JPH02234349A - Secondary battery - Google Patents

Secondary battery

Info

Publication number
JPH02234349A
JPH02234349A JP1051874A JP5187489A JPH02234349A JP H02234349 A JPH02234349 A JP H02234349A JP 1051874 A JP1051874 A JP 1051874A JP 5187489 A JP5187489 A JP 5187489A JP H02234349 A JPH02234349 A JP H02234349A
Authority
JP
Japan
Prior art keywords
conductive
sheet
electrode
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1051874A
Other languages
Japanese (ja)
Other versions
JP2898647B2 (en
Inventor
Keiji Taniguchi
圭司 谷口
Okitoshi Kimura
興利 木村
Toshiyuki Kahata
利幸 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP1051874A priority Critical patent/JP2898647B2/en
Publication of JPH02234349A publication Critical patent/JPH02234349A/en
Application granted granted Critical
Publication of JP2898647B2 publication Critical patent/JP2898647B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Secondary Cells (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a secondary battery with highly flexible, seat-like electrodes having excellent adhesiveness to metal sheets by utilizing powdery conductive high polymer. CONSTITUTION:A specified amount of conductive high polymer, conductive minute particles of an optional composition, steel balls, etc., are added to a binder solution and then dispersed. The dispersed liquid is applied on a conductive film, and then by drying it, a sheet-like electrode can be obtained. Conductive films include coating films on which metals such as iron and aluminum or alloys are evaporation-deposited or applied dud the film thickness should preferably be 5 to 50mum. Conductive high-polymers include polypillol and polythyophen, which are to be used conveniently as needed. The particle size of conductive high-polymer and conductive minute particles should preferably be from 0.1mu to 500mu. As a result, a secondary battery with highly flexible and highly reliable seat-like electrodes can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導電性高分子を利用した2次電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a secondary battery using a conductive polymer.

[従来の技術] 従来、導電性高分子よりなるシート状電極としては特開
昭82−20243、特開昭61− 133557の如
く、金属薄板(集電体)または金属メッシュ上に電解重
合で導電性高分子をフィルム状に析出させ、電極とした
ものが公知であるが、このものは導電性高分子のフィル
ム自体の強度またはフィルムと金属薄板との接着強度が
低く、電?を組み立てる際、導電性高分子層の脱落等の
問題があった。また、電解重合では層の厚みをコントロ
ールする事が難しく、厚くする事も困難であった。
[Prior Art] Conventionally, sheet-like electrodes made of conductive polymers have been developed by electrolytically polymerizing them onto metal thin plates (current collectors) or metal meshes, as in JP-A-82-20243 and JP-A-61-133557. It is known to deposit a conductive polymer in the form of a film and use it as an electrode, but this method has low strength of the conductive polymer film itself or low adhesive strength between the film and the thin metal plate, making it difficult to conduct electricity. During assembly, there were problems such as the conductive polymer layer falling off. Furthermore, in electrolytic polymerization, it is difficult to control the thickness of the layer, and it is also difficult to increase the thickness.

また、本電解重合法は導電性高分子層がフィルム状で得
られやすいものの、生産性が低く、これに対し、粉末状
で得られるが生産性の良い化学重合法で作られた導電性
高分子をフィルム状にして利用する方法が望まれていた
In addition, although this electrolytic polymerization method can easily obtain a conductive polymer layer in the form of a film, the productivity is low. A method that uses molecules in the form of a film has been desired.

一方、合剤型とよばれ、粉状または微粒子状導電性高分
子をポリテトラフルオ口エチレン等の結着剤及びカーボ
ンブラック等の導電性材料と共に混練し、プレスしてシ
ート状電極とする方法もあるが(例えば特開昭83− 
78260)、集電体との接着性が悪く、また、シ一ト
臼体の可撓性が悪く、曲げ等で折れやすいものである。
On the other hand, it is called a mixture type, and is a method in which a powdered or particulate conductive polymer is kneaded with a binder such as polytetrafluoroethylene and a conductive material such as carbon black, and then pressed to form a sheet electrode. (For example, Japanese Patent Application Laid-open No. 1983-
78260), the adhesiveness with the current collector is poor, and the seat body has poor flexibility and is easily broken by bending or the like.

