JPH02235304A - Inductance element and manufacture thereof - Google Patents

Inductance element and manufacture thereof

Info

Publication number
JPH02235304A
JPH02235304A JP1056803A JP5680389A JPH02235304A JP H02235304 A JPH02235304 A JP H02235304A JP 1056803 A JP1056803 A JP 1056803A JP 5680389 A JP5680389 A JP 5680389A JP H02235304 A JPH02235304 A JP H02235304A
Authority
JP
Japan
Prior art keywords
coil
resin
ferrite powder
inductance element
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1056803A
Other languages
Japanese (ja)
Inventor
Seiji Kojima
小嶋 清司
Atsushi Inuzuka
敦 犬塚
Tadashi Sakamoto
忠 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1056803A priority Critical patent/JPH02235304A/en
Publication of JPH02235304A publication Critical patent/JPH02235304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

PURPOSE:To manufacture a compact and thin typed coreless element in high inductance value by a method wherein coils solidified with a thermo-setting resin is seal-formed of a ferrite powder formed body. CONSTITUTION:When coils 1 solidified with a thermo-setting resin is seal-formed of a ferrite powder formed body 3 together with rubber terminals 2 using the thermo-setting resin as a hinder, a coreless compact and thin typed structure element in high inductance value can be manufactured. In such a constitution, the deterioration in temperature characteristics, etc., of this element due to the difference in thermal expansion can be prevented from occurring due to the coreless structure of the element.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種電子機器に利用されるインダクタンス素
子およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an inductance element used in various electronic devices and a method for manufacturing the same.

従来の技術 近年、電子機器の小型化軽量化に伴い、電子部品の高密
度面実装が進み、それに使われるチップ部品の小型化.
薄型化が要求されている。
Conventional technology In recent years, as electronic devices have become smaller and lighter, electronic components have become more densely surface-mounted, and the chip components used in them have become smaller.
There is a demand for thinner products.

その中でインダクタンス素子は、導体をコイル状にした
構成としなければならないため、抵抗やコンデンサに比
べて小型化が遅れている。
Among these, inductance elements must have a structure in which the conductor is coiled, so miniaturization has been slower than with resistors and capacitors.

巻線型のインダクタンス素子を小型化する場合にフェラ
イトの焼結体コアを小さくすることが必要で、現状です
でに小型化できる限界の大きさに達している。これ以上
の小型化の要望に対してこの焼結体コアを無くシたコア
レスインダクタンス素子が考案されている。しかし高透
磁率の焼結体コアを内包していないためインダクタンス
値は小さい。このインダクタンス値を上げるため、封止
成形樹脂中にフェライト粉本を混入する方式が考案され
ている。しかしトランスファー成形や射出成形方式で封
止成形しており、樹脂の流れ性が必要なため、樹脂量を
少なくすることができない。
In order to miniaturize a wire-wound inductance element, it is necessary to reduce the size of the sintered ferrite core, and at present the size has already reached the limit for miniaturization. In response to the demand for further miniaturization, a coreless inductance element without this sintered core has been devised. However, since it does not include a sintered core with high magnetic permeability, the inductance value is small. In order to increase this inductance value, a method has been devised in which ferrite powder is mixed into the sealing molding resin. However, since sealing is performed using transfer molding or injection molding, and resin flowability is required, it is not possible to reduce the amount of resin.

このため、フェライト粉本の含有量は最大でも87重量
%程度であり、フェライト粉末を含有した成形樹脂の初
透磁率(μiac )は6〜9と小さく、これを成形樹
脂としたインダクタンス素子のインダクタンス値は小さ
い。
Therefore, the content of ferrite powder is about 87% by weight at most, and the initial magnetic permeability (μiac) of molded resin containing ferrite powder is as small as 6 to 9, and the inductance of an inductance element using this molded resin is as low as 6 to 9. The value is small.

発明が解決しようとする課題 上述のようにコアレスイングクタンス素子は小型化,薄
型化が可能で有望であるものの、インダクタンス値が低
く、高特性化が望まれている。
Problems to be Solved by the Invention As mentioned above, coreless inductance elements are promising because they can be made smaller and thinner, but they have a lower inductance value and are desired to have higher characteristics.

