JPH02235337A - Treating method of semiconductor substrate - Google Patents

Treating method of semiconductor substrate

Info

Publication number
JPH02235337A
JPH02235337A JP5584089A JP5584089A JPH02235337A JP H02235337 A JPH02235337 A JP H02235337A JP 5584089 A JP5584089 A JP 5584089A JP 5584089 A JP5584089 A JP 5584089A JP H02235337 A JPH02235337 A JP H02235337A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
vapor
fine particles
processing
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5584089A
Other languages
Japanese (ja)
Inventor
Mikio Tsuji
幹生 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5584089A priority Critical patent/JPH02235337A/en
Publication of JPH02235337A publication Critical patent/JPH02235337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To prevent the attaching of fine particles and the contamination caused by inorganic impurity by treating a semiconductor substrate in chemical vapor and in steam, and drying it by using microwave. CONSTITUTION:A semiconductor substrate is treated in chemical vapor, followed by treating in steam. After the treatments, the semiconductor substrate is dried by using microwave. By treating the semiconductor substrate in vapor, the fine particles attaching to carrier and the like can be prevented from re- attaching on the semiconductor substrate surface, and further fine particles contained in chemicals become hard to mix with the vapor, so that the attaching of fine particles can be reduced. Further, by using vapor, the mixing of impurity can also be reduced, and the uniform treatment reaching fine parts is enabled.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体基板の処理方法に関し、特に、微粒子
や不純物による汚染を受けることのない半導体基板及び
半導体基板上の薄膜の洗浄及びエッチング方法に関する
. 従来の技術 従来、この種の半導体基板の処理方法は、処理液中に直
接半導体基板を浸漬して処理を行う,ディップ式という
処理を行った後に、遠心乾燥あるいは蒸気乾燥によって
半導体基板を乾燥させる処理方法が主流となっていた. 発明が解決しようとする課題 しかしながら、上述した従来のディップ式処理方法では
、半導体基板を直接処理液中に浸漬して処理を行ってい
るので、処理液中に微粒子が含まれていると、半導体基
板表面に微粒子が付着するという課題がある. 近年、半導体素子の微細化が進むに従って、半導体基板
表面上に付着した微粒子のデバイス特性に与える影響が
重要となってきている.例えば、リソグラフィ工程にお
いてはパターン欠陥を惹き起こしたり、酸化工程におい
ては酸化膜厚異常の原因となり、ゲート酸化膜耐圧の劣
化を惹き起こしたりする. 処理液中の微粒子を減少させる為に、処理液の循環濾過
を行ったり、薬液供給時に濾過を行ったりする方法が採
用されている.しかしながら、従来の循環濾過方式や薬
液供給時に濾過を行う方法では、キャリア等から持ち込
まれた微粒子は処理液中に拡散し,半導体基板表面に幾
付着するという課題も生ずる.また、酸・アルカリの薬
品では、純粋あるいはガスと比較して微粒子が除去され
難く、半導体基板表面への微粒子の付着を完全には防ぐ
ことができない. 一方、従来のディップ式の処理方法では使用される薬品
中に含まれる不純物による汚染も問題となる.半導体装
置製造工程においては、いわゆる電子工業用と呼ばれる
低微粒子、低不純物の薬品が使用されているが、このよ
うな電子工業用の薬品といえども、薬品中にはかなりの
無機不純物が含まれている.これら不純物もデバイス特
性に悪影響を与え、特に重金属等の汚染物質は接合リー
クTIKを増大させたり、キャリアのライフタイムを低
下させたり、結晶欠陥を誘起したりする.このような薬
品中の不純物の影響を取り除く為には、薬品の蒸気中で
半導体基板を処理する方法を用いればよい.しかしなが
ら、従来の処理方法では、蒸気中での処理を行った半導
体基板に対して、リンスを行わなかったり、行ったとし
ても純水中に浸漬するのが通常であった. リンスを行わない場合には、半導体基板表面に前工程よ
り持ち込まれた不純物は、例えば、フッ酸蒸気、あるい
は塩酸蒸気中で水溶性のフフ化物、あるいは塩化物を形
成したとしても,それらは、半導体基板表面から完全に
は除去されない.一方、純水中に浸漬してリンスを行っ
た場合には、水溶性のフッ化物あるいは塩化物は除去さ
れるものの、純水中のシリカ、微粒子等の汚染を受ける
可能性がある. さらに、素子の微細化に伴いアスベクト比が増加するに
つれて、従来のディップ式の処理方法では、処理液やリ
ンス用の純水が細部にまで行き渡らず、処理効果、リン
ス効果が不均一になりがちであった. 半導体基板の乾燥方法としては、従来、経済性あるいは
スループットの高さから遠心乾燥法が多用されている.
しかしながら、この方法では、水滴の飛沫や微粒子の付
着が本質的に避けられない上に、半導体基板を高速で回
転する為に、半導体基板が割れたりする問題がある.ま
た、半導体基板をIPA蒸気中で乾燥する蒸気乾燥法も
採用されているが、この方法では、半導体基板表面上へ
の微粒子の付着や半導体基板の割れは防止できるものの
、乾燥後の半導体基板表面上にIPAが吸着したり、有
機溶剤を用いる為に危険性が高く取り扱いに注意を要す
る等の問題がある. さらに、従来の処理方法では,処理槽と乾燥機が分離し
ていた為に、薬品による処理及びリンスを終えた半導体
基板を処理槽から乾燥機まで空中搬送する方法がとられ
ていた.しかしながら、半導体基板を空中搬送した場合
には、空気中の浮遊塵が付着したり、搬送機の駆動部か
らの発塵によって半導体基板表面に微粒子が付着すると
いう問題もあった. 本発明は従来の上記実情に鑑みてなされたものであり、
従って本発明の目的は、従来の技術に内在する上記諸課
題を解決することを可能とした半導体基板の新規な処理
方法を提供することにある. 発明の従来技術に対する相違点 上゛述した従来の半導体基板の処理方法に対して、本発
明は、薬品蒸気中で半導体基板を処理し、該半導体基板
を水蒸気中で処理した後にマイクロ波によって乾燥させ
、且つ全ての工程をーっの処理槽内で行うという相違点
を有する.半導体基板を蒸気中で処理することによって
、キャリア等に付着している微粒子の半導体基板表面へ
の再付着を防止することができる上に、薬品中に含まれ
ていた微粒子も蒸気中には混入し難くなり、微粒子の付
着を低減することができる.また、蒸気にすることによ
り、不純物の混入も低減することができる. さらに、全ての工程を一つの処理槽内で行うことにより
、搬送中の微粒子の付着も防止することができる. 課題を解決するための手段 前記目的を達成する為に、本発明に係る半導体基板の処
理方法は、薬品蒸気中で半導体基板を処理する工程と、
水蒸気中で該半導体基板を処理する工程と、マイクロ波
によって半導体基板を乾燥させる工程とを備えて構成さ
れ、且つ全ての工程を一つの処理槽内で行うという特徴
を有している. 上記薬品蒸気として、フッ酸蒸気あるいはオゾンを含む
塩酸、硝酸またはアンモニア蒸気が用いられている. 実 方伍 D1 次に、本発明をその好ましい各実施例について図面を参
照して従来法と比較しながら具体的に説明する. 第1図は本発明による第1の実施例及び従来法による処
理方法を用いた場合の半導体基板表面に付着する微粒子
数の測定結果を示す図である.従来法として、過酸化水
素を含む塩酸( IICLI、硝酸( HNOi )及
びアンモニア(NH40H )水溶液中及び希フッ酸(
DIIF)中に半導体基板を10分間浸漬し、純水中で
10分間リンスを行った後に、IPA蒸気乾燥法によっ
て乾燥を行った. 本発明の場合には、オゾン/酸素混合ガスを導入した塩
酸、硝酸及びアンモニア蒸気、あるいはフッ素蒸気に半