【発明が解決しようとする課題] 本発明は、こうした実情に鑑み■、粉末状導電性高分子
を利用し、金属薄板への接着性に優れ、可撓性が高く、
また導電性高分子層の脱落ちない優れたシート状電極を
有する2次電池を提供するものである。
[Problems to be Solved by the Invention] In view of these circumstances, the present invention utilizes a powdered conductive polymer, has excellent adhesion to thin metal plates, is highly flexible,
The present invention also provides a secondary battery having an excellent sheet-like electrode in which the conductive polymer layer does not fall off.

[課題を解決するための手段] 本発明は金属薄板上に導電性高分子微粒子、バインダー
及び必要に応じて導電性微粒子よりなるコート層が塗設
されてなるシート状電極を有する事を特徴とする2次電
池に関するものである。
[Means for Solving the Problems] The present invention is characterized by having a sheet-like electrode formed by coating a thin metal plate with a coating layer made of conductive polymer fine particles, a binder, and optionally conductive fine particles. The invention relates to secondary batteries.

本発明において使用する導電性フィルムとしては、アル
ミニウム、鉄、ニッケル、SUS等の金属あるいは合金
、炭素体あるいはSnO2、I noz等の金属酸化物
を蒸着あるいは塗布したコーティングフィルム、ボリビ
ロール等の導電性高分子等が挙げられる。導電性フィル
ムの形態としては薄板、貫通孔を有する薄板、二次元網
目状である。導電性フィルムの厚さとしては1−100
μ園好ましくは、5〜50μ−のものが用いられる。
The conductive film used in the present invention includes metals or alloys such as aluminum, iron, nickel, and SUS, coating films deposited or coated with carbon bodies or metal oxides such as SnO2 and Inoz, and highly conductive films such as vorivirol. Examples include molecules. The form of the conductive film is a thin plate, a thin plate with through holes, or a two-dimensional mesh. The thickness of the conductive film is 1-100
Preferably, 5 to 50 microns is used.

また、導電性高分子としては、例えばポリピロール、ポ
リチオフエン、ポリ−3−メチルチオフエン、ポリ力ル
バゾール、ジフェニルベンジジン重合体、ポリトリフエ
ニルアミン、ポリチアジル、ポリアセチレン、ポリパラ
フェニレン、ポリパラフエニレンスルフィド、ボリアニ
リン、ポリパラフェニレンビニレン、ポリイソチアナフ
テン、ポリピリダジン、ポリアズレン、ポリセレノフェ
ン、ポリピリジン、ボリアセン、ポリペリナフタレン等
が適宜用いられる。
Examples of conductive polymers include polypyrrole, polythiophene, poly-3-methylthiophene, polyrubazole, diphenylbenzidine polymer, polytriphenylamine, polythiazyl, polyacetylene, polyparaphenylene, polyparaphenylene sulfide, and polyaniline. , polyparaphenylene vinylene, polyisothianaphthene, polypyridazine, polyazulene, polyselenophene, polypyridine, boriacene, polyperinaphthalene, etc. are used as appropriate.

また、これら導電性高分子に対するドーバントとしては
BF4−  Cl04−  PF6AsFS″″  S
bFi    CF3 So)CF 3 COO−  
 [ (n−Bu)4 Nl[(n−Et4)Nl ”
、K”  Li”  Na◆等がある。
In addition, as a dopant for these conductive polymers, BF4-Cl04-PF6AsFS''''S
bFi CF3 So) CF 3 COO-
[(n-Bu)4Nl[(n-Et4)Nl”
, K"Li"Na◆, etc.

また、本発明で用いるバインダーとしてはエチレンー酢
ビ共重合体、エチレンーエチルアクリレート共重合体、
エボキシ樹脂、フッ化ビニリデン樹脂、ポリビニルアル
コール、ポリエステル樹詣等が用いられる。これらバイ
ンダーは導電性高分子を分散する能力があり(極性基と
非極性基よりなる分子構造)及び金属との接着能力が高
く、かつ電解液への溶解、膨潤がなく、可撓性にも優れ
ていなければならない。
Further, binders used in the present invention include ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer,
Epoxy resin, vinylidene fluoride resin, polyvinyl alcohol, polyester resin, etc. are used. These binders have the ability to disperse conductive polymers (molecular structure consisting of polar groups and non-polar groups), have high adhesion ability to metals, do not dissolve in electrolytes, do not swell, and are flexible. Must be excellent.