本発明はフェライト粉本を含有した成形樹脂の高透磁率
化とその封止成形方法を課題として険討し、高インダク
タンス値を有するコアレスのインダクタンス素子を提供
することを目的としている。
The present invention aims to provide a coreless inductance element having a high inductance value by tackling the challenges of increasing the magnetic permeability of a molding resin containing ferrite powder and a sealing molding method thereof.

課題を解決するための手段 上記課題を解決するために本発明は,熱硬化性樹脂で固
化されたコイルが、樹脂をバインダーとしたフェライト
粉末成形体で封止成形された構成としたものである。
Means for Solving the Problems In order to solve the above problems, the present invention has a structure in which a coil solidified with a thermosetting resin is sealed and molded with a ferrite powder molded body using resin as a binder. .

作用 上記構成とすることにより、高インダクタンス値を有し
、特性的にも優れたインダクタンス素子が提供できるこ
とになる。
Effect: By having the above structure, an inductance element having a high inductance value and excellent characteristics can be provided.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

まず、本発明の基本的な考え方について説明する。First, the basic idea of the present invention will be explained.

高インダクタンス値にするために、成形樹脂中のフェラ
イト粉本の含有量を88〜97重量%に高めた。これに
よって成形樹脂は、ほとんどフェライト粉本となり、流
,れ性は極めて悪く従来のトランスファー成形や射出成
形を用いることはできない。そこで圧縮成形法を採用す
ることにし念。
In order to obtain a high inductance value, the content of ferrite powder in the molding resin was increased to 88 to 97% by weight. As a result, the molding resin becomes mostly ferrite powder, and its flowability is extremely poor, making it impossible to use conventional transfer molding or injection molding. Therefore, we decided to use the compression molding method.

ところが圧縮成形法では、内蔵されたコイルが圧力によ
って変形し、シ1−トを起してしまうため、強度があり
かつ絶縁性の高い熱硬化性樹脂でコイルを固化すること
でコイルに耐圧性を持たせると共に、銅線間の絶縁性を
向上させ念。
However, in the compression molding method, the built-in coil deforms due to pressure and causes sheets, so by solidifying the coil with a thermosetting resin that is strong and highly insulating, it is possible to make the coil pressure resistant. At the same time, it is important to improve the insulation between copper wires.

すなわち、第1図に示すように熱硬化性樹脂で固化され
たコイ)v1が、コム端子2上に配置され、樹脂ヲパイ
ンダーとしたフェフイト粉木成形体3でコイル1および
コム端子2の一部を除いて封止成形したものである。
That is, as shown in FIG. 1, a carp v1 solidified with a thermosetting resin is placed on the com terminal 2, and a part of the coil 1 and the com terminal 2 is placed on the fephite powder wood molded body 3 with resin as a binder. It is sealed and molded except for.

父、樹脂をバイングーとしたフェライト粉本成形体3に
おけるフェライト粉末の含有量を88〜97重量%に上
げたものである。
First, the content of ferrite powder in the ferrite powder main molded body 3 in which the resin is baingu is increased to 88 to 97% by weight.

さらに、その製造方法は、絶縁性皮覆銅線を巻いたコイ
ルと作り、このコイルに溶剤で薄めた熱硬化性樹脂を倹
市含浸し、ついで固化熱処理を施し、この熱硬化性樹脂
で固化されたコイA/1を、樹脂をバインダーとしたフ
ェライト粉末成形体3で覆い加圧してコイルを封止成形
し、そのあと必要に応じて固化熱処理を施すことを特徴
とするものである。
Furthermore, the manufacturing method involves making a coil wrapped with insulating coated copper wire, impregnating this coil with a thermosetting resin diluted with a solvent, then subjecting it to solidification heat treatment, and solidifying it with this thermosetting resin. The coil A/1 is covered with a ferrite powder molded body 3 using a resin as a binder and pressurized to seal and mold the coil, and then subjected to solidification heat treatment as required.