導体基板を10分間晒した後に、水蒸気に10分間晒し
た.その後、半導体基板にマイクロ液を照射し、乾燥を
行った. 従来法の場合には、半導体基板表面上に付着した微粒子
数は、塩酸( HCL/H202/HzO )及び硝酸
( HNO3/tl202 )を用いた場合には、1枚
当たり100個程度であり、アンモニア( NH40H
/hOz/H.0 )を用いた場合には約20個であっ
た.また、DIIFを用いた場合には約200個であっ
た.これに対して、本発明による処理を行った場合には
、いずれの場合でも微粒子は数個以下であった。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for processing a semiconductor substrate, and more particularly to a method for cleaning and etching a semiconductor substrate and a thin film on a semiconductor substrate without being contaminated by particulates or impurities. Conventional technology Conventionally, this type of semiconductor substrate processing method involves performing a process called dipping, in which the semiconductor substrate is directly immersed in a processing solution, and then dried by centrifugal drying or steam drying. The treatment method was the mainstream. Problems to be Solved by the Invention However, in the conventional dip processing method described above, the semiconductor substrate is directly immersed in the processing solution. There is a problem with fine particles adhering to the substrate surface. In recent years, with the progress of miniaturization of semiconductor devices, the influence of fine particles attached on the surface of semiconductor substrates on device characteristics has become important. For example, it causes pattern defects in the lithography process, and it causes abnormal oxide film thickness in the oxidation process, leading to deterioration of gate oxide film breakdown voltage. In order to reduce particulates in the treatment solution, methods are used to circulate the treatment solution and filter it when the chemical solution is supplied. However, with conventional circulation filtration methods and methods in which filtration is performed during chemical supply, there is a problem in that fine particles brought in from carriers etc. diffuse into the processing solution and adhere to the surface of the semiconductor substrate. In addition, acid/alkali chemicals are more difficult to remove particles than pure or gas chemicals, and cannot completely prevent particles from adhering to the semiconductor substrate surface. On the other hand, the conventional dip-type treatment method also suffers from contamination due to impurities contained in the chemicals used. In the semiconductor device manufacturing process, so-called electronic industry chemicals with low particulates and low impurities are used, but even these chemicals contain a considerable amount of inorganic impurities. ing. These impurities also have an adverse effect on device characteristics; in particular, contaminants such as heavy metals increase junction leakage TIK, reduce carrier lifetime, and induce crystal defects. In order to eliminate the effects of impurities in chemicals, a method may be used in which the semiconductor substrate is treated in the vapor of the chemicals. However, in conventional processing methods, semiconductor substrates processed in steam are usually not rinsed, or even if they are rinsed, they are immersed in pure water. If rinsing is not performed, impurities brought into the semiconductor substrate surface from the previous process, for example, may form water-soluble fluorides or chlorides in hydrofluoric acid vapor or hydrochloric acid vapor. It is not completely removed from the semiconductor substrate surface. On the other hand, when rinsing is performed by immersing in pure water, water-soluble fluorides or chlorides are removed, but there is a possibility of contamination from silica, fine particles, etc. in the pure water. Furthermore, as the aspect ratio increases with the miniaturization of devices, in the conventional dip processing method, the processing liquid and pure water for rinsing cannot reach the fine details, resulting in uneven processing and rinsing effects. Met. Conventionally, centrifugal drying has been widely used as a method for drying semiconductor substrates due to its economic efficiency and high throughput.