また、導電性微粒子としてはケッチェンブラック、アセ
チレンブラック等の導電性カーボン粉、SUS短繊維、
白金、金、銀等の金属微粒子及び金属短繊維等が挙げら
れる。
In addition, conductive fine particles include conductive carbon powder such as Ketjen black and acetylene black, SUS short fibers,
Examples include fine metal particles such as platinum, gold, and silver, and short metal fibers.

これら導電性フィルム、導電性高分子、バインダー、導
電性微粒子を用いて本発明のシート状電極を作成する方
法を以下に例示する。
A method for producing the sheet-like electrode of the present invention using these conductive films, conductive polymers, binders, and conductive fine particles will be exemplified below.

まず、バインダーを適当な溶剤に溶解する。First, the binder is dissolved in a suitable solvent.

本溶液に所定量の導電性高分子と任意成分の導電性微粒
子を加え、必要に応じて溶剤を更に添加し、スチールボ
ール等を加えた後、ボールミル、アトライタ一等で分散
する。
A predetermined amount of a conductive polymer and optional conductive fine particles are added to this solution, a solvent is further added if necessary, a steel ball or the like is added, and the mixture is dispersed using a ball mill, an attritor, etc.

このようにして得られた分散液をワイヤーバー等を用い
て導電性フィルム上にコーティングし、乾燥する事によ
って本発明のシート状電極を得る事ができる。
The sheet-like electrode of the present invention can be obtained by coating the thus obtained dispersion onto a conductive film using a wire bar or the like and drying it.

このようにして得られた分散液中の導電性高分子及び導
電性微粒子の粒径は0.1μ〜500μになっている事
が望ましい。
The conductive polymer and conductive fine particles in the dispersion thus obtained preferably have a particle size of 0.1 μ to 500 μ.

バインダー及び導電性高分子及び導電性微粒子の重量比
としてはバインダーが5〜40重量%好ましくは10〜
20重量%、導電性高分子は60〜95重量%、好まし
くは80〜90重量%、導電性微粒子は0〜15重量%
、好ましくは3〜lOm量%である。
The weight ratio of the binder, conductive polymer, and conductive fine particles is 5 to 40% by weight, preferably 10 to 40% by weight.
20% by weight, conductive polymer 60-95% by weight, preferably 80-90% by weight, conductive fine particles 0-15% by weight
, preferably 3 to 10m%.

本発明で使用する導電性高分子は電解重合法、化学重合
法いずれでも良いが、粉状で得やすい事及び量産性の点
で化学重合法のものがより好ましい。
The conductive polymer used in the present invention may be produced by either an electrolytic polymerization method or a chemical polymerization method, but a chemical polymerization method is more preferable because it is easy to obtain in powder form and can be mass-produced.

本発明のシート状電極を正極として、2次電池に使用す
る場合負極としては、亜鉛、アルミニウム、マグネシウ
ム、リチウム、カドミウム等および導電性高分子等およ
び本発明のシート状電極(正極は別種の導電性高分子を
使用)が使用できる。
When the sheet electrode of the present invention is used as a positive electrode in a secondary battery, the negative electrode may include zinc, aluminum, magnesium, lithium, cadmium, etc., conductive polymers, etc. polymers) can be used.

また、本発明のシート状電極を負極として2次電池に使
用する場合、正極としては二酸化マンガン、酸化銀、弗
化黒鉛、塩化チオニル、活性炭、二硫化チタン、二硫化
モリブデン及び導電性高分子等及び本発明のシート状電
極(負極とは別種の導電性高分子を使用)が使用できる
When the sheet electrode of the present invention is used as a negative electrode in a secondary battery, the positive electrode may include manganese dioxide, silver oxide, graphite fluoride, thionyl chloride, activated carbon, titanium disulfide, molybdenum disulfide, conductive polymers, etc. And the sheet-like electrode of the present invention (using a different type of conductive polymer than the negative electrode) can be used.