上述のように、熱硬化性樹脂でコイルを固定することに
より、圧縮成形でフェライト粉末を通してコイル1を加
圧しても、コイ〃1は約1 ton/,Jまでの圧力で
は冫1とんど変形せず又ショートを起こさない。
As mentioned above, by fixing the coil with a thermosetting resin, even if the coil 1 is pressurized through ferrite powder by compression molding, the coil 1 will not be as strong as the coil 1 at pressures up to about 1 ton/J. It does not deform and does not cause short circuits.

又、圧縮成形により、成形体中のフェライト粉本含有量
を88〜97重量%に増すことができ,これによってフ
ェライト粉木成形体3の初透磁率をμilo=10〜3
oと大巾に高めることができ,これによって封止成形し
たインダクタンス素子のインダクタンス値を高くするこ
とができる。
Moreover, by compression molding, the content of ferrite powder in the molded body can be increased to 88 to 97% by weight, thereby increasing the initial magnetic permeability of the ferrite powder wood molded body 3 to μilo = 10 to 3.
o, and thereby the inductance value of the encapsulated inductance element can be increased.

以下本発明について具体的な実施例にて詳細に説明する
The present invention will be described in detail below using specific examples.

銅線直径か30μmの絶縁皮覆銅線を直径がQ.6mm
の芯棒に80ターン巻線した。巻き巾はQ.8fflO
lに制限した。巻き上かつ念コイルの外径は1jfll
l1であった。熱硬化性樹脂である2液性のエボキシ樹
脂を混合し、そこへ溶剤として2エトキシエタノールを
エポキシ樹脂の重量の3倍のaを加えてかき混ぜた液を
、上述のコイ/I/K塗って中まで浸みこませ、軽く熱
風乾燥させて芯棒から外し,上述のエボキシ樹脂を固着
剤として塗布してあるコム端子2上にのせて160℃で
30分熱処理してエボキシ樹脂を硬化させた。用いた銅
.%Iはポリウレタン皮覆銅線で,皮覆銅線の直径は4
4μmあり九。この銅線の皮覆付の占積率は68%で残
りの空間42%にエボキシ樹脂が固化して・はいってい
ると考えられる。
A copper wire with a diameter of Q. 6mm
80 turns were wound around the core rod. The roll width is Q. 8fflO
limited to l. The outer diameter of the winding coil is 1jfl
It was l1. Mix two-component epoxy resin, which is a thermosetting resin, and add 2-ethoxyethanol as a solvent in an amount of 3 times the weight of the epoxy resin and stir. Apply the above-mentioned Koi/I/K. It was soaked into the inside, lightly dried with hot air, removed from the core rod, placed on the com terminal 2 coated with the above-mentioned epoxy resin as a fixing agent, and heat-treated at 160° C. for 30 minutes to harden the epoxy resin. Copper used. %I is polyurethane coated copper wire, and the diameter of the coated copper wire is 4
9 with 4μm. The space factor of this copper wire covered with a skin is 68%, and the remaining space of 42% is thought to be filled with solidified epoxy resin.

一方、Ni − Zn系フェライト粉末を秤量し、そこ
へ上述のエポキシ樹脂溶液を溶剤を除いた重量で3〜1
6重量%分秤量し、フェライト粉本に混入しよく混合混
練した。
On the other hand, Ni-Zn ferrite powder was weighed, and the above-mentioned epoxy resin solution was added thereto in an amount of 3 to 1
An amount of 6% by weight was weighed out, mixed into a ferrite powder, and thoroughly mixed and kneaded.

圧縮成形金型の下金型にコイル付コム端子を置いて固定
し,上金型を置いて組み合せ,コイ/L/1が上下金型
の中央部空間に浮いた状態にし、下ポンチをスベーサを
さしこんで下げて、前述のエポキシ樹脂が混練付着して
いるフェライト粉末を秤量して、金型の上部から入れ、
上ポンチを入れ、軽く振動を加えてから下ポンチのスペ
ーサを抜いて,エヤープレスで最大1ton/一の圧力
を上下ポンチに加えた。加圧時間は約10秒間であった
Place and fix the com terminal with coil in the lower mold of the compression molding mold, place the upper mold and assemble it, so that the Coil/L/1 is floating in the center space of the upper and lower molds, and the lower punch is placed on the flat surface. Weigh out the ferrite powder to which the epoxy resin is kneaded and adhered, and insert it into the mold from the top.
After inserting the upper punch and applying slight vibration, the spacer of the lower punch was removed, and a maximum of 1 ton of pressure was applied to the upper and lower punches using an air press. The pressurization time was about 10 seconds.