However, with this method, splashing of water droplets and adhesion of fine particles are essentially unavoidable, and the semiconductor substrate is rotated at high speed, which causes the problem that the semiconductor substrate may crack. In addition, a steam drying method in which the semiconductor substrate is dried in IPA vapor has also been adopted, but although this method can prevent fine particles from adhering to the semiconductor substrate surface and cracking the semiconductor substrate, the surface of the semiconductor substrate after drying There are problems such as IPA being adsorbed on the surface and the use of organic solvents, which are highly dangerous and require careful handling. Furthermore, in conventional processing methods, the processing tank and dryer were separated, so semiconductor substrates that had been treated with chemicals and rinsed were transported in the air from the processing tank to the dryer. However, when semiconductor substrates are transported in the air, there are problems in that floating dust in the air adheres to them, and fine particles adhere to the surface of the semiconductor substrates due to dust generated from the drive unit of the transport machine. The present invention has been made in view of the above-mentioned conventional situation,
Therefore, an object of the present invention is to provide a novel method for processing semiconductor substrates that makes it possible to solve the above-mentioned problems inherent in the conventional techniques. Differences between the invention and the prior art In contrast to the conventional semiconductor substrate processing method described above, the present invention processes a semiconductor substrate in chemical vapor, and after processing the semiconductor substrate in water vapor, it is dried by microwaves. The difference is that all processes are carried out in one processing tank. By processing the semiconductor substrate in steam, it is possible to prevent particulates attached to the carrier etc. from re-adhering to the semiconductor substrate surface, and also to prevent particulates contained in the chemicals from getting mixed into the steam. This makes it difficult for particles to adhere to the surface, reducing the adhesion of fine particles. Also, by using steam, contamination with impurities can be reduced. Furthermore, by performing all processes in one processing tank, it is possible to prevent fine particles from adhering during transportation. Means for Solving the Problems In order to achieve the above object, a method for processing a semiconductor substrate according to the present invention includes a step of processing a semiconductor substrate in a chemical vapor;
It is characterized by comprising a step of processing the semiconductor substrate in water vapor and a step of drying the semiconductor substrate with microwaves, and all steps are performed in one processing tank. Hydrofluoric acid vapor, hydrochloric acid containing ozone, nitric acid, or ammonia vapor is used as the chemical vapor. Practical Directions D1 Next, preferred embodiments of the present invention will be specifically explained with reference to the drawings and compared with conventional methods. FIG. 1 is a diagram showing the measurement results of the number of particles attached to the surface of a semiconductor substrate when using the first embodiment of the present invention and the conventional processing method. Conventional methods include hydrochloric acid (IICLI), nitric acid (HNOi), and ammonia (NH40H) containing hydrogen peroxide, and dilute hydrofluoric acid (NH40H).
The semiconductor substrate was immersed in DIIF for 10 minutes, rinsed in pure water for 10 minutes, and then dried using the IPA vapor drying method. In the case of the present invention, the semiconductor substrate was exposed to hydrochloric acid, nitric acid, and ammonia vapor into which an ozone/oxygen mixed gas was introduced, or fluorine vapor for 10 minutes, and then exposed to water vapor for 10 minutes. After that, the semiconductor substrate was irradiated with the microfluid and dried. In the conventional method, the number of fine particles attached to the surface of a semiconductor substrate is about 100 per substrate when hydrochloric acid (HCL/H202/HzO) and nitric acid (HNO3/tl202) are used; (NH40H
/hOz/H. 0), the number was about 20. In addition, when DIIF was used, the number was about 200. On the other hand, when the treatment according to the present invention was performed, the number of fine particles was several or less in all cases.