電解液としてはハロゲン化金属の水溶液または有機溶媒
の溶液が好適に使用できる。ただし、負極がリチウムの
場合には有機溶媒、例えばγープチロラクトン、プロピ
レンカーボネート、ジメチルホルムアミド、ジメトキシ
エタン等から選択される。支持塩としては水溶液系では
塩化アンモニウム、有機溶媒系では過塩素酸リチウム、
ホウフッ化リチウム、LiBr、LiCl、LiCF3
SO3、LiAsFs、L i CF 3 COO,L
 lsbFG等が用いられる。
As the electrolytic solution, an aqueous solution of a metal halide or a solution of an organic solvent can be suitably used. However, when the negative electrode is lithium, it is selected from organic solvents such as γ-butyrolactone, propylene carbonate, dimethylformamide, dimethoxyethane, and the like. Supporting salts include ammonium chloride for aqueous systems, lithium perchlorate for organic solvent systems, and
Lithium borofluoride, LiBr, LiCl, LiCF3
SO3, LiAsFs, L i CF 3 COO, L
lsbFG etc. are used.

[実施例] 以下に実施例を挙げ、本発明をさらに詳細に説明する。[Example] The present invention will be explained in more detail with reference to Examples below.

実施例1 (1)化学重合ボリアニリンの合成 30GmlのIMHCI水溶岐にアニリン20.4g(
 0.219sol)を溶解し、水冷下5〜lO℃に保
ちながら、(N H 4 ) 2 S 2 0 s l
1.5g(0.0504mol)を20011のIMH
cI水溶液に溶解した溶液を滴下、撹.拌した。滴下終
了後2時間同温度で撹拌を続け、析出したボリアニリン
(粉状)を濾取した。得られたボリアニリンを20Qm
lの水で3回洗浄し、次にメタノールioomlで2回
洗浄し乾燥した。
Example 1 (1) Synthesis of chemically polymerized polyaniline 20.4 g of aniline (
0.219 sol) and while keeping it at 5 to 10°C under water cooling, (NH4)2S20sl
1.5g (0.0504mol) of 20011 IMH
Add the solution dissolved in cI aqueous solution dropwise and stir. Stirred. After the completion of the dropwise addition, stirring was continued at the same temperature for 2 hours, and the precipitated polyaniline (powder) was collected by filtration. 20Qm of the obtained borianiline
Washed 3 times with 1 ml of water, then 2 times with ioml of methanol and dried.

次に本ポリアニリンをヒドラジンの20%メタノール溶
液3001中、室温で2時間撹拌し、脱ドーブ及び還元
を行い、濾取し、メタノール100i1で2回洗浄し、
淡青色のボリアニリン10.1gを得た。
Next, this polyaniline was stirred in a 20% methanol solution of hydrazine 3001 at room temperature for 2 hours to perform dedoving and reduction, collected by filtration, and washed twice with methanol 10011,
10.1 g of pale blue polyaniline was obtained.

(2)ボリアニリン分散液の作成 上記で合成したポリアニリン2gとエチレンー酢ビ樹脂
(住友化学工業■、IIC−10)のlO%トルエン溶
液10g,}ルエン5gをスチールボールを入れた10
0mlのマヨネーズビンにて3時間ボールミル分散し、
ボリアニリン分散液を得た。
(2) Creation of polyaniline dispersion 2 g of the polyaniline synthesized above and 10 g of a lO% toluene solution of ethylene-vinyl acetate resin (Sumitomo Chemical ■, IIC-10), 5 g of toluene were placed in a steel ball.
Ball mill dispersion for 3 hours in a 0ml mayonnaise bottle,
A polyaniline dispersion was obtained.

《3》 シート状正極の作成 厚さ20μ鳳のSOS箔に上記ボリアニリン分散液をワ
イヤーバーで乾燥時、厚み8μ■になる様にコーティン
グを行った。固型分付着量は0.84mg/cm’であ
つtこ。
<<3>> Preparation of sheet-like positive electrode A 20 μm thick SOS foil was coated with the above polyaniline dispersion using a wire bar so as to have a thickness of 8 μm when dried. The amount of solid matter deposited was 0.84 mg/cm'.

(4)電池特性の評画 上記シート状正極、リチウム箔(本城金属■、50μ■
厚)セパレータ(トーネンタピル不沖夕ピルス)、及び
電解液としてLiBF+のプロピレンカーボネート70
’Jffi%、ジメトキシエタン30容量%の3M溶液
を使用し、第1図の様な試験セルを使って充放電特性を
調べた。
(4) Evaluation of battery characteristics The above sheet-like positive electrode, lithium foil (Honjo Metal ■, 50μ■
Thickness) Separator (Tonentapil Fukiyupilsu) and LiBF+ propylene carbonate 70 as the electrolyte
Using a 3M solution containing Jffi% and 30% dimethoxyethane by volume, the charge-discharge characteristics were investigated using a test cell as shown in FIG.

