JPH02235902A - Cellulose and cellulose derivative particles having xanthite crosslinkage and their production - Google Patents

Cellulose and cellulose derivative particles having xanthite crosslinkage and their production

Info

Publication number
JPH02235902A
JPH02235902A JP1055152A JP5515289A JPH02235902A JP H02235902 A JPH02235902 A JP H02235902A JP 1055152 A JP1055152 A JP 1055152A JP 5515289 A JP5515289 A JP 5515289A JP H02235902 A JPH02235902 A JP H02235902A
Authority
JP
Japan
Prior art keywords
cellulose
particles
organic solvent
emulsion
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055152A
Other languages
Japanese (ja)
Inventor
Hiroshi Inagaki
博 稲垣
Takeaki Miyamoto
武明 宮本
Soichiro Takenishi
壮一郎 竹西
Takaya Satou
貴哉 佐藤
Yasuhide Teramatsu
寺松 泰英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP1055152A priority Critical patent/JPH02235902A/en
Publication of JPH02235902A publication Critical patent/JPH02235902A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To facilitate the formation of homogeneous cellulose and cellulose particles having xanthite crosslinkages by reacting porous spherical particles, obtained by dehydrating an emulsion of an aqueous solution of a xanthate of cellulose or its derivative by cooling in a specified water-soluble organic solvent, with an oxidizing agent. CONSTITUTION:A xanthate of cellulose or its derivative soluble in water or an aqueous alkali solution is synthesized, and an aqueous solution thereof is emulsified in an organic solvent containing a thickening polymer to form an emulsion. This emulsion is cooled to a temperature <= 40 deg.C and is poured into an organic solvent which does not dissolve the above cellulose or its derivative and is soluble in water, and the mixture is allowed to cool to room temperature by leaving to form porous spherical particles. These particles are reacted with an oxidizing agent to form xanthite crosslinkages.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ザンタイト架橋を有するセルロースまたはセ
ルロース誘導体からなる球状多孔質粒子およびその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to spherical porous particles made of cellulose or cellulose derivatives having xantite crosslinks and a method for producing the same.

〈従来の技術〉 例えば、ゲルクロマトグラフィー、イオン交換クロマト
グラフイーなどの各種のクロマトグラフィー用の担体と
して使用されるセルロースあるいはその誘導体の粒状体
は、一定の形状、特に球状の多孔質粒子であることが要
求される。
<Prior art> For example, granules of cellulose or its derivatives used as carriers for various chromatography such as gel chromatography and ion exchange chromatography are porous particles having a certain shape, especially spherical shape. This is required.

従来、この種のセルロース粒子の製造の例としては次の
ような方法が掲げられる。
Conventionally, the following method has been cited as an example of producing this type of cellulose particles.

最初に、セルロースを例えばセルロースアセテートのよ
うな有機溶媒に可溶の誘導体に変化させ、これを水に不
溶の有機溶媒、例えばクロロホルムに溶解する。
First, cellulose is converted into an organic solvent-soluble derivative, such as cellulose acetate, and this is dissolved in a water-insoluble organic solvent, such as chloroform.

このセルロースアセテートのクロロホルム溶液をポリビ
ニルアルコール(PVA)等で増粘した水に懸濁させ、
長時間クロロホルムの沸点以上に温度に保ちながら撹拌
してこれを蒸発させることによりセルロースアセテート
の多孔質ビーズを得る。
This chloroform solution of cellulose acetate is suspended in water thickened with polyvinyl alcohol (PVA), etc.
Porous beads of cellulose acetate are obtained by stirring and evaporating chloroform while maintaining the temperature above the boiling point of chloroform for a long time.

次いで、アセチル基をケン化してセルロースビーズとす
る。
Next, the acetyl groups are saponified to form cellulose beads.

しかし、加熱により溶媒を蒸発させる方法は、時間がか
かる。
However, the method of evaporating the solvent by heating takes time.

これに加えて、熱に弱い官能基を有するセルロース誘導
体、例えばアルカリドープ中のシアノエチルセルロース
、カルバモイルセルロース等は、ビーズの合成過程で変
質を受けやすい欠点がある。
In addition, cellulose derivatives having heat-sensitive functional groups, such as cyanoethyl cellulose and carbamoyl cellulose in alkali dope, have the disadvantage that they are susceptible to deterioration during the bead synthesis process.

また、単なるセルロースビーズは強度が低く、架橋を入
れるのが好ましい。
Furthermore, simple cellulose beads have low strength, so it is preferable to add crosslinking.

