A (en) Optical type liquid sensor and manufacture thereof
Dübendorfer et al. Reference pads for miniature integrated optical sensors
CN111208087B (en) Optical fiber humidity sensor based on thick cone, working principle and preparation method thereof
JPH02236145A (en) Optical type liquid sensor and manufacture thereof
CN116559117A (en) Probe type optical fiber seawater salinity sensor based on FP interference and manufacturing method thereof
Mitsushio et al. Simplification and evaluation of a gold-deposited SPR optical fiber sensor
CN1712929A (en) MZ interference evanescent wave chemical and biological sensor and system with fibre-optical microstructure
CN214150438U (en) Optical fiber humidity sensor and humidity sensor detection device
JP2006105670A (en) Surface plasmon resonance sensor probe and manufacturing method therefor
JPS60501969A (en) Refractometer for measuring the refractive index of liquids
CN113267206A (en) Low-cost repeatedly-producible optical fiber non-closed Fabry-Perot sensor
CN112683847A (en) Liquid refractive index sensor based on staggered welding cascade double cavities and sensing method
CN214843307U (en) Low-cost repeatedly-produced optical fiber non-closed Fabry-Perot sensor
US9823192B1 (en) Auto-calibration surface plasmon resonance biosensor