JPH02234467A - Dynamic semiconductor storage device - Google Patents

Dynamic semiconductor storage device

Info

Publication number
JPH02234467A
JPH02234467A JP1055759A JP5575989A JPH02234467A JP H02234467 A JPH02234467 A JP H02234467A JP 1055759 A JP1055759 A JP 1055759A JP 5575989 A JP5575989 A JP 5575989A JP H02234467 A JPH02234467 A JP H02234467A
Authority
JP
Japan
Prior art keywords
electrode
counter electrode
bit line
facing electrode
connection electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055759A
Other languages
Japanese (ja)
Inventor
Toshiya Nishi
西 敏哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1055759A priority Critical patent/JPH02234467A/en
Publication of JPH02234467A publication Critical patent/JPH02234467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To reduce short-circuits of bit lines and improve the fraction nonfefective by a method wherein the window-shaped apertures of connection electrodes of the bit lines are provided in a facing electrode and the apertures of the connection electrodes are eliminated from the circumference of the facing electrode so as to provided the flat shape of the facing electrode. CONSTITUTION:A common facing electrode 14 is provided for a plurality of capacitors which respective transfer gate elements have. A plurality of the window-shaped apertures of connection electrodes 2 of bit lines 1A-1E are provided in the facing electrode 14. The apertures of the connection electrodes 2 are eliminated from the circumference F of the facing electrode 14 so as to provide the flat shape of the facing electrode. Therefore, a minimum punched pattern allowable dimension, which is a gap between the side edge of the connection electrode 2 and the side edge of the adjoining bit line 1C, can be avoided and, further, the circumference of the facing electrode does not cross the parts near the connection electrodes 2 where large differences in level exist. With this constitution, short-circuits of the bit lines can be reduced and the fraction nondefective can be improved.

Description

【発明の詳細な説明】 〔概 要] DRAMにおけるキャパシタの電極形状に関し、良品率
を低下させる対向電極に関わりのある原因を除去して、
良品率を向上させることを目的とし、 ビット線とワード線とが直交して、ビット線に垂直なチ
ャネルを有するトランスファゲート素子が設けられ、キ
ャパシタが前記ビット線の下部に配設された構造のダイ
ナミ,ク型半導体記憶装置であって、 前記トランスファゲート素子それぞれが有するキャパシ
タの複数個に共通して対向電極が設けられ、\ 該対向電極は内部に前記ピント線の接続電極の開口部を
窓状に具備して、該接続電極の開口部が対向電極の周縁
に存在しない対向電極の平面形状を有することを特徴と
する。
[Detailed Description of the Invention] [Summary] Regarding the electrode shape of a capacitor in a DRAM, the causes related to the counter electrode that reduce the non-defective product rate are removed,
In order to improve the quality of products, the bit line and word line are perpendicular to each other, a transfer gate element having a channel perpendicular to the bit line is provided, and a capacitor is placed below the bit line. A dynamic, square type semiconductor memory device, wherein a counter electrode is provided in common to a plurality of capacitors included in each of the transfer gate elements, and the counter electrode has an opening of the connection electrode of the focus line formed in the inside thereof. The opening of the connection electrode has a planar shape of the counter electrode that does not exist at the periphery of the counter electrode.

〔産業上の利用分野] 本発明はダイナミック型半導体記憶装置のうち、特にキ
ャパシタの電極形状の改善に関する。
[Industrial Field of Application] The present invention relates to a dynamic semiconductor memory device, particularly to improving the electrode shape of a capacitor.

D  R A M  (Dynamic  Rando
m  Access  Memory)  はLSIメ
モリの主役であって極めて大容量化されているが、64
Mビント256Mと極めて高集積化されることが予測さ
れている。そのような大容量DRAMにおいては一層の
高密度化が重要な課題で、その際の良品率(製造歩留)
の維持ないし向上が要望されている。
D R A M (Dynamic Rando)
m Access Memory) is the mainstay of LSI memory and has an extremely large capacity, but 64
It is predicted that it will be extremely highly integrated with M bint 256M. In such large-capacity DRAMs, further increasing the density is an important issue, and the rate of good products (manufacturing yield)
There is a need to maintain or improve this.