一方、セルロース誘導体粒子の製造は、上記のように一
旦セルロース粒子を作成してから、表面をカルボキシメ
チル化したり、その他の官能基を導入するのが一般的で
ある。
On the other hand, in the production of cellulose derivative particles, it is common to once create cellulose particles as described above, and then carboxymethylate the surface or introduce other functional groups.

しかし、後からの化学修飾は、反応度があがらず、官能
基の導入が起こりにク<、表面の一部しか修飾されない
However, subsequent chemical modification does not increase the degree of reactivity and introduces functional groups, resulting in only a portion of the surface being modified.

また、反応に際して、表面部の膨潤が生し、多孔性が阻
害される。
Furthermore, during the reaction, the surface portion swells and porosity is inhibited.

〈本発明が解決しようとする課題〉 従来のセルロース誘導体粒子の製造方法は、合成径路が
複雑で時間がかかり、熱に不安定な誘導体の粒子化およ
び均一な多孔性粒子の合成が困難である。
<Problems to be solved by the present invention> Conventional methods for producing cellulose derivative particles have complicated and time-consuming synthesis routes, making it difficult to form particles of thermally unstable derivatives and to synthesize uniform porous particles. .

本発明の課題は、このような欠点のないザンタイト架橋
を有するセルロースまたはセルロース誘導体粒子および
その製造方法を提供することにある。
An object of the present invention is to provide cellulose or cellulose derivative particles having xantite crosslinks and a method for producing the same, which are free from such drawbacks.

〈課題を解決するための手段〉 本発明のザンタイト架橋を有するセルロースあるいはセ
ルロース誘導体粒子は、請求項(2)に記載のように、
水またはアルカリ水溶液に可溶なセルロースまたはセル
ロース誘導体のザンテートを合成し、その水溶液を増粘
用のポリマーを含む有機溶媒に加えて乳化し、エマルジ
ョン温度を40℃以下としたのち、このエマルジョンを
前記セルロースまたはセルロース誘導体ザンテートが不
溶でかつ水に可溶の冷却した有機溶媒に注入し、室温ま
で放置することにより得られた多孔性の球状粒子に酸化
剤を用いてザンタイト架橋を形成させることにより製造
することができる。
<Means for Solving the Problems> The xantite crosslinked cellulose or cellulose derivative particles of the present invention, as described in claim (2),
Cellulose or cellulose derivative xanthate soluble in water or alkaline aqueous solution is synthesized, the aqueous solution is emulsified by adding it to an organic solvent containing a thickening polymer, and the emulsion temperature is lower than 40°C. Manufactured by forming xantite crosslinks using an oxidizing agent on porous spherical particles obtained by injecting cellulose or cellulose derivative xanthate into a cooled organic solvent that is insoluble and soluble in water and allowing to stand at room temperature. can do.

すなわち、セルロースまたはセルロース誘導体のザンテ
ート水溶液のエマルジョンを、セルロースまたはその誘
導体が不溶の水溶性有機溶媒中で冷却、脱水することに
より均一な多孔性球状粒子が得られる。
That is, uniform porous spherical particles can be obtained by cooling and dehydrating an emulsion of an aqueous xanthate solution of cellulose or a cellulose derivative in a water-soluble organic solvent in which cellulose or its derivative is insoluble.

本発明において、多孔質球状粒子の原料として用いるセ
ルロース誘導体は、特に制限はな《、その置換度および
置換基分布が水溶性あるいはアルカリ可溶性の領域にあ
るものであればよい。
In the present invention, the cellulose derivative used as a raw material for porous spherical particles is not particularly limited, as long as its degree of substitution and substituent distribution are in the water-soluble or alkali-soluble range.

その具体例をあげれば、カルボキシメチルセルロース、
カルボキシエチルセルロース、カルバモイルエチルセル
ロース、メチルセルロース、エチルセルロース、ハイド
ロキシプロビルセルロース、ハイドロキシエチルセルロ
ース、エヂルヒドロキシエチルセルロース、ヒドロキシ
プ口ピルメヂルセルロース、アミノエチルセルロース、
シエチルアミノエチルセルロース、トリエチルアミノエ
チルセルロース、スルホエチルセルロースなどがある。
Specific examples include carboxymethyl cellulose,
Carboxyethylcellulose, carbamoylethylcellulose, methylcellulose, ethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, edylhydroxyethylcellulose, hydroxypropylcellulose, aminoethylcellulose,
Examples include ethyl aminoethyl cellulose, triethylaminoethyl cellulose, and sulfoethyl cellulose.

これらのセルロースまたはセルロース誘導体の何れかを
2〜10%のアルカリ水溶液(Nail{)に均一に溶
解させる。
Any of these cellulose or cellulose derivatives is uniformly dissolved in a 2 to 10% alkaline aqueous solution (Nail{).