その後、金型から成形物を外し,150Cで30分熱処
理してエボキシ樹脂を硬化させた。そのあとコム端子2
部を切断し曲げ加工して、縦1.6mfll,横3.2
fflm,高さ1jmmのインタリタンス素子とした。
Thereafter, the molded product was removed from the mold and heat treated at 150C for 30 minutes to harden the epoxy resin. Then com terminal 2
After cutting and bending the part, it became 1.6mfl in length and 3.2m in width.
fflm, height 1jmm.

でき上がったインダクタンス素子の断面を模式的に示し
たのが第1図である。
FIG. 1 schematically shows a cross section of the completed inductance element.

比較のため,従来法のものも準備した。従来法で、本発
明と異なるところは、巻き上がったコイルを固定するの
にアルコールで薄めたプチラール樹脂を用いたことと、
コイルの封止成形は、エポキシ樹脂とフェライト粉末混
練ペレット(フェライト粉木含有量86重量%)を用い
て、トランスファー成形を行ったことである。
For comparison, a conventional method was also prepared. The conventional method differs from the present invention in that petitral resin diluted with alcohol was used to fix the wound coil.
The coil was encapsulated by transfer molding using epoxy resin and ferrite powder kneaded pellets (ferrite powder content: 86% by weight).

その結果を下表に示す。The results are shown in the table below.

測定結果から5フェライト粉本の含有量を増すことによ
りインダクタンス値Lは向上し、又Qの最大値Qmax
も向上している。85重量%ではトランスファー成形と
比較すると多少減少しているのはコイルを熱硬化性樹脂
で覆っているため、その分だけフェライト粉本の占める
体積割合がコイル近傍で減ったためと考えられる。
From the measurement results, the inductance value L is improved by increasing the content of 5 ferrite powder, and the maximum value of Q
has also improved. At 85% by weight, there is a slight decrease compared to transfer molding, which is thought to be because the coil is covered with a thermosetting resin, so the volume ratio occupied by ferrite powder in the vicinity of the coil is reduced accordingly.

又、含有量を97重量%を越して検討したが、樹脂の量
が少なすぎて、封止成形体の機械的強度が低下し、フェ
ライト粉木がとれたりすることがあり、実用上問題がで
た。それ故、本発明の効果を発揮するフェライト粉本含
有量は,従来法のトランスファー成形法等よりも明らか
に効果の出る88〜97重量%の範囲である。
In addition, although we considered increasing the content to more than 97% by weight, the amount of resin was too small and the mechanical strength of the encapsulated molded body decreased and the ferrite powder could come off, which caused practical problems. It came out. Therefore, the ferrite powder content that exhibits the effects of the present invention is in the range of 88 to 97% by weight, which is clearly more effective than conventional transfer molding methods.

又、従来法でのコイルを用いて圧縮成形法で封止成形し
たところ、2oOkg/一の圧力においてもコイルがシ
曹−トを起し、インダクタンス値は九とえば040Bμ
Hというような極めて小さな値となった。
Furthermore, when a conventional coil was encapsulated by a compression molding method, the coil caused carbonation even at a pressure of 200kg/1, and the inductance value was 9, for example, 040Bμ.
It became an extremely small value of H.