このように、本発明による処理方法を用いれば、従来の
処理方法と比較して、半導体基板表面への微粒子の付着
を少なくすることができる。
As described above, by using the processing method according to the present invention, it is possible to reduce the adhesion of fine particles to the surface of the semiconductor substrate, compared to the conventional processing method.

第2図は、本発明による第2の実施例及び従来法の処理
方法を用いた場合のMOS型ダイオードにおけるゲート
酸化膜の絶縁破壊電界強度の分布を示す図である. 測定に用いた試料のゲート酸化膜厚は約100人であり
、ゲート酸化膜形成前後の洗浄を本発明及び従来法の処
理方法によって行った. 従来法としては、アンモニア水/過酸化水素混合液を用
いた。
FIG. 2 is a diagram showing the distribution of dielectric breakdown field strength of the gate oxide film in a MOS diode when the second embodiment of the present invention and the conventional processing method are used. The gate oxide film thickness of the sample used for the measurement was approximately 100, and cleaning before and after forming the gate oxide film was performed using the processing methods of the present invention and the conventional method. In the conventional method, an aqueous ammonia/hydrogen peroxide mixture was used.

fK来法の場合には、初期不良が多発しており、破壊電
界強度が低電界側に分布しており、8MV/cm以上の
いわゆる真性耐圧を示した試料はほとんどなかった.こ
れに対して、本発明による第2の実施例の場合には、初
期不良は全く見られず、ほとんど全ての試料で9MV/
cm以上の電界強度を保っている. ゲート酸化膜形成時に、半導体基板表面に@粒子が付着
していると、形成されたゲート酸化膜にビンホールが発
生しやすくなる.また、重金属等の不純物による汚染が
あると、その汚染物質が核となって結晶欠陥を誘起する
.これらのビンポールや結晶欠陥はいずれも絶縁耐圧の
劣化を惹き起こす.このことから、従来法では本発明に
よる処理方法と比較して、微粒子あるいは無機不純物に
よる汚染をかなり受けていることが分かる.第3図は、
本発明及び従来法の処理方法を用いた場金め半導体基板
における少数キャリアのライフタイム測定結果を示す. 測定は、汚染させた半導体基板に本発明及び従来法によ
って処理を施し、酸化雰囲気中で熱処理を行った後に、
非接触ライフタイム法によって行った.従来法では、フ
ッ酸蒸気に5分間晒した後、リンスを行わずに熱処理を
行った.本発明ではフッ酸蒸気中で5分間処理した後に
水蒸気中で10分間処理を行った.比較の為に清浄な半
導体基板及び汚染後後処理を行っていない半導体基板で
の値も示す. 従来法の場合には、純水によるリンスを行っていない為
に、汚染物質が半導体基板表面上に残留しているので、
少数キャリアのライフタイムは後処理を行っていない場
合とほとんど変わらない.これに対して、本発明の場合
には、水蒸気中での処理を行うことによって、フッ酸蒸
気によって水溶性のフッ化物に変化した汚染物質は半導
体基板表面から除去される為に、少数キャリアのライフ
タイムは清浄な半導体基板の場合とほぼ同じ長さになっ
ている. なお,従来法の処理t&純水中でlO分間リンスを行っ
た場合には、少数キャリアのライフタイムは本発明の場
合とほぼ同じ値であったが、半導体基板表面上に付着し
た微粒子数は本発明の場自と比較して約1桁多かった. 発明の効果 以上説明したように、本発明によれば、薬品蒸気中で半
導体基板を処理し、該半導体基板を水蒸気中で処理した
後に、マイクロ波によって乾燥させ、且つ全ての工程を
一つの処理槽内で行うことにより、微粒子の付着や無機
不純物による汚染が防止でき、更に蒸気を利用すること
によって細部に至るまでより均一な処理を行うことがで
きる為に、高品質、高歩留りの半導体装置を製造するこ
とができる効果が得られる.
In the case of the conventional fK method, there were many initial failures, the breakdown electric field strength was distributed on the low electric field side, and there were almost no samples that showed a so-called intrinsic breakdown voltage of 8 MV/cm or more. On the other hand, in the case of the second example according to the present invention, no initial defects were observed, and almost all samples had a voltage of 9 MV/
It maintains an electric field strength of more than cm. If @ particles adhere to the surface of the semiconductor substrate during gate oxide film formation, bottle holes are likely to occur in the formed gate oxide film. Furthermore, if there is contamination with impurities such as heavy metals, the contaminants act as nuclei and induce crystal defects. Both of these bin poles and crystal defects cause deterioration of dielectric strength. This shows that the conventional method is significantly more contaminated by fine particles and inorganic impurities than the treatment method of the present invention. Figure 3 shows