これに二硫化炭素(CS2)をセルロース主鎖に対し5
〜500モル%添加して密栓し、CS2がセルロースま
たはセルロース誘導体のアルカリ水溶液に溶解するまで
強く撹拌し、その後に1〜2時間容器を室温で回転させ
る。
Carbon disulfide (CS2) was added to this to the cellulose main chain.
~500 mol% is added, the container is tightly capped, and stirred vigorously until the CS2 is dissolved in the alkaline aqueous solution of cellulose or cellulose derivative, and then the container is rotated at room temperature for 1 to 2 hours.

この反応により、オレンジ色ないし黄色に着色したビス
コースまたはセルロース誘導体のビスコース溶液が得ら
れる。
This reaction yields an orange to yellow colored viscose solution of viscose or a cellulose derivative.

なお、反応に際しては、出願人が先に提案したように(
特願昭6152603号)、アルカリセルロースを出発
原料として最初に硫化反応を行ってセルロースザンテー
トとした後で、既知の方法で官能基を導入し、セルロー
ス誘導体としてもよい。
As for the reaction, as previously proposed by the applicant (
(Japanese Patent Application No. 6152603), alkali cellulose may be first subjected to a sulfurization reaction as a starting material to form cellulose xanthate, and then a functional group may be introduced by a known method to form a cellulose derivative.

このようにして、ザンテートの濃度が1〜20%、好ま
しくは3〜12%、粘度が300〜l0000cps、
好ましくは1500〜5000cpsのセルロース誘導
体ビスコースを調製する。
In this way, the concentration of xanthate is 1-20%, preferably 3-12%, the viscosity is 300-10000 cps,
Preferably, 1500 to 5000 cps of cellulose derivative viscose is prepared.

このビスコースをポリマーで増粘した有機溶媒に加えて
乳化する。
This viscose is added to an organic solvent thickened with a polymer and emulsified.

乳化には、ビスコースに対して、例えばリシノレイン酸
ポリオキシメチレン付加物のようなノニオン界面活性剤
を1〜7%添加する。
For emulsification, 1 to 7% of a nonionic surfactant such as a polyoxymethylene adduct of ricinoleic acid is added to viscose.

また、有機溶媒とその増粘のためのボリマーの組み合わ
せは特に限定されるものではないが、好ましい代表例と
して次表のようなものがあげられる。
Further, the combination of the organic solvent and the polymer for thickening the organic solvent is not particularly limited, but the following table shows preferred representative examples.

セルロースまたはセルロース誘導体のビスコース溶液と
油相となるポ,リマー増粘の有機溶液の混合比は、容量
比でビスコース:有機溶媒=1:0.7〜1:10、特
に1:1〜1:4の範囲が好ましい。
The mixing ratio of the viscose solution of cellulose or cellulose derivative and the organic solution of polyimer thickener which becomes the oil phase is viscose:organic solvent=1:0.7 to 1:10 in volume ratio, especially 1:1 to A range of 1:4 is preferred.

このエマルジョンを所定の撹拌速度で撹拌する。This emulsion is stirred at a predetermined stirring speed.

エマルジョン温度は40℃以下であれば何れの温度を選
んでもよく、所定温度において30分以上撹拌するのが
好ましい。
The emulsion temperature may be any temperature below 40° C., and it is preferable to stir the emulsion at a predetermined temperature for 30 minutes or more.

続いて、このエマルジョンを冷却した有機溶媒(−30
°C〜0°C)の中に注ぎ、緩やかに撹拌しながら室温
になるまで放置する。
Subsequently, this emulsion was cooled with an organic solvent (-30
(°C to 0°C) and leave to warm to room temperature with gentle stirring.

エマルジョンと有機溶媒の混合比は、容量比で1 /0
. 5以上であればよい。
The mixing ratio of emulsion and organic solvent is 1/0 by volume.
.. It is sufficient if it is 5 or more.

ここで用いる有機溶媒は、■)水と自由に混ざり合い、
2)エマルジョン調製時に用いた有機溶媒と自由に混ざ
り合い、3)前記増粘用ポリマーを溶解し、かつ、4)
セルロースまたはセルロース誘導体が不溶であるものが
適当である。
The organic solvent used here is ■) freely miscible with water;
2) mixes freely with the organic solvent used during emulsion preparation, 3) dissolves the thickening polymer, and 4)
Those in which cellulose or cellulose derivatives are insoluble are suitable.