なお、評価方法は次の通りである。The evaluation method is as follows.

(1)開放電圧:定電流充電( 0.3mA )を行い
、10分間放置後、両電極端子間電圧 を測定した。
(1) Open-circuit voltage: Constant current charging (0.3 mA) was performed, and after standing for 10 minutes, the voltage between both electrode terminals was measured.

(2)活物質エネルギー密度:定電流( 0.3mA 
)で充放電を行い、測定した。本実 施例での開放電圧は3.8V .活物 質エネルギー密度は304vh/kgであった。また、
本実施例のシート状 正極はコート部の成膜性が良好で あり、可撓性もあり、曲げ等によ りでもコート部の脱落等はなかっ た。また、コート部は試験セル中、 電解液に1カ月浸漬した状態でも 溶解、膨潤等は認められなかった。
(2) Active material energy density: constant current (0.3mA
) was charged and discharged and measured. The open circuit voltage in this example is 3.8V. The active material energy density was 304 vh/kg. Also,
The sheet-like positive electrode of this example had good film-forming properties on the coated portion, was flexible, and did not come off even when bent or the like. Furthermore, no dissolution or swelling was observed in the coated part even after it was immersed in the electrolyte solution for one month in the test cell.

実施例2 実施例1において分散液処方を下記の様に変えた他はす
べて実施例1と同様にしてシート状正極を作成し、評価
を行った。
Example 2 A sheet-like positive electrode was prepared and evaluated in the same manner as in Example 1 except that the dispersion formulation was changed as shown below.

ボリアニリン2g1エチレンー酢ビ樹詣(住友化学工業
■、IC− 10)のlO%トルエン溶液tog ,ケ
ッチェンブラック(ライオン■、ケッチェンブラックE
C) 0.2g,  トル二ン5g0開放電圧はa.g
v,活物質エネルギー密度は359wh/kgであり、
コート部の成膜性、可撓性、脱落、溶解、膨潤等は実施
例1と同様であった。
Borianiline 2g1 10% toluene solution of ethylene-vinyl acetate (Sumitomo Chemical ■, IC-10) tog, Ketjenblack (Lion ■, Ketjenblack E)
C) 0.2g, Tornine 5g0 open circuit voltage is a. g
v, the active material energy density is 359 wh/kg,
The film formability, flexibility, shedding, dissolution, swelling, etc. of the coated portion were the same as in Example 1.

実施例3 実施例1において電解液としてIMの硫酸亜鉛水溶液を
負極に亜鉛箔を用い高分子バインダーとしてポリエステ
ル樹詣(東洋紡績■バイロン−300)、他はすべて実
施例1と同様にして評価を行った。開放電圧はl.2V
 ,活物質エネルギー密度はtooth/kgであり、
コート部の成膜性、可撓性、脱落、溶解、膨潤等は実施
例1と同様であった。
Example 3 In Example 1, an aqueous IM zinc sulfate solution was used as the electrolyte, zinc foil was used as the negative electrode, and polyester resin (Toyobo Co., Ltd. Byron-300) was used as the polymer binder. went. The open circuit voltage is l. 2V
, the energy density of the active material is tooth/kg,
The film formability, flexibility, shedding, dissolution, swelling, etc. of the coated portion were the same as in Example 1.

比較例1 重合液として0.5Mアニリン、5.5N  H2SO
4を水に溶解したものを用い、東電体として20u S
 U S箔を作用極として0.75VvsS C E定
電位重合法により、集電体表面に厚さ 8μのボリアニ
リン膜を析出させ、シート状正極を作成した。本正極を
実施例lの化学重合ポリアニリンの合成の如く、ヒドラ
ジンの20%メタノール泊液で還元、脱ドーブを行い、
シート状正極を作成した。実施例1のシート状正極のか
わりに本比較例1のシート状正極を使用した以外はすべ
て実施例1と同様にして評価を行った。
Comparative Example 1 0.5M aniline, 5.5N H2SO as polymerization liquid
4 dissolved in water, 20u S as TEPCO
Using US foil as a working electrode, a polyaniline film with a thickness of 8 μm was deposited on the surface of the current collector by 0.75 V vs S C E constant potential polymerization method to prepare a sheet-like positive electrode. As in the synthesis of chemically polymerized polyaniline in Example 1, this positive electrode was reduced and dedoped with a 20% methanol solution of hydrazine.
A sheet-like positive electrode was created. Evaluation was performed in the same manner as in Example 1 except that the sheet-like positive electrode of Comparative Example 1 was used instead of the sheet-like positive electrode of Example 1.