The results of lifetime measurements of minority carriers in in-situ metallized semiconductor substrates using the present invention and conventional processing methods are shown. The measurements were carried out by treating contaminated semiconductor substrates according to the present invention and conventional methods, and after heat treatment in an oxidizing atmosphere.
This was done using the non-contact lifetime method. In the conventional method, heat treatment was performed without rinsing after exposure to hydrofluoric acid vapor for 5 minutes. In the present invention, the sample was treated in hydrofluoric acid vapor for 5 minutes and then in water vapor for 10 minutes. For comparison, the values for a clean semiconductor substrate and a semiconductor substrate without post-treatment after contamination are also shown. In the case of the conventional method, contaminants remain on the surface of the semiconductor substrate because rinsing with pure water is not performed.
The lifetime of minority carriers is almost the same as when no post-processing is performed. On the other hand, in the case of the present invention, contaminants converted into water-soluble fluoride by hydrofluoric acid vapor are removed from the semiconductor substrate surface by processing in water vapor, so minority carriers are removed from the surface of the semiconductor substrate. The lifetime is approximately the same as that of a clean semiconductor substrate. In addition, in the case of conventional treatment and rinsing in pure water for 10 minutes, the lifetime of minority carriers was almost the same as in the case of the present invention, but the number of particles attached to the semiconductor substrate surface was This was about one order of magnitude higher than that of the present invention. Effects of the Invention As explained above, according to the present invention, a semiconductor substrate is processed in chemical vapor, and after the semiconductor substrate is processed in water vapor, it is dried by microwave, and all steps are performed in one process. By performing the process in a bath, it is possible to prevent the adhesion of fine particles and contamination by inorganic impurities, and by using steam, it is possible to perform more uniform processing down to the smallest details, resulting in high quality and high yield semiconductor devices. This has the effect of making it possible to manufacture .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による第1の実施例及び従来法の処理方
法を用いた場合の半導体基板表面に付着する微粒子数の
測定結果を示す図、第2図は本発明による第2の実施例
及び従来法の処理方法を用いた場合のMOS型ダイオー
ドにおけるゲート酸化膜の絶縁破壊電界強度の分布を示
す図、第3図は本発明及び従来法の処理方法を用いた場
合の、半導体基板における少数キャリアのライフタイム
測定結果を示す図である. 特許出願人  日本電気株式会社 代 理 人  弁理士 熊谷雄太郎 1!1図 絶縁破壊電界強度(MV/謳) 箪2円
FIG. 1 is a diagram showing the measurement results of the number of fine particles adhering to the surface of a semiconductor substrate in a first embodiment according to the present invention and a conventional processing method, and FIG. 2 is a diagram showing a second embodiment according to the present invention. Figure 3 shows the distribution of dielectric breakdown field strength of the gate oxide film in a MOS diode when using the processing method of the present invention and the conventional method. It is a diagram showing the lifetime measurement results of minority carriers. Patent applicant: NEC Co., Ltd. Representative: Patent attorney: Yutaro Kumagai 1! Figure 1 Dielectric breakdown electric field strength (MV/song): 2 yen