このような条件を満たす有機溶媒としては、前述した増
粘用ポリマーと有機溶媒の組み合わせ例(1)に対して
はメタノール、エタノール、ジメチルホルムアミト口)
MP)、ジメチルスルホキシド(DMSO)、特にメタ
ノールが、(2)に対してはメタノール、l]I’lF
, DMSO、特にメタノールが、また(3)に対して
はアセトンが、それぞれ好適に用いられる。
Examples of organic solvents that meet these conditions include methanol, ethanol, and dimethylformamide (for example (1) of combination of thickening polymer and organic solvent).
MP), dimethyl sulfoxide (DMSO), especially methanol, for (2) methanol, l]I'lF
, DMSO, especially methanol, and for (3) acetone are preferably used.

ビスコースの冷却エマルジョンをセルロース誘導体が不
溶の水溶性有機溶媒へ注入冷却することにより、セルロ
ース誘導体粒子が形成され、かつ粒子内部の水が少量ず
つ有機溶媒に溶出して脱水される過程により、均一な多
孔質の粒子が形成される。
Cellulose derivative particles are formed by injecting and cooling a cooled viscose emulsion into a water-soluble organic solvent in which cellulose derivatives are insoluble, and the water inside the particles is eluted little by little into the organic solvent and dehydrated, resulting in a uniform Porous particles are formed.

セルロースの乳化液(エマルション)の温度及び容量、
冷却された有機溶媒の温度及び容量の4つのファクター
は厳密にコントロールすることが望ましい。
Temperature and volume of cellulose emulsion,
It is desirable to tightly control four factors: temperature and volume of the cooled organic solvent.

即ち、得られる粒子の多孔状態はエマルジョンと有機溶
媒の温度条件によって微妙に変化する。
That is, the porous state of the resulting particles changes slightly depending on the temperature conditions of the emulsion and the organic solvent.

温度が異なれば粒子中の水分が有機相へ溶出する速度や
高分子と溶液の相分離の状態も変化するからである。
This is because, if the temperature changes, the rate at which water in the particles dissolves into the organic phase and the state of phase separation between the polymer and the solution will also change.

この場合、エマルジョンと有機溶媒の混合に伴う混合熱
、希釈熱を考慮しなくてはならない。
In this case, the heat of mixing and heat of dilution accompanying mixing of the emulsion and the organic solvent must be taken into consideration.

そのため、上記の4つのファクターを厳密にコントロー
ルすれば再現性よく同じ多孔状態を達成できる。
Therefore, by strictly controlling the above four factors, the same porous state can be achieved with good reproducibility.

さらに詳述すると、エマルジョンの温度と有機溶媒の温
度は得られる粒子の多孔状態に影響を与える。
More specifically, the temperature of the emulsion and the temperature of the organic solvent affect the porosity of the resulting particles.

例えば、−20℃に冷却したエマルジョンを−20℃の
有機溶媒に加えた場合、得られたビーズの表面には微細
な孔が存在するビーズとなる。
For example, when an emulsion cooled to -20°C is added to an organic solvent at -20°C, the resulting beads have fine pores on their surfaces.

逆に、+25℃のエマルジョンを−20’Cの有機溶媒
に注加した場合、前者のボアサイズより大きなボアのビ
ーズが得られる。
Conversely, if an emulsion at +25°C is poured into an organic solvent at -20'C, beads with a larger bore size than the former will be obtained.

次いで、デカンテーションにより有機溶媒を除き、これ
に酸化剤、例えば過酸化水素、塩化第二鉄(FeCI3
)またはヨウ素などを含むメタノール溶液を加え、セル
ロースまたはセルロース誘導体中のザンテート基をザン
タイト架橋基に変換する。
Next, the organic solvent is removed by decantation, and an oxidizing agent such as hydrogen peroxide, ferric chloride (FeCI3
) or a methanol solution containing iodine, etc., to convert the xanthate groups in cellulose or cellulose derivatives to xantite crosslinking groups.

反応終了後、デカンテーションにより上澄みを除き、こ
れに4%H2SO4を加えて浸漬する。
After the reaction is completed, the supernatant is removed by decantation, and 4% H2SO4 is added thereto for immersion.

再びデカンテーションにより上澄液を除き、硫酸を加え
る操作を繰り返して硫化鉄などの不純物を除去した後、
十分に水洗洗浄する。
After removing the supernatant liquid by decantation again and repeating the operation of adding sulfuric acid to remove impurities such as iron sulfide,
Wash thoroughly with water.

最後に、メタノール、エタノールの順で洗浄、脱水し、
乾燥することにより、ザンタイト架橋を有するセルロー
ス誘導体粒子の精製品が得られる。
Finally, wash with methanol and ethanol in that order, dehydrate,
By drying, purified cellulose derivative particles having xantite crosslinks are obtained.