〔従来の技術〕[Conventional technology]

第2図は従来のDRAMセル部の透過平面図を示してお
り、本図はトランスファゲート素子のそれぞれに設けた
キャパシタの対向電極とビット線とを透過して図示した
平面図である。5本のビット線IA, IB. IC,
 LD, IEがX方向に平行に配設され、それぞれの
ビント線に接続する接続電極2が隣接ビント線と相互に
ジグザク状に配置されている構造で、この接続電極は下
部の接続電極コンタクト部3(透過して図示している)
と連結した構成となっている。このように、接続電極2
がジグザク状に設けられるのはビット線を高密度化して
、しかも、ビット線が互いに短絡しないようにリソグラ
フィ技術面から工夫したものである。
FIG. 2 shows a transparent plan view of a conventional DRAM cell section, and this figure is a transparent plan view showing a bit line and a counter electrode of a capacitor provided in each transfer gate element. Five bit lines IA, IB. IC,
The LD and IE are arranged parallel to the X direction, and the connection electrodes 2 connected to each bint line are arranged in a zigzag pattern with the adjacent bint lines, and this connection electrode is connected to the lower connection electrode contact part. 3 (Illustrated transparently)
It has a connected structure. In this way, the connection electrode 2
The reason why the bit lines are provided in a zigzag shape is to increase the density of the bit lines and to prevent the bit lines from shorting each other, which was devised from the viewpoint of lithography technology.

第2図における他の記号4は対向電極であり、Fは対向
電極の周縁を示している。このDRAMにおいては対向
電極4は電源に接続するか、または、接地する共通した
電極になるために、メモリセル部を複数個のブロックに
分割して、図示のような多数のトランスファゲート素子
に共通した電極に作成している。且つ、木例のDRAM
はビット線をキャパシタより上部に配設した構造である
から、ビット線の接続電極2を開口した窓が多数個点在
した形状の対向電極になっている。
The other symbol 4 in FIG. 2 is a counter electrode, and F indicates the periphery of the counter electrode. In this DRAM, since the counter electrode 4 serves as a common electrode connected to a power supply or grounded, the memory cell section is divided into a plurality of blocks, and a common electrode is used for a large number of transfer gate elements as shown in the figure. The electrodes are made using Moreover, the example DRAM
Since the structure is such that the bit line is disposed above the capacitor, the counter electrode has a shape in which a number of windows opening the connection electrode 2 of the bit line are scattered.

第3図は第2図のAA断面を示しており、同図において
、IDはビット線,3は接続電極コンタクト部.礼はワ
ード線(ゲート電極を兼ねて、ピント線IBに直交した
配線),cpはキャパシタ,4はキャパシタCPの対向
電極,5はP型シリコン基板,6はn型不純物領域(ソ
ース領域またはトレイン領域).7はフィールド絶縁膜
,8はその他のカバー絶縁膜を含む絶縁膜(絶縁膜は梨
地で示している)で、この第3図は2個のトランスファ
ゲート素子部分を示した断面である。
FIG. 3 shows the AA cross section of FIG. 2, in which ID is a bit line, 3 is a connection electrode contact part. 4 is a counter electrode of capacitor CP, 5 is a P-type silicon substrate, 6 is an n-type impurity region (source region or train region). 7 is a field insulating film, 8 is an insulating film including other cover insulating films (the insulating films are shown in matte finish), and FIG. 3 is a cross section showing two transfer gate element parts.