Claims (1)

【特許請求の範囲】[Claims] 半導体基板を薬品蒸気に晒す工程と、該半導体基板を水
蒸気に晒す工程と、マイクロ波によって前記半導体基板
を乾燥する工程とを含むことを特徴とする半導体基板の
処理方法。
A method for processing a semiconductor substrate, comprising the steps of exposing a semiconductor substrate to chemical vapor, exposing the semiconductor substrate to water vapor, and drying the semiconductor substrate using microwaves.
JP5584089A 1989-03-08 1989-03-08 Treating method of semiconductor substrate Pending JPH02235337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5584089A JPH02235337A (en) 1989-03-08 1989-03-08 Treating method of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5584089A JPH02235337A (en) 1989-03-08 1989-03-08 Treating method of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH02235337A true JPH02235337A (en) 1990-09-18

Family

ID=13010198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5584089A Pending JPH02235337A (en) 1989-03-08 1989-03-08 Treating method of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH02235337A (en)

Similar Documents

Publication Publication Date Title
JP2581268B2 (en) Semiconductor substrate processing method
US4695327A (en) Surface treatment to remove impurities in microrecesses
JP3154814B2 (en) Semiconductor wafer cleaning method and cleaning apparatus
JP6988761B2 (en) Cleaning processing equipment and cleaning method for semiconductor silicon wafers
Hattori et al. Contamination Removal by Single‐Wafer Spin Cleaning with Repetitive Use of Ozonized Water and Dilute HF
JP4367587B2 (en) Cleaning method
JPH09275084A (en) Method of cleaning semiconductor substrate
JPH0817815A (en) Method for manufacturing semiconductor device and methods for treating, analyzing, and manufacturing semiconductor substrate
JP3535820B2 (en) Substrate processing method and substrate processing apparatus
US20080308122A1 (en) Process For Cleaning, Drying and Hydrophilizing A Semiconductor Wafer
JP2003218085A (en) Cleaning method of semiconductor substrate
US20020179112A1 (en) Method of cleaning electronic device
KR20090030204A (en) Process for cleaning a semiconductor wafer
JPH02235337A (en) Treating method of semiconductor substrate
JP4357456B2 (en) Semiconductor substrate cleaning method
JPH05166777A (en) Washing of semiconductor wafer
JPH02215127A (en) Treatment device for semiconductor substrate
JP2005051099A (en) Method of cleaning substrate
JP2005051101A (en) Method of cleaning substrate
JP4306217B2 (en) Method for drying semiconductor substrate after cleaning
JPH0750281A (en) Cleaning method for silicon wafer
JPH056884A (en) Cleaning method for silicon wafer
JPS6345822A (en) Method and apparatus for cleaning
JPH09190994A (en) Deionizing water/ozone cleanig after hydrofluoric acid treatment for prevention of creation of residue of silicic acid
KR0171983B1 (en) Wafer cleaning method