得られる球状粒子の物理的性質(膨潤、吸水率)はセル
ロース誘導体の置換基の種類、およびその置換度が同じ
なら主としてザンタイト架橋度によって規定を受ける。
The physical properties (swelling, water absorption) of the resulting spherical particles are mainly determined by the type of substituents on the cellulose derivative and, if the degree of substitution is the same, the degree of xantite crosslinking.

ここで、例としてシアンエチルセルロースのザンタイト
架橋粒子について説明する。
Here, xanthite crosslinked particles of cyanethyl cellulose will be explained as an example.

1グルコース残基あたり、3つの水酸基の内いくつがシ
アノエチル基に置換されてぃるがを示す値をDSx(最
大値は3)、1グルコース残基あたり、3つの水酸基の
内いくつが、ザンタイト架橋基で置換されているかを示
す値をDSy(最大値は3)とすると、DSX、DSY
はビーズ中に含まれるN,Sの重量より以下の式で算出
される。
The value indicating how many of the three hydroxyl groups per glucose residue are substituted with cyanoethyl groups is DSx (maximum value is 3), and how many of the three hydroxyl groups per glucose residue are xantite crosslinked. If the value indicating whether the group is substituted is DSy (maximum value is 3), DSX, DSY
is calculated by the following formula from the weights of N and S contained in the beads.

N%−[14x/(162+53x +75y)]XI
OOS%−[64y/(162+53x +75y)I
XIOO上記の式のうち、XはDSxすなわちシアノエ
チル置換度、yはDSYすなわちザンタイト架橋度を示
す。
N% - [14x/(162+53x +75y)]XI
OOS%-[64y/(162+53x +75y)I
XIOO In the above formula, X represents DSx, that is, the degree of cyanoethyl substitution, and y represents DSY, that is, the degree of xantite crosslinking.

得られた粒子の物理的性質(膨潤率と吸水率)とS重量
比(即ち架橋度〉の関係を第1図および第2図に示した
The relationship between the physical properties (swelling rate and water absorption rate) of the obtained particles and the S weight ratio (ie, degree of crosslinking) is shown in FIGS. 1 and 2.

即ち、架橋度を高くすれば吸水率は低下し、膨潤率も下
がる。
That is, if the degree of crosslinking is increased, the water absorption rate decreases and the swelling rate also decreases.

この架橋度はビスコース化反応の際、CS2の量でコン
トロールすることができる。
This degree of crosslinking can be controlled by the amount of CS2 during the viscose formation reaction.

図中、吸水率および膨潤率(粒子の体積変化率)は、シ
アノエチル置換度D S =0.5〜0.7の場合につ
き、以下の式により算出した。
In the figure, the water absorption rate and swelling rate (volume change rate of particles) were calculated using the following formula for the case where the degree of cyanoethyl substitution D S =0.5 to 0.7.

ただし、純水浸漬10分、脱水3000rpm x 5
分〈本発明の作用〉 本発明のザンタイト架橋を有するセルロースまたはセル
ロース誘導体粒子は、原料として水またはアルカリ水溶
液に可溶なセルロースまたはその誘導体であれば、何れ
も好適に使用することができる。
However, immersion in pure water for 10 minutes, dehydration at 3000 rpm x 5
<Action of the present invention> As the cellulose or cellulose derivative particles having xantite crosslinks of the present invention, any cellulose or its derivative that is soluble in water or an alkaline aqueous solution can be suitably used as a raw material.

このセルロース誘導体は、従来の方法と異なり、予め種
々の官能基が導入され、非局在化したものを使用するこ
とができ、しかも加熱処理工程がないので変質を受ける
おそれがなく、均一な多孔度をもつ球状粒子が得られる
Unlike conventional methods, this cellulose derivative has various functional groups introduced in advance and can be used in a delocalized manner. Furthermore, there is no heat treatment step, so there is no risk of deterioration, and it has uniform pores. Spherical particles with a certain degree of strength are obtained.

特に、セルロース中のザンテート基( −CSSNa 
)は熱分解を受けやすく、従来の加熱凝固法では凝固過
程でかなりの部分が損壊してしまう。
In particular, the xanthate group in cellulose (-CSSNa
) is susceptible to thermal decomposition, and a large portion of it is destroyed during the solidification process using conventional thermal solidification methods.