本発明における圧縮成形での圧力は、実施例の場合で最
大が1ton/一であった。1ton/,4を越えると
コイルが変形してシ望一トを起す場合が出た。又圧力を
4oOkg/一以下にすると、フェライト粉本成形体の
機械的強度が弱く、実用上問題が出た。それ故成形圧力
は400〜1ooOkg / (4と言える。しかし、
これは用いた樹脂の種類や品種によって左右され、コイ
ルを固定する熱硬化性樹脂として今以上に機械的強度の
強いものが開発されれば、1ton/r−4以上の圧力
に対しても耐えられるであろう。又フェライト粉本を接
着する樹脂として接着力の強いもので小さな圧力で密度
が充分あげられるものがあれば、圧縮成形の圧力は4o
 o kg /一よりも下げられるであろう。
The maximum pressure during compression molding in the present invention was 1 ton/1 in the example. When it exceeds 1 ton/.4, the coil may deform and cause a crash. Furthermore, when the pressure was lower than 4 okg/1, the mechanical strength of the ferrite powder molded body was weak, which caused a practical problem. Therefore, the molding pressure can be said to be 400 to 1ooOkg/(4.However,
This depends on the type and type of resin used, and if a thermosetting resin that fixes the coil with stronger mechanical strength than now is developed, it will be able to withstand pressures of 1 ton/r-4 or more. It will be done. Also, if the resin used to bond the ferrite powder book has a strong adhesive force and can sufficiently increase the density with a small pressure, the compression molding pressure should be 4 o.
It will be lower than 0 kg/1.

本発明におけるコイルを固定する熱硬化性樹脂は、エボ
キシ樹脂が最適であるが、池の熱硬化性樹脂、たとえば
ジアリルフタレート樹脂やフェノール樹脂も用いること
ができる。又、フェライト粉本と混ぜてパインダ・一と
して用いる樹脂としては、実施例ではエボキシ樹脂を用
いたが,コイル固定用の樹脂と同じにする必要はなく、
接着性や耐熱性を満足する樹脂であれば良くたとえば上
述のフェノール樹脂等を用いることができる。
Epoxy resin is most suitable as the thermosetting resin for fixing the coil in the present invention, but other thermosetting resins such as diallyl phthalate resin and phenol resin can also be used. In addition, in the example, epoxy resin was used as the resin mixed with ferrite powder and used as a binder, but it is not necessary to use the same resin as the resin for fixing the coil.
Any resin that satisfies adhesive properties and heat resistance may be used, such as the above-mentioned phenol resin.

又、フェライト粉末については、実施例ではNi − 
Zn系フェライトを用いたが、Ni − Zn −Cu
系,Mg−Cu−Zn系など、要望される周波数特性や
損失特性に合わせて,種々の軟磁性フエ.ライト粉末を
用いなければならない。
Further, regarding the ferrite powder, in the example, Ni −
Although Zn-based ferrite was used, Ni-Zn-Cu
Various soft magnetic ferromagnetic materials such as Mg-Cu-Zn type, Mg-Cu-Zn type, etc. are available depending on the desired frequency characteristics and loss characteristics. Light powder must be used.

発明の効果 以上のように、空芯コイルを熱硬化性樹脂で覆って固化
した構造にすることにより、圧縮成形法を採用すること
ができ、封止成形体中のフエツイト粉末の含有量を上げ
ることができ、巻線型のインダクタンス素子で小型薄型
の形状で高インダクタンスを有した素子が可能となった
Effects of the Invention As described above, by covering the air-core coil with a thermosetting resin to form a solidified structure, compression molding can be adopted, and the content of feutzite powder in the sealed molded product can be increased. This has made it possible to create a wire-wound inductance element that is small and thin and has high inductance.

又,本発明のコアレスのインダクタンス素子ハ、コイル
の内外が全て同一のフェライト粉本成形体で覆われた構
造であるため、従来の有芯のインダクタンス素子におい
て大きな問題点となっていた焼結体のドラムコアと封止
成形体との熱膨張の違いなどということが無く、温度特
性やその池の信頼性試検における特性において優れたイ
ンダクタンス素子となっている。
In addition, the coreless inductance element of the present invention has a structure in which the inside and outside of the coil are all covered with the same ferrite powder molded body, which is a major problem in conventional cored inductance elements. There is no difference in thermal expansion between the drum core and the sealed molded body, making it an inductance element with excellent temperature characteristics and characteristics in reliability tests.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のインダクタンス素子の一例の模式的
な断面図である。 1・・・・・・コイル、2・・・・・・コム端子、3・
・・・・・フェライト粉末成形体。
FIG. 1 is a schematic cross-sectional view of an example of an inductance element of the present invention. 1... Coil, 2... Comb terminal, 3.
...Ferrite powder compact.

