JPH0223513B2 - - Google Patents

Info

Publication number
JPH0223513B2
JPH0223513B2 JP59077444A JP7744484A JPH0223513B2 JP H0223513 B2 JPH0223513 B2 JP H0223513B2 JP 59077444 A JP59077444 A JP 59077444A JP 7744484 A JP7744484 A JP 7744484A JP H0223513 B2 JPH0223513 B2 JP H0223513B2
Authority
JP
Japan
Prior art keywords
phosphate
zeolite
calcium
soil
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59077444A
Other languages
Japanese (ja)
Other versions
JPS60221485A (en
Inventor
Shigeki Sawada
Isao Joko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP59077444A priority Critical patent/JPS60221485A/en
Publication of JPS60221485A publication Critical patent/JPS60221485A/en
Publication of JPH0223513B2 publication Critical patent/JPH0223513B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はリン酸カルシウムをコーテイングした
土壌改良剤に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a soil conditioner coated with calcium phosphate.

わが国の耕地面積は水田と畑を合わせて約512
万ヘクタールであるが、その約60%が土地環境不
良地といわれ、またその半分がいわゆる不良土で
あるといわれている。このような土壌を改良し農
業生産の向上を図るべく各種検討され実施されて
いる。
The cultivated land area in Japan is approximately 512 including rice paddies and fields.
Approximately 60% of the total land area is said to be poor land, and half of it is said to be poor soil. Various studies have been conducted to improve such soil and improve agricultural production.

無機系の土壌改良資材としてのゼオライトは、
多孔性の高カチオン交換容量を示す鉱物であるこ
とから、肥料成分保持力の弱い土壌、カチオン保
持力の弱い土壌、酸性土壌、排水不良土壌に対す
る土壌改良に有効であり、またわが国に豊富に埋
蔵されている点からも有望視されている。
Zeolite is an inorganic soil improvement material.
Because it is a porous mineral that exhibits a high cation exchange capacity, it is effective in soil improvement for soils with weak fertilizer component retention capacity, weak cation retention capacity, acidic soil, and poorly drained soil, and is abundant in Japan. It is seen as promising because of the

しかし、ゼオライトそのものには肥料成分は含
有されていないため、ゼオライト単用でなく肥料
成分の施用を同時に行う必要がある。
However, since zeolite itself does not contain fertilizer components, it is necessary to apply fertilizer components at the same time instead of using zeolite alone.

他方、肥料の主成分の一つであるリン酸は、土
壌に施した場合その利用率は僅か5〜20%とはな
はだ低く、これは施したリン酸のかなりの部分が
固定されることを意味している。わが国のように
温暖多雨のもとで激しい溶脱作用が行われるとこ
ろでは、土壌から溶出した鉄やアルミニウムイオ
ンとリン酸とが結合し、リン酸アルミニウムやリ
ン酸鉄等のリン酸化合物ができ、ほとんど植物に
利用されないまま固定されたリン酸になる。リン
酸の固定を防ぐには石灰を施して土壌のpHを中
性にして鉄やアルミニウムの溶解度を低下させな
ければならない。だが、こうした手段を採用した
としても、多雨のところでは種々の有機酸を含ん
だ水で土壌を洗う結果となり、土壌中のリン酸が
流亡する現象を防ぐことはできない。
On the other hand, when phosphoric acid, one of the main components of fertilizer, is applied to soil, its utilization rate is extremely low at only 5 to 20%, which means that a large portion of the applied phosphoric acid is fixed. are doing. In places such as Japan, where intense leaching occurs under warm and rainy conditions, iron and aluminum ions leached from the soil combine with phosphoric acid to form phosphoric acid compounds such as aluminum phosphate and iron phosphate. It becomes fixed phosphoric acid that is hardly utilized by plants. To prevent phosphate fixation, lime must be applied to neutralize the soil pH and reduce the solubility of iron and aluminum. However, even if such measures are adopted, in areas with heavy rainfall, the soil will be washed with water containing various organic acids, and the phenomenon of phosphoric acid in the soil being washed away cannot be prevented.