しかし、本発明では球状粒子の形成が前述したビスコー
スの有機溶媒による冷却、脱水工程で達成されるから、
ザンテート基が冷却保護され、ザンタイト架橋化反応に
より機械的強度の優れた球状粒子が得られる。
However, in the present invention, the formation of spherical particles is achieved through the above-mentioned cooling and dehydration process of viscose with an organic solvent.
Xanthate groups are protected by cooling, and spherical particles with excellent mechanical strength are obtained through the xantite crosslinking reaction.

また、球状粒子の形成は、前述の冷却、脱水という簡単
な合成径路で、短時間に行うことができる。
Moreover, the formation of spherical particles can be carried out in a short time using the simple synthesis route of cooling and dehydration described above.

粒子の物性、例えば吸水率と膨潤率はビスコース化反応
の際の二硫化炭素の量で容易に調整することができる。
The physical properties of the particles, such as water absorption and swelling rate, can be easily adjusted by adjusting the amount of carbon disulfide used in the viscose-forming reaction.

[実施例] 以下、実施例により本発明をさらに詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 パルプを17.5%の水酸化ナトリウム水溶液中に室温
で1時間浸漬した後、パルプの元重量の2.8倍になる
まで絞った。
Example 1 Pulp was immersed in a 17.5% aqueous sodium hydroxide solution at room temperature for 1 hour, and then squeezed to 2.8 times the original weight of the pulp.

これを粉砕してアルカリセルロース粉をつ《り、セルロ
ース誘導体の製造に使用した。
This was pulverized to form an alkali cellulose powder, which was used in the production of cellulose derivatives.

このアルカリセルロース100gをカラス容器に入れ、
減圧下て二硫化炭素5.7g(セルロースに対してモル
濃度で40%)を加え、密栓して室温で2時間反応させ
た。
Put 100g of this alkali cellulose into a glass container,
5.7 g of carbon disulfide (40% molar concentration based on cellulose) was added under reduced pressure, the mixture was tightly stoppered, and the mixture was allowed to react at room temperature for 2 hours.

反応物に9%水酸化ナトリウム水溶液を550m l加
えてスラリー化した。
550 ml of 9% aqueous sodium hydroxide solution was added to the reaction mixture to form a slurry.

さらに、アクリロニトリル30グラム[セルロース/ア
クリ口ニトリル−1/3(モル比)]を加えて1時間反
応させて黄色透明の粘稠な水溶液を得た。
Furthermore, 30 g of acrylonitrile [cellulose/acrylonitrile - 1/3 (molar ratio)] was added and reacted for 1 hour to obtain a yellow transparent viscous aqueous solution.

この粘稠な溶液500mlに界面活性剤としてリシノレ
イン酸ポリオキシエチレンを15■1加えた。
To 500 ml of this viscous solution was added 15 ml of polyoxyethylene ricinoleate as a surfactant.

一方、油層としてポリビニルピロリビンく林純薬工業社
製K−30)90gとクロロホルム2000mlを均一
に溶解した溶液を用いた。
On the other hand, as an oil layer, a solution in which 90 g of polyvinylpyrrolibin (K-30, manufactured by Hayashi Pure Chemical Industries, Ltd.) and 2000 ml of chloroform were uniformly dissolved was used.

ポリマー溶液550mlとPVPで増粘したクロロホル
ム770mlを混合し、撹拌速度400Orpmで撹拌
しつつ、このエマルジョン溶液を−20℃に冷却して、
30分保持した。
Mix 550 ml of the polymer solution and 770 ml of chloroform thickened with PVP, cool the emulsion solution to -20°C while stirring at a stirring speed of 400 Orpm,
It was held for 30 minutes.

続いて、−10°Cに冷却したメタノール1980ml
に徐々に注加し室温まで放置した。
Subsequently, 1980 ml of methanol cooled to -10°C
was gradually added to the solution and allowed to stand at room temperature.

デカンテーションにより上澄液を除いた。The supernatant liquid was removed by decantation.

次いで、FeC13・6H20/CH3COOH/Me
OH−(L/l/5)重量比よりなる酸化液1000m
lを加え、0.5時間撹拌した。
Then, FeC13.6H20/CH3COOH/Me
1000ml of oxidizing liquid consisting of OH-(L/l/5) weight ratio
1 was added and stirred for 0.5 hour.

その後、ll2sO41%のメタノール/水一(1/5
)の溶液を用い、洗浄、濾過、メタノール洗浄、濾過、
エーテル洗浄、濾過、真空乾燥の順でザンタイト架橋を
有するセルロース誘導体粒子を単離した。
Then, 1% methanol/water (1/5
) washing, filtration, methanol washing, filtration,
Cellulose derivative particles having xantite crosslinks were isolated by ether washing, filtration, and vacuum drying in this order.