上記したように、本例のDRAMはワード線札七ビット
線BLとが直交して、ビット線BLを上部に設け、下部
にキャパシタCPを配置した構造で、このような構造は
キャパシタの対向電掻4をセルアレイ内で個々に微細に
パターンニングする必要がな《、且つ、ピント線はカッ
プリングなどの相互干渉が防げる利点のある構造である
As mentioned above, the DRAM of this example has a structure in which the word line tag 7 bit line BL is perpendicular to the word line, the bit line BL is provided at the top, and the capacitor CP is arranged at the bottom. This structure has the advantage that there is no need to finely pattern the scratches 4 individually within the cell array, and that the focus lines can prevent mutual interference such as coupling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような構造のDRAMはキャパシタCP
がスタック型であるから三次元に積み上げて蓄積容量が
大きくできる反面、アスベクト比(高さに対する底面積
の比率)が悪くなって、ビット線の短絡が増大して良品
率を低下させる問題がある。
By the way, a DRAM with such a structure has a capacitor CP.
Since it is a stack type, it is possible to increase the storage capacity by stacking it three-dimensionally, but on the other hand, the aspect ratio (the ratio of the bottom area to the height) becomes poor, which increases bit line short circuits and reduces the yield rate. .

第4図(a). (b)はその従来の問題点(I)を説
明する図で、同図(a)は第2図の破線で囲んだ対向電
極の周縁Fを含むQ部分の平面図、同図(b)はそのB
B断面図を示しており、第2図と同一部位には同一記号
が付けてあるが、その他のIOB , IOCはレジス
ト膜パターンである。即ち、第4図はビット線1を被着
し、その上にレジスト膜パターン10B , IOCを
被覆して、ビット線IB, ICをパターンニングする
直前の製造工程途中図であるが、図中の幅n部分はリン
グラフィ技術上からの最小抜きパターン許容寸法で、こ
の部分は接続電極2の側端と隣接ビット線lCO側端と
の間隙である。しかし、この部分が凹みが大きく段差の
激しい接続電極2に近接した部分であるから、その部分
にレジスト膜の残りrが生じ易く、そうすれば、この対
向電極4の周縁Fではビット線IBとビット線ICとの
短絡が起こって、良品率を低下させる。
Figure 4(a). (b) is a diagram illustrating the conventional problem (I), and (a) is a plan view of the Q portion including the periphery F of the counter electrode surrounded by the broken line in Figure 2. is that B
This is a cross-sectional view of B, and the same parts as in FIG. 2 are given the same symbols, but the other IOBs and IOCs are resist film patterns. That is, FIG. 4 is a diagram in the middle of the manufacturing process just before depositing the bit line 1, coating it with the resist film pattern 10B, IOC, and patterning the bit lines IB and IC. The width n portion is the minimum permissible punching pattern dimension based on phosphorography technology, and this portion is the gap between the side edge of the connection electrode 2 and the adjacent bit line lCO side edge. However, since this part is close to the connection electrode 2 with a large depression and a large step difference, a residual resist film r is likely to be formed in that part, and if this happens, the bit line IB and the peripheral edge F of the counter electrode 4 are easily formed. A short circuit with the bit line IC occurs, reducing the yield rate.

次に、第5図は従来の問題点(n)を説明する図で、本
図は第4図と同一Q部分の同図(b)に図示した製造工
程の次工程図を示しており、前記レジスト膜パターンを
マスクにしてビット線を垂直にドライエッチングした工
程途中図である。例えば、ビット線を多結晶シリコン/
タングステンシリサイドからなる2層構造とすると、弗
素系ガスを用いたりアクティブイオンエッチング(R 
I E)法によってパターンニングするが、そのとき、
周縁Fの図示の位置にエッチング残渣dが生じ易く、こ
れもこの部分が凹みが大きく段差の激しい接続電極2に
近接した部分であるためである。このエッチング残渣d
は大きな段差のある対向電極4の周縁F(第2図に一部
を太線で示している)に沿って発生しており、前記工程
と同しくピント線IBとビット線ICとを短絡させて、
良品率を低下させることになる。
Next, FIG. 5 is a diagram explaining the conventional problem (n), and this figure shows the next process diagram of the manufacturing process shown in FIG. 4(b) of the same Q part as FIG. FIG. 6 is a diagram showing a step in the process of vertically dry etching a bit line using the resist film pattern as a mask. For example, if the bit line is made of polycrystalline silicon/
When creating a two-layer structure made of tungsten silicide, fluorine-based gas or active ion etching (R
Patterning is performed by the IE) method, but at that time,
Etching residue d is likely to be formed at the illustrated position of the periphery F, and this is also because this portion is close to the connection electrode 2, which has a large depression and a large step difference. This etching residue d
occurs along the periphery F of the counter electrode 4 (a part of which is indicated by a thick line in FIG. 2), which has a large step, and the focus line IB and the bit line IC are short-circuited in the same way as in the previous step. ,
This will reduce the rate of non-defective products.