従つて、土壌改良剤としてのゼオライトに難溶
性のリン酸カルシウムをコーテイングした土壌改
良剤を安価に供給することができれば効果的であ
る。
Therefore, it would be effective if a soil conditioner containing zeolite coated with hardly soluble calcium phosphate could be supplied at a low cost.

本発明者らは、下水二次処理水や廃水中に含有
されているリン酸塩を効果的に除去する晶析脱リ
ン法について研究を進めていたが、この研究の過
程で、ある条件においては何ら脱リン性能を有し
ない粒状物、例えば粒状ゼオライトのような物質
の表面においてもリン酸カルシウムの結晶が析出
してくる現象を見い出し、本発明に至つた。
The present inventors have been conducting research on a crystallization dephosphorization method that effectively removes phosphates contained in secondary treated sewage water and wastewater, but in the course of this research, under certain conditions, discovered a phenomenon in which calcium phosphate crystals precipitate even on the surface of granular materials that do not have any dephosphorizing properties, such as granular zeolite, and led to the present invention.

即ち、本発明は、リン酸塩含有水とゼオライト
とをpH6以上であつて、かつカルシウムイオン存
在下に、流動床となるように接触させて得られる
土壌改良剤である。
That is, the present invention is a soil conditioner obtained by bringing phosphate-containing water and zeolite into contact in a fluidized bed at a pH of 6 or higher and in the presence of calcium ions.

リン酸塩を含む水をカルシウムイオンの存在下
に結晶種と接触させたときに起こる反応は、反応
条件によつても異なるが通常は以下の(1)式によつ
て表わされる。
The reaction that occurs when water containing phosphate is brought into contact with crystal seeds in the presence of calcium ions varies depending on the reaction conditions, but is usually expressed by the following equation (1).

5Ca2++7OH-+3H2PO4 - →Ca5(OH)(PO43+6H2O ………(1) (1)式からも判る通り、水中のリン酸塩をリン酸
カルシウムとするためには反応を右に進行させる
必要があり、また、生成するリン酸カルシウムを
晶析させるためにはゼオライトの表面を清浄に保
つて活性度を高く維持する必要がある。そこで、
本発明ではpH6以上であつて、かつカルシウムイ
オン存在下に、流動床となるように通水処理を行
う。
5Ca 2+ +7OH - +3H 2 PO 4 - →Ca 5 (OH) (PO 4 ) 3 +6H 2 O......(1) As can be seen from equation (1), in order to convert phosphate in water to calcium phosphate It is necessary to allow the reaction to proceed to the right, and in order to crystallize the calcium phosphate produced, it is necessary to keep the surface of the zeolite clean and maintain its activity at a high level. Therefore,
In the present invention, the water flow treatment is carried out at a pH of 6 or higher and in the presence of calcium ions so as to form a fluidized bed.

(1)式で、生成するリン酸カルシウムの濃度が溶
解度よりも高く、かつ、過溶解度(反応系に結晶
種が存在しない場合に結晶が析出し始める濃度)
より低くなるようなカルシウムイオン濃度および
pHの領域、すなわち準安定領域においては、生
成するリン酸カルシウムはゼオライト表面に析出
し、微細沈澱は生成しない。
In equation (1), the concentration of calcium phosphate produced is higher than the solubility, and the supersolubility (concentration at which crystals start to precipitate when no crystal seeds exist in the reaction system)
Calcium ion concentration and
In the pH region, that is, in the metastable region, the calcium phosphate produced precipitates on the zeolite surface, and no fine precipitate is produced.