得られた粒子の物性を表1に示した。Table 1 shows the physical properties of the obtained particles.

また、第3図ないし第5図にこれらの粒子の電子顕微鏡
写真(30、100、5000倍)を示した。
Furthermore, electron micrographs (30, 100, and 5000 times magnification) of these particles are shown in FIGS. 3 to 5.

実施例2 出発原料としてビスコース(セルロース含量12%、水
酸化ナトリウム濃度9%r価−90)を用いた以外は実
施例1と同様の方法でザンタイト架橋を有するセルロー
ス粒子を得た。
Example 2 Cellulose particles having xantite crosslinks were obtained in the same manner as in Example 1, except that viscose (cellulose content: 12%, sodium hydroxide concentration: 9%, r value -90) was used as the starting material.

得られた粒子の物性を表1に示した。Table 1 shows the physical properties of the obtained particles.

実施例3 ハイドロキシプロビルセルロース(日本曹達株式会社製
Mtype)を5 (W/W%)になるよう、9%Na
OH水溶液に溶解した。
Example 3 Hydroxypropyl cellulose (M type manufactured by Nippon Soda Co., Ltd.) was diluted with 9% Na to give a concentration of 5 (W/W%).
Dissolved in OH aqueous solution.

この溶液200mlにCS2、4.68g<セルロース
に対して等モル)を加え、室温で2hr撹拌した。
To 200 ml of this solution was added 4.68 g of CS2 (equimolar to cellulose), and the mixture was stirred at room temperature for 2 hours.

このハイドロキシプロビルセルロース溶液を用い、実施
例1と同様にしてザンタイト架橋を有するセルロース粒
子を得た。
Using this hydroxypropyl cellulose solution, cellulose particles having xantite crosslinks were obtained in the same manner as in Example 1.

得られた粒子の物性を表1に示した。Table 1 shows the physical properties of the obtained particles.

〈本発明の効果〉 以上説明したように本発明によれば、水またはアルカリ
水溶液に可溶なセルロースまたはセルロース誘導体を原
料として、簡単な合成径路で均一な多孔度をもち、かつ
機械的強度に優れたザンタイト架橋をもつセルロースま
たはセルロース誘導体粒子を製造することができる。
<Effects of the present invention> As explained above, according to the present invention, cellulose or cellulose derivatives soluble in water or alkaline aqueous solution are used as raw materials, and a material having uniform porosity and mechanical strength can be produced by a simple synthesis route. Cellulose or cellulose derivative particles with excellent xantite crosslinking can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるシアノエチルセルロースのザン
タイト架橋粒子についての膨潤率と架橋度との関係を示
すグラフ、 第2図は、同上の吸水率と架橋度との関係を示すグラフ
である。 第3図ないし第5図はそれぞれ実施例1で得られたセル
ロース誘導体粒子の電子顕微鏡写真(30、100、5
000倍)である。
FIG. 1 is a graph showing the relationship between the swelling rate and the degree of crosslinking for xantite crosslinked particles of cyanoethyl cellulose according to the present invention, and FIG. 2 is a graph showing the relationship between the water absorption rate and the degree of crosslinking of the same as above. Figures 3 to 5 are electron micrographs of cellulose derivative particles obtained in Example 1 (30, 100, 5
000 times).

Claims (2)

【特許請求の範囲】[Claims] (1)セルロースまたはセルロース誘導体からなる多孔
性の球状粒子がザンタイト架橋で架橋されていることを
特徴とするセルロースまたはセルロース誘導体粒子。
(1) Cellulose or cellulose derivative particles characterized in that porous spherical particles made of cellulose or a cellulose derivative are crosslinked with xantite crosslinks.
(2)水またはアルカリ水溶液に可溶なセルロースまた
はセルロース誘導体のザンテートを合成し、その水溶液
を増粘用のポリマーを含む有機溶媒に加えて乳化して、
エマルジョン温度を40℃以下としたのち、このエマル
ジョンを前記セルロースまたはセルロース誘導体ザンテ
ートが不溶でかつ水に可溶の冷却した有機溶媒に注入し
、室温まで放置することにより得られた多孔性の球状粒
子に酸化剤を用いてザンタイト架橋を形成させることを
特徴とするザンタイト架橋を有するセルロース及びセル
ロース誘導体粒子の製造方法。
(2) Synthesize cellulose or cellulose derivative xanthate that is soluble in water or an alkaline aqueous solution, add the aqueous solution to an organic solvent containing a thickening polymer, and emulsify it.
Porous spherical particles obtained by lowering the emulsion temperature to 40°C or lower, pouring the emulsion into a cooled organic solvent in which the cellulose or cellulose derivative xanthate is insoluble and soluble in water, and leaving it to room temperature. 1. A method for producing cellulose and cellulose derivative particles having xantite crosslinks, the method comprising forming xantite crosslinks using an oxidizing agent.
JP1055152A 1989-03-09 1989-03-09 Cellulose and cellulose derivative particles having xanthite crosslinkage and their production Pending JPH02235902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055152A JPH02235902A (en) 1989-03-09 1989-03-09 Cellulose and cellulose derivative particles having xanthite crosslinkage and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055152A JPH02235902A (en) 1989-03-09 1989-03-09 Cellulose and cellulose derivative particles having xanthite crosslinkage and their production