このように、接続電極が対向電極4の周縁F部分に存在
すると、上記のレジスト膜の残りやエッチング残渣が生
じ易く、良品率を低下させることになる。本発明はこの
ような良品率を低下させる対向電極に関わりのある原因
を除去して、良品率を向上させることを目的としたDR
AMを提案するものである。
In this way, if the connection electrode exists on the peripheral edge F of the counter electrode 4, the above-mentioned resist film remains and etching residue are likely to be generated, which will reduce the yield rate. The present invention aims to eliminate the causes related to the counter electrode that reduce the rate of non-defective products, and improve the rate of non-defective products.
We propose AM.

〔課題を解決するための手段〕[Means to solve the problem]

その課題は、第1図の実施例に示すように、ビット線と
ワード線とが直交して、ビット線に垂直なチャネルを有
するトランスファゲート素子が設けられ、キャパシタが
前記ビット線の下部に配設された構造のダイナミック型
半導体記憶装置であって、 前記トランスファゲート素子それぞれが有するキャパシ
タの複数個に共通して対向電極14が設けられ、該対向
電極14は内部に前記ピント線IA〜IEの接続電極2
の開口部を窓状に複数個具備して、該接続電極の開口部
が対向電極の周縁に存在しない対向電極の平面形状を有
するDRAMによって解決される。
The problem is that, as shown in the embodiment of FIG. 1, the bit line and the word line are orthogonal to each other, a transfer gate element having a channel perpendicular to the bit line is provided, and a capacitor is disposed below the bit line. A dynamic semiconductor memory device having a structure in which a counter electrode 14 is provided in common to a plurality of capacitors included in each of the transfer gate elements, and the counter electrode 14 is provided with an inner surface of the focus lines IA to IE. Connection electrode 2
This problem is solved by a DRAM having a planar shape of the counter electrode, which has a plurality of window-shaped openings, and the opening of the connection electrode does not exist on the periphery of the counter electrode.

〔作 用] 即ち、本発明は、対向電極の周縁Fに接続電極の開口部
(接続開口部)が一致しないようにして、すべての接続
開口部を対向電極の内部に窓状に設ける。そうすれば、
接続電極2の側端と隣接ビソト線ICの側端との間隙で
ある最小抜きパターン許容寸法の部分を避けることがで
き、また、そうすれば、対向電極の周縁が段差の激しい
接続電極2の近接部分を横切ることがなく、そのため、
ビット線の短絡を低減させて、良品率を向上させること
ができる。
[Function] That is, in the present invention, the openings (connection openings) of the connection electrodes do not coincide with the peripheral edge F of the counter electrode, and all the connection openings are provided inside the counter electrode in the form of windows. that way,
It is possible to avoid the gap between the side edge of the connection electrode 2 and the side edge of the adjacent bisotholine IC, which is the minimum permissible dimension of the punching pattern. It does not cross adjacent parts, so
It is possible to reduce bit line short circuits and improve the non-defective product rate.

〔実 施 例〕〔Example〕

以下に・図面を参照して実施例によって詳細に説明する
Examples will be explained in detail below with reference to the drawings.