一方、カルシウムイオン濃度および/または
pHが高くなり、生成するリン酸カルシウムが通
溶解度を超える不安定領域においては、リン酸カ
ルシウムが微細沈澱となつて析出する。このよう
に、準安定域は原水中に含まれるリン酸イオンの
濃度によつて異なり、リン酸イオン濃度が低いほ
ど広くなる。したがつて、原水中のリン酸イオン
の濃度が高い場合には、カルシウムイオン濃度お
よび/またはpHを高くすると不安定領域となつ
て沈澱が生成しやすいが、リン酸イオン濃度が低
い場合には、カルシウムイオン濃度あるいはpH
を高くしても準安定領域での晶析が可能となり、
沈澱を生成させることなく反応速度を速くするこ
とができる。
On the other hand, calcium ion concentration and/or
In an unstable region where the pH is high and the produced calcium phosphate exceeds its solubility, calcium phosphate precipitates as fine precipitates. As described above, the metastable region varies depending on the concentration of phosphate ions contained in raw water, and the lower the phosphate ion concentration, the wider it becomes. Therefore, when the concentration of phosphate ions in raw water is high, increasing the calcium ion concentration and/or pH creates an unstable region and tends to form precipitates, but when the phosphate ion concentration is low, , calcium ion concentration or pH
Crystallization in the metastable region is possible even if the
The reaction rate can be increased without forming a precipitate.

本発明においては、ゼオライト層に通水される
原水中に、前記(1)式の反応が進行するように、カ
ルシウムイオンが存在することが必要であり、原
水中にカルシウムイオンが存在しない場合または
不足する場合には、外部からカルシウム剤を添加
する。反応系のpHは6以上、好ましくは6〜12
であり、必要に応じて原水中にアルカリ剤を添加
する。
In the present invention, it is necessary that calcium ions exist in the raw water that is passed through the zeolite layer so that the reaction of formula (1) above proceeds, and if there are no calcium ions in the raw water or If insufficient, add calcium supplement from outside. The pH of the reaction system is 6 or more, preferably 6 to 12
An alkaline agent is added to the raw water as necessary.

また、リン酸塩を含む水とゼオライトとの接触
は流動床の状態で行い、その膨張率は20〜80%,
特に40〜80%であることが好ましい。20%未満で
は流動床自体の運転が順調に行かなくなり、80%
を超えると有効充てん量が減少し、効率が悪化す
る。
In addition, the contact between water containing phosphate and zeolite is carried out in a fluidized bed state, and the expansion rate is 20 to 80%.
In particular, it is preferably 40 to 80%. If it is less than 20%, the fluidized bed itself will not operate smoothly;
If it exceeds , the effective filling amount will decrease and efficiency will deteriorate.

ゼオライト粒子としては、粒径10〜300メツシ
ユ程度ものを用いる。リン酸塩含有水としては、
リン酸塩含有の下水が使用でき、通常リン濃度
0.1〜10mg/程度のものを用いる。カルシウム
剤としては、消石灰、苛性ソーダ、塩化カルシウ
ム等が使用でき、通常カルシウムの添加量は前述
のとおり準安定域内となるように設定する。
Zeolite particles having a particle size of about 10 to 300 mesh are used. As phosphate-containing water,
Phosphate-containing sewage can be used and usually has a low phosphorus concentration.
Use approximately 0.1 to 10 mg/dose. As the calcium agent, slaked lime, caustic soda, calcium chloride, etc. can be used, and the amount of calcium added is usually set within the metastable range as described above.

本発明によれば、ゼオライト表面にリン酸カル
シウムがコーテイングされているため、リン酸の
固定や流亡の問題が解消される。その上、リン酸
塩含有水として下水を使用できるため、リン資源
の回収と有効利用に通じ、経済的にも非常に有利
である。また、本発明ではゼオライト表面にコー
テイングされたリン酸カルシウムの結晶度は比較
的低いため、弱酸性の土壌でもリン源が十分に補
給される。なお、予めゼオライトにリン酸を吸着
させ、次いで石灰と接触させてもリン酸カルシウ
ムの晶出は可能ではあるが、晶出したリン酸カル
シウムの結晶度が高く、土壌中にリン源が補給さ
れ難いため、好ましい方法とはいえない。
According to the present invention, since the surface of the zeolite is coated with calcium phosphate, the problems of fixation and runoff of phosphoric acid are solved. Furthermore, since sewage can be used as phosphate-containing water, it is possible to recover and effectively utilize phosphorus resources, which is very economically advantageous. Furthermore, in the present invention, since the crystallinity of the calcium phosphate coated on the zeolite surface is relatively low, a sufficient phosphorus source is supplied even in slightly acidic soil. Note that although it is possible to crystallize calcium phosphate by adsorbing phosphoric acid on zeolite in advance and then contacting it with lime, this method is preferable because the crystallinity of the crystallized calcium phosphate is high and it is difficult to replenish the phosphorus source into the soil. It cannot be called a method.