開放電圧は3.8V ,活物質エネルギー密度は4Q6
Vh/kgであったが、ボリアニリン層表面が粉状であ
り、曲げ等によって粉落ち、脱落等が激しく、例えば本
シート状正極をスバイラル状に巻く事は無理な状態であ
った。
Open circuit voltage is 3.8V, active material energy density is 4Q6
Vh/kg, but the surface of the borianiline layer was powdery, and the powder fell off and fell off heavily when bent, etc., making it impossible to wind the sheet-like positive electrode in a spiral shape, for example.

比較例2 シート状正極としてポリアニリン0.5g,テフロンデ
ィスバージョン(含ffiBo%) 0.08g ,ケ
ッチェンブラック0.05g ,水0.5gを混練し、
200kg/cs+ 2で加圧していわゆる合剤型の正
極を作成したが、厚み 100μ1以下に薄く成形する
事は不可能であった。また、厚み150μ層に成形した
ものを真空下、lOO℃で乾燥し、シート状正極とした
が、このものは曲げにより容易に折れたり、ひびが入っ
たりしてスバイラル状に巻く事は無理な状態であった。
Comparative Example 2 As a sheet positive electrode, 0.5 g of polyaniline, 0.08 g of Teflon dispersion (including ffiBo%), 0.05 g of Ketjen black, and 0.5 g of water were kneaded,
A so-called mixture type positive electrode was created by pressurizing it at 200 kg/cs+2, but it was impossible to form it into a thin layer with a thickness of 100 μ1 or less. In addition, a sheet-shaped positive electrode was formed by forming a layer with a thickness of 150 μm and drying it under vacuum at 100°C, but this material easily broke or cracked when bent, making it impossible to wind it into a spiral shape. It was a state.

また、このシート状正極は東電体のSUS箔への圧着等
による接着は無理であった。
Furthermore, it was impossible to adhere this sheet-like positive electrode to Tokyo Electric Corporation's SUS foil by pressure bonding or the like.

比較例3 実施例1において高分子バインダーとして低分子量ポリ
エチレンを使用した他はすべて実施例1と同様にしてシ
ート状正極を作成したが、ボリアニリンの分散状態が悪
く、均質な微粒子状となっていなかった。また、本分散
液を20μ塵のSUS箔に塗布したものは接着性が悪く
、曲げ等によって容易にSUS箔より剥離した。
Comparative Example 3 A sheet positive electrode was prepared in the same manner as in Example 1 except that low molecular weight polyethylene was used as the polymer binder in Example 1, but the polyaniline was poorly dispersed and did not form homogeneous fine particles. Ta. Furthermore, when this dispersion was applied to a SUS foil with 20μ dust, the adhesion was poor and it was easily peeled off from the SUS foil by bending or the like.

[発明の効果] 以上説明したように、本発明のシート状電極を使用した
2次電池は、充分なエネルギー容量と充放電特性を示し
、また、本シート状電極はボリアニリン含有コート層が
可撓性に富み、集電体との接着性もよく、スバイラル状
に巻く事も可能であり、また、電解液への溶解膨潤等も
なく、信頼性の高いシート状電極である。
[Effects of the Invention] As explained above, the secondary battery using the sheet-like electrode of the present invention exhibits sufficient energy capacity and charge/discharge characteristics, and the sheet-like electrode has a flexible polyaniline-containing coating layer. It is a highly reliable sheet-like electrode that has excellent properties, has good adhesion to current collectors, can be wound spirally, and does not swell when dissolved in an electrolytic solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の2次電池の性能評価に用いた試験セ
ルを示す図。 !・・・負極用白金リード線、 2・・・負極用白金網集重体、 3・・・リチウム箔(負極)、 4・・・夕ビルス(セパレータ)、 5・・・本発明のシート状正極(ボリアニリンコート層
上向き)、 ト・・正極用白金網集重体、 7・・・正極用白金リード線、 8・・・ポリテトラフルオ口エチレン製容器。
FIG. 1 is a diagram showing a test cell used for performance evaluation of the secondary battery of the present invention. ! ...Platinum lead wire for negative electrode, 2...Platinum wire mesh aggregate for negative electrode, 3...Lithium foil (negative electrode), 4...Yubirusu (separator), 5...Sheet-shaped positive electrode of the present invention (borianiline coated layer facing upward), G. Platinum wire mesh aggregate for positive electrode, 7. Platinum lead wire for positive electrode, 8. Polytetrafluoroethylene container.