Publications (1)

Publication Number Publication Date
JPH02235902A true JPH02235902A (en) 1990-09-18

Family

ID=12990780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055152A Pending JPH02235902A (en) 1989-03-09 1989-03-09 Cellulose and cellulose derivative particles having xanthite crosslinkage and their production

Country Status (1)

Country Link
JP (1) JPH02235902A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150115A (en) * 1991-11-28 1993-06-18 Sekisui Chem Co Ltd Production of phase difference plate
JP2006510482A (en) * 2002-12-20 2006-03-30 アメルシャム・バイオサイエンシーズ・アクチボラグ Separation medium and manufacturing method thereof
JP2008513771A (en) * 2004-09-22 2008-05-01 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Method for producing chromatography matrix
JP2009242770A (en) * 2007-08-31 2009-10-22 Chisso Corp Porous cellulose gel, method for producing the same and use thereof
JP2017192897A (en) * 2016-04-20 2017-10-26 日立化成株式会社 Separation material and column
WO2018186222A1 (en) * 2017-04-03 2018-10-11 株式会社カネカ Porous cellulose beads and adsorbent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150115A (en) * 1991-11-28 1993-06-18 Sekisui Chem Co Ltd Production of phase difference plate
JP2006510482A (en) * 2002-12-20 2006-03-30 アメルシャム・バイオサイエンシーズ・アクチボラグ Separation medium and manufacturing method thereof
JP2008513771A (en) * 2004-09-22 2008-05-01 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ Method for producing chromatography matrix
JP2009242770A (en) * 2007-08-31 2009-10-22 Chisso Corp Porous cellulose gel, method for producing the same and use thereof
JP2017192897A (en) * 2016-04-20 2017-10-26 日立化成株式会社 Separation material and column
WO2018186222A1 (en) * 2017-04-03 2018-10-11 株式会社カネカ Porous cellulose beads and adsorbent

Similar Documents

Publication Publication Date Title
JPS62501198A (en) Small particle formation and encapsulation
JPH0128042B2 (en)
US4141746A (en) Cellulose sulfate esters
EP0023789B1 (en) Process for preparing porous acylated chitin derivative and use of said derivative
NO802016L (en) PROCEDURE FOR CROSS BULKING OF CELLULOSE SULFESTERS
JP2002531593A (en) Method for producing low viscosity water-soluble cellulose ether
HU217558B (en) Process for producing spherical cyclodextrin polymer pearls and spherical cyklodextrin polymer pearls
JPH02235902A (en) Cellulose and cellulose derivative particles having xanthite crosslinkage and their production
CN110156898A (en) A method of preparing hydroxyethyl cellulose
US4097667A (en) Hydroxyalkyl cellulose ethers
US4138535A (en) Nitrite esters of polyhydroxy polymers
JPH03146501A (en) Production of cellulose ether having high polymerization degree
US4035569A (en) Preparation of cellulose nitrite
JPS6176504A (en) Production of porous granular chitosan
JPH02235944A (en) Preparation of porous particles of both cellulose and cellulose derivative
JPH10510856A (en) Process for producing a suspension of cellulose ether in water and a dry mixture suitable for use in the production of a suspension
EP1375523B1 (en) Method for selecting a water-soluble cellulose ether having improved filtering characteristics
US4177345A (en) Process for preparing a sulfate ester of a polyhydroxy polymer
JPS6390501A (en) Porous fine cellulose particle and production thereof
US2097634A (en) Method for the production of porous silica gel
JPH0138403B2 (en)
US4419316A (en) Process of making films, fibers or other shaped articles consisting of, or containing, polyhydroxy polymers
JP2854687B2 (en) Manufacturing method of dyed silk fibroin powder
JP3870603B2 (en) Thiol-modified carboxymethylcellulose alkali salt and process for producing the same
CA1051880A (en) Esters of polyhydroxy polymers and processes for their preparation