実験例 横浜市水に、リン酸二水素ナトリウム、塩化カ
ルシウム、炭酸ソーダの各溶液を添加して、PO4
−P=2.5mg/、Ca2+=45mg/、M−アルカ
リ度=100mg/となるように調整し、更に
NbaOHを添加してpH9の合成水を得た。
Experimental example By adding each solution of sodium dihydrogen phosphate, calcium chloride, and soda carbonate to Yokohama city water, PO 4
- P = 2.5 mg/, Ca 2+ = 45 mg/, M- alkalinity = 100 mg/, and further
Synthetic water with pH 9 was obtained by adding NbaOH.

ゼオライトとして粒径0.25〜0.42mmに篩い分け
たクリノプチロライトを用い、このゼオライトを
直径30mm,長さ100mmの透明アクリルカラムに70
gドライ充てんした。この充てんカラムに、通水
速度10m/hrで膨張率が約60%となるように上記
合成水を通水した。通水後60分間経過したところ
で充てんしたゼオライトを取出し分析した。分析
結果は以下に列挙した通りであつた。
Clinoptilolite sieved to a particle size of 0.25 to 0.42 mm was used as the zeolite, and this zeolite was placed in a transparent acrylic column with a diameter of 30 mm and a length of 100 mm.
g Dry filled. The above-mentioned synthetic water was passed through this packed column at a water flow rate of 10 m/hr such that the expansion rate was about 60%. After 60 minutes had passed, the filled zeolite was taken out and analyzed. The analysis results were as listed below.

) ゼオライトの全重量を測定したところ、約
100gであり30gの重量増加が認められた。
) When the total weight of zeolite was measured, it was approx.
100g, and a weight increase of 30g was observed.

) また肉眼的にもゼオライト粒子が白色結晶
にコーテイングされて肥大している状況が観察
された。
) It was also observed with the naked eye that the zeolite particles were coated with white crystals and enlarged.

) このゼオライトをビーカー内で撹拌するこ
とにより粒子同志を衝突させて表層に析出した
白色結晶を剥離させた後、その剥離結晶につい
てリン成分の分析を行つた。その結果、リン含
有率=13.9%,Ca/P比=2.06であつた。
) The zeolite was stirred in a beaker to cause the particles to collide with each other and the white crystals deposited on the surface layer were exfoliated, and the exfoliated crystals were analyzed for phosphorus components. As a result, the phosphorus content was 13.9% and the Ca/P ratio was 2.06.

また、この剥離結晶に対しX線回析を行つた
ところ、ヒドロキシアパタイトを示す最強線が
認められた。しかし、そのピークはブロードで
あり、結晶化度が低い状態を示した。
Furthermore, when this exfoliated crystal was subjected to X-ray diffraction, the strongest line indicating hydroxyapatite was observed. However, the peak was broad, indicating a low degree of crystallinity.

) 剥離結晶の各pHにおける溶解性を調べた
ところ、アルカリ側ではリンの溶出は少なく、
酸性側で適度なリンの溶出がみられた。これ
は、剥離結晶が結晶化度の低いヒドロキシアパ
タイトであることに起因している。また、この
特性のために土壌内で不溶性リン酸肥料として
有効に作用することが判る。
) When examining the solubility of exfoliated crystals at various pH values, it was found that on the alkaline side, the elution of phosphorus was small;
Moderate elution of phosphorus was observed on the acidic side. This is because the exfoliated crystals are hydroxyapatite with a low crystallinity. In addition, due to this property, it is found that it acts effectively as an insoluble phosphate fertilizer in the soil.