Claims (1)

【特許請求の範囲】[Claims]  導電性フィルム上に、少なくとも導電性高分子微粒子
およびバインダーよりなるコート層が塗設されてなるシ
ート状電極を有することを特徴とする2次電池。
A secondary battery comprising a sheet-like electrode formed by coating a conductive film with a coating layer comprising at least conductive polymer fine particles and a binder.
JP1051874A 1989-03-06 1989-03-06 Rechargeable battery Expired - Lifetime JP2898647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051874A JP2898647B2 (en) 1989-03-06 1989-03-06 Rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051874A JP2898647B2 (en) 1989-03-06 1989-03-06 Rechargeable battery

Publications (2)

Publication Number Publication Date
JPH02234349A true JPH02234349A (en) 1990-09-17
JP2898647B2 JP2898647B2 (en) 1999-06-02

Family

ID=12899030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051874A Expired - Lifetime JP2898647B2 (en) 1989-03-06 1989-03-06 Rechargeable battery

Country Status (1)

Country Link
JP (1) JP2898647B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973904A (en) * 1995-09-04 1997-03-18 Toyobo Co Ltd Nonaqueous electrolytic secondary battery and manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159326A (en) * 1974-11-20 1976-05-24 Matsushita Electric Ind Co Ltd
JPS61281463A (en) * 1985-06-07 1986-12-11 Showa Denko Kk Polyaniline electrode
JPS6431658U (en) * 1987-08-19 1989-02-27

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159326A (en) * 1974-11-20 1976-05-24 Matsushita Electric Ind Co Ltd
JPS61281463A (en) * 1985-06-07 1986-12-11 Showa Denko Kk Polyaniline electrode
JPS6431658U (en) * 1987-08-19 1989-02-27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973904A (en) * 1995-09-04 1997-03-18 Toyobo Co Ltd Nonaqueous electrolytic secondary battery and manufacture thereof

Also Published As

Publication number Publication date
JP2898647B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US5604660A (en) Electrochemical cell having solid polymer electrolyte and asymmetric inorganic electrodes
US5011751A (en) Electrochemical device
JP4352349B2 (en) Electrode and electrode manufacturing method
US4915985A (en) Process for forming articles of filled intrinsically conductive polymers
JP2000067852A (en) Lithium secondary battery
JP5219320B2 (en) Paste material body having electrochemical structural element and nanocrystalline material for layer and electrochemical structural element produced therefrom
EP0199175B1 (en) Negative electrodes for non-aqueous secondary batteries composed of conjugated polymer and alkali metal alloying or inserting material
US5958623A (en) Electrochemical cell employing a fine carbon additive
JP2002329495A (en) Lithium secondary battery and production process thereof
JP2021017587A (en) Method of producing binder for electrochemical elements and crosslinked polymer precursor composition
JP4889067B2 (en) Non-aqueous battery and electrode paste and electrode used in the battery
JP4830207B2 (en) battery
JP3062203B2 (en) Electrochemical element
JPH08298137A (en) Secondary battery and electrode used in this secondary battery
JPH07302586A (en) Battery electrode and its manufacture
JPH03163753A (en) Conductive polymer electrode
JPH02234349A (en) Secondary battery
JP3553697B2 (en) Rechargeable battery
JP2810105B2 (en) Electrodes for secondary batteries
JPH10302841A (en) Secondary lithium battery
JPH0850893A (en) Electrode for secondary battery
US5721066A (en) Battery using light weight electrodes
JPH0864200A (en) Electrode for secondary battery and secondary battery using this electrode
JP3409093B2 (en) Electrode for secondary battery and battery using the same
JP3078960B2 (en) Electrode manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

EXPY Cancellation because of completion of term