第1図は本発明にかかるDRAMセル部の透過平面図で
、第2図と同じ部分の平面を示しており、同一部位に同
一記号が付けてあるが、第2図と同様に、5本のビット
線LA. IB, IC, 10, IEがX方向に平
行に配設され、それぞれのビッ1・線に接続する接続電
極2が隣接ビット線とジグザク状に配置されている。且
つ、対向電極14はDRAMメモリセル部の複数のトラ
ンスファゲート素子に共通した1ブロックの対向電極(
キャパシタの共通対向電極)であって、その対向電極1
4の周縁Fには接続電極2が存在せず、すべての接続電
掻2が対向電極14の内部で窓状に開口部を形成してい
る。
FIG. 1 is a transparent plan view of the DRAM cell section according to the present invention, showing the same part as in FIG. The bit line LA. IB, IC, 10, and IE are arranged in parallel to the X direction, and connection electrodes 2 connected to each bit line are arranged in a zigzag pattern with the adjacent bit line. In addition, the counter electrode 14 is one block of counter electrodes (
common counter electrode of the capacitor), the counter electrode 1
There is no connection electrode 2 on the peripheral edge F of 4, and all the connection electrodes 2 form window-like openings inside the counter electrode 14.

かくすれば、対向電極14の周縁F部分を大きな段差が
あり、しかも、ビット線間隙が最小抜きパターン許容寸
法nとなる部分を回避することができ、且つ、周縁Fを
直線状にパターンニングすることができる。
In this way, it is possible to avoid a part where the peripheral edge F of the counter electrode 14 has a large step and the bit line gap is the minimum permissible punching pattern dimension n, and the peripheral edge F can be patterned in a straight line. be able to.

そのために、上記したレジスト膜の残りrやエッチング
残渣dを対向電極14の周縁から除去して、ビット線の
短絡を減少させることができる。なお、エッチング残渣
dは内部で窓状に開口した開口部の周縁(第1図の一部
に太線で示している)にも形成されるが、この部分は隣
接したビント線と短絡させることがないために、良品率
を低下させる問題は起こらない。
Therefore, the above-mentioned resist film residue r and etching residue d can be removed from the periphery of the counter electrode 14 to reduce bit line short circuits. Note that the etching residue d is also formed on the periphery of the internal window-shaped opening (partially shown by the bold line in Figure 1), but this part cannot be short-circuited with the adjacent bint wire. Therefore, the problem of lowering the non-defective product rate does not occur.

且つ、従来の対向電極の周縁形状は自動設計により決定
されることが多いが、この対向電極の設計データに周縁
部分の規制条件を付加すれば、容易に本発明にかかる対
向電極の周縁の位置と形状を規制することができ、それ
によって、製造方法を変更することなく容易にピント線
の短絡を減少させることができる。
In addition, the peripheral edge shape of the conventional counter electrode is often determined by automatic design, but by adding the restriction conditions for the peripheral edge part to the design data of the counter electrode, the position of the peripheral edge of the counter electrode according to the present invention can be easily determined. It is possible to control the shape and the shape, thereby easily reducing short circuits of the focus wire without changing the manufacturing method.