Claims (1)

【特許請求の範囲】 1 リン酸塩含有水とゼオライトとをpH6以上で
あつて、かつカルシウムイオン存在下に、流動床
となるように接触させて得られる土壌改良剤。 2 流動床は膨張率が20〜80%であることを特徴
とする特許請求の範囲第1項記載の土壌改良剤。 3 リン酸塩含有水が下水である特許請求の範囲
第1項又は第2項記載の土壌改良剤。
[Scope of Claims] 1. A soil conditioner obtained by bringing phosphate-containing water and zeolite into contact in a fluidized bed at a pH of 6 or higher and in the presence of calcium ions. 2. The soil conditioner according to claim 1, wherein the fluidized bed has an expansion rate of 20 to 80%. 3. The soil conditioner according to claim 1 or 2, wherein the phosphate-containing water is sewage.
JP59077444A 1984-04-17 1984-04-17 Soil conditioner Granted JPS60221485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59077444A JPS60221485A (en) 1984-04-17 1984-04-17 Soil conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59077444A JPS60221485A (en) 1984-04-17 1984-04-17 Soil conditioner

Publications (2)

Publication Number Publication Date
JPS60221485A JPS60221485A (en) 1985-11-06
JPH0223513B2 true JPH0223513B2 (en) 1990-05-24

Family

ID=13634188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59077444A Granted JPS60221485A (en) 1984-04-17 1984-04-17 Soil conditioner

Country Status (1)

Country Link
JP (1) JPS60221485A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5594810B2 (en) * 2008-11-12 2014-09-24 学校法人金沢工業大学 Inorganic fertilizer and method for producing inorganic fertilizer
JP2012218971A (en) * 2011-04-07 2012-11-12 Daikin Industries Ltd Fertilizer, and method for producing the same
JP7311890B2 (en) * 2019-10-23 2023-07-20 学校法人法政大学 Nutrient release sheet containing zeolite composite, method for producing the same, and method for plant cultivation

Also Published As

Publication number Publication date
JPS60221485A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
Tunesi et al. Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals
EP0203734B1 (en) Methods and compositions for increasing plant growth
Helyar et al. Adsorption of phosphate by gibbsite: I. Effects of neutral chloride salts of calcium, magnesium, sodium, and potassium
Yuan et al. Kinetic and thermodynamic studies on the phosphate adsorption removal by dolomite mineral
US6656382B1 (en) Use of layered double hydroxides (LDHs), which reversibly bind (exchange) nitrate
US5433766A (en) Slow-release fertilizer
Li et al. MAP precipitation from landfill leachate and seawater bittern waste
US5451242A (en) Active synthetic soil
Mabagala On the tropical soils; The influence of organic matter (OM) on phosphate bioavailability
US20160318763A1 (en) Methods and compositions for chemical drying and producing struvite
Molle et al. Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions
Fine et al. Release of phosphorus from waste‐activated sludge
BRPI0619630A2 (en) method to improve cobalt absorption in forage
Tomar Dynamics of phosphorus in soils
JPH0223513B2 (en)
CN111302845B (en) Nitrogen phosphorus potassium full slow release fertilizer and its production and application method
Andréu et al. Reactions of FeEDTA and FeEDDHA applied to calcareous soils
Narkis et al. Phosphorus removal by activated alumina
JPS6141278B2 (en)
Kameda et al. Synthesis of hydrotalcite from seawater and its application to phosphorus removal
Louhar Zeolites: A potential source of soil amendments to improve soil properties
RU2792126C1 (en) Method for extraction of magnesium-ammonium-phosphate from wastewater
JPS59156488A (en) Artificial dephosphorizing agent and dephosphorization
JPH05137905A (en) Method and material for purifying sewage
IsLAM et al. Immobilization of cadmium in soil by newly developed apatite-like compounds prepared from oyster shells