Claims (3)

【特許請求の範囲】[Claims] (1)熱硬化性樹脂で固化されたコイルが、樹脂をバイ
ンダーとしたフェライト粉末成形体で封止成形されてい
ることを特徴とするインダクタンス素子。
(1) An inductance element characterized in that a coil solidified with a thermosetting resin is sealed and molded with a ferrite powder molded body using the resin as a binder.
(2)樹脂をバインダーとしたフェライト粉末成形体に
おいて、フェライト粉末の含有量が88〜97重量%で
ある請求項1記載のインダクタンス素子。
(2) The inductance element according to claim 1, wherein the ferrite powder molded body uses a resin as a binder, and the ferrite powder content is 88 to 97% by weight.
(3)絶縁皮覆銅線を巻いて空芯コイルを作り、前記コ
イルに溶剤に溶かした熱硬化性樹脂を塗布含浸し、次い
で固化熱処理を施し、この熱硬化性樹脂で固化したコイ
ルを、樹脂をバインダーとしたフェライト粉末成形体で
覆い加圧してコイルを封止成形し、そのあと必要に応じ
て固化熱処理を施すことを特徴とするインダクタンス素
子の製造方法。
(3) Make an air-core coil by winding an insulated copper wire, apply and impregnate the coil with a thermosetting resin dissolved in a solvent, and then perform a solidification heat treatment, and the coil solidified with this thermosetting resin, A method for manufacturing an inductance element, which comprises sealing and molding a coil by covering it with a ferrite powder molded body using resin as a binder and applying pressure, and then subjecting it to solidification heat treatment as necessary.
JP1056803A 1989-03-08 1989-03-08 Inductance element and manufacture thereof Pending JPH02235304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1056803A JPH02235304A (en) 1989-03-08 1989-03-08 Inductance element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1056803A JPH02235304A (en) 1989-03-08 1989-03-08 Inductance element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02235304A true JPH02235304A (en) 1990-09-18

Family

ID=13037556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1056803A Pending JPH02235304A (en) 1989-03-08 1989-03-08 Inductance element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02235304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021005967A1 (en) * 2019-07-11 2021-01-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021005967A1 (en) * 2019-07-11 2021-01-14
WO2021005967A1 (en) * 2019-07-11 2021-01-14 株式会社村田製作所 Inductor
CN114072886A (en) * 2019-07-11 2022-02-18 株式会社村田制作所 Inductor

Similar Documents

Publication Publication Date Title
US6710692B2 (en) Coil component and method for manufacturing the same
US11309117B2 (en) Inductive element and manufacturing method
JP3108931B2 (en) Inductor and manufacturing method thereof
JP4099340B2 (en) Manufacturing method of coil-embedded dust core
CN1627457B (en) Magnetic component and its making method
JP4768372B2 (en) Coil-enclosed magnetic component and method for manufacturing the same
JP2011097087A (en) Method of manufacturing high-current thin-type inductor
JP4768373B2 (en) Coil-enclosed magnetic component and method for manufacturing the same
US5692290A (en) Method of manufacturing a chip inductor
KR101981615B1 (en) Coil component
US20210090792A1 (en) Inductor device and method of fabricating the same
KR100483739B1 (en) Ferrite oxide magnetic material
JPH02235304A (en) Inductance element and manufacture thereof
JPH08255717A (en) Coil element and its manufacturing method
JPH0352204A (en) Inductance element and manufacture thereof
JP2006019706A (en) Coil-encapsulated dust core manufacturing method and coil encapsulated dust core
JP2600730B2 (en) Composite magnetic mold material
JP2003173917A (en) Coil component and its manufacturing method
CN107045912A (en) Coil component
JP3201782B2 (en) Manufacturing method of dust core
JPH01199415A (en) Inductance element and manufacture thereof
KR100655418B1 (en) Coil integrated inductor
JPH0262012A (en) Inductance element and its manufacture
US5669134A (en) Method of manufacturing chip inductor
JP2004006696A (en) Wire-wound inductor