〔発明の効果] 以上の説明から明らかなように、本発明かかる半導体装
置に構成すれば、製造方法を変化させることなく、容易
にビット線の短絡を低減させて、その良品率の向上を図
ることができる効果がある。
[Effects of the Invention] As is clear from the above description, if the semiconductor device according to the present invention is configured, short circuits in bit lines can be easily reduced without changing the manufacturing method, and the yield rate of non-defective products can be improved. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるDRAMセル部の透過平面図、 第2図は従来のDRAMセル部の透過平面図、第3図は
第2図のAA断面図、 第4図は従来の問題点(1)を説明する図、第5図は従
来の問題点(II)を説明する図である。 図において、 IA, IB, IC, 10, IE,  1はビッ
ト線2は接続電極、 3は接続電極コンタクト部、 4は対向電極、 5はp型シリコン基板、 6はn型不純物領域(ソース領域またはドレイン領域)
、 7はフィールド絶縁膜、 8は絶縁膜、 10B , IOCはレジス1・膜パターン、l4は対
向電極(本発明にかかる対向電極)、Fは対向電極の周
縁、 孔はワード線(ゲート電極を兼ねる)、cpはキャパシ
タ nは最小抜きパターン許容寸法、 rはレジスト膜の残り、 dはエッチング残渣 を示している。 第2図 第1図 第3図
FIG. 1 is a transparent plan view of a DRAM cell section according to the present invention, FIG. 2 is a transparent plan view of a conventional DRAM cell section, FIG. 3 is a cross-sectional view along line AA of FIG. 2, and FIG. 4 is a conventional problem. FIG. 5 is a diagram explaining the conventional problem (II). In the figure, IA, IB, IC, 10, IE, 1 is a bit line 2 is a connection electrode, 3 is a connection electrode contact part, 4 is a counter electrode, 5 is a p-type silicon substrate, 6 is an n-type impurity region (source region or drain region)
, 7 is a field insulating film, 8 is an insulating film, 10B, IOC is a resist 1/film pattern, l4 is a counter electrode (a counter electrode according to the present invention), F is a periphery of the counter electrode, and a hole is a word line (gate electrode). cp is the capacitor n is the minimum permissible punching pattern dimension, r is the remainder of the resist film, and d is the etching residue. Figure 2 Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 ビット線とワード線とが直交して、ビット線に垂直なチ
ャネルを有するトランスファゲート素子が設けられ、キ
ャパシタが前記ビット線の下部に配設された構造のダイ
ナミック型半導体記憶装置であって、 前記トランスファゲート素子それぞれが有するキャパシ
タの複数個に共通した対向電極が設けられ、該対向電極
は内部に前記ビット線の接続電極の開口部を窓状に具備
して、該接続電極の開口部が対向電極の周縁に存在しな
い対向電極の平面形状を有することを特徴とするダイナ
ミック型半導体記憶装置。
[Claims] A dynamic semiconductor memory having a structure in which a bit line and a word line are orthogonal to each other, a transfer gate element having a channel perpendicular to the bit line is provided, and a capacitor is disposed below the bit line. The apparatus includes a common counter electrode for a plurality of capacitors included in each of the transfer gate elements, and the counter electrode has a window-like opening for the connection electrode of the bit line inside, and the connection electrode 1. A dynamic semiconductor memory device characterized in that a counter electrode has a planar shape in which an opening of the electrode does not exist at a periphery of the counter electrode.
JP1055759A 1989-03-07 1989-03-07 Dynamic semiconductor storage device Pending JPH02234467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055759A JPH02234467A (en) 1989-03-07 1989-03-07 Dynamic semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055759A JPH02234467A (en) 1989-03-07 1989-03-07 Dynamic semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH02234467A true JPH02234467A (en) 1990-09-17

Family

ID=13007773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055759A Pending JPH02234467A (en) 1989-03-07 1989-03-07 Dynamic semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH02234467A (en)

Similar Documents

Publication Publication Date Title
JP3368002B2 (en) Semiconductor storage device
US5140389A (en) Semiconductor memory device having stacked capacitor cells
US5378906A (en) Dynamic random access memory having improved layout
US20040004257A1 (en) Dynamic random access memory cells having laterally offset storage nodes, and fabrication methods thereof
US5374576A (en) Method of fabricating stacked capacitor cell memory devices
JPH0828467B2 (en) Semiconductor device
KR100683295B1 (en) Layout and wiring scheme for memory cells with vertical transistors
US5323049A (en) Semiconductor device with an interconnection layer on surface having a step portion
JP2638487B2 (en) Semiconductor storage device
US6878586B2 (en) Semiconductor memory device
KR100526869B1 (en) Method for forming storage node of capacitor for use in semiconductor memory
CN110707044B (en) Method for forming semiconductor device layout
JPH01175756A (en) Semiconductor device and manufacture thereof
JPH02234467A (en) Dynamic semiconductor storage device
EP0469935B1 (en) Method for manufacturing a semiconductor memory device
JP3616179B2 (en) Semiconductor memory device
JPH08236721A (en) Semiconductor device and method of its fabrication
KR20000042406A (en) Semiconductor memory device
JPH09252093A (en) Manufacture of semiconductor integrated circuit device
JPH07202022A (en) Semiconductor storage device
JPH06310671A (en) Semiconductor device
US6278151B1 (en) Semiconductor device having wiring detour around step
KR20020076456A (en) Memory device
KR0131720B1 (en) Semiconductor device
JPH05110030A (en) Semiconductor memory