JPH02232904A - Superconducting magnetic pole and excitation thereof - Google Patents

Superconducting magnetic pole and excitation thereof

Info

Publication number
JPH02232904A
JPH02232904A JP1054014A JP5401489A JPH02232904A JP H02232904 A JPH02232904 A JP H02232904A JP 1054014 A JP1054014 A JP 1054014A JP 5401489 A JP5401489 A JP 5401489A JP H02232904 A JPH02232904 A JP H02232904A
Authority
JP
Japan
Prior art keywords
superconducting
block
current
excitation
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1054014A
Other languages
Japanese (ja)
Inventor
Yukako Nojima
野島 由佳子
Shigenori Uda
宇田 成徳
Teruaki Kitamori
北森 輝明
Hidetaka Tono
秀隆 東野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1054014A priority Critical patent/JPH02232904A/en
Publication of JPH02232904A publication Critical patent/JPH02232904A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title superconducting magnetic pole by providing a laminated block of annular superconducting molded body, an excitation coil which is coaxial with the center part of the block, and a magnetic yoke penetrating to the center part of the above-mentioned two materials. CONSTITUTION:A superconducting molded body 3 is ring-shaped, it is a metal oxide superconducting material containing Cu, or it is formed by providing a superconducting film on a tabular ceramic or substrate. An excitation coil 2, which is coaxial with the block 5 of the superconducting molded body 3, is inserted into magnetic yoke 1. A DC or a pulse current is applied to the coil 2, a change of magnetic flux is generated in the yoke, the superconducting state of the block 5 is distructed at least once, and the magnetic flux is caught in the center part of the block 5. Subsequently, the current on the coil 2 is diminished, a permanent current is induced on the circumference of the hollow part of the block 5 by cutting an excitation circuit, and excitation is conducted using this permanent current.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超電導成形体を用いた超電導磁極およびその
励磁方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a superconducting magnetic pole using a superconducting molded body and a method for exciting the same.

従来の技術 これまで、超電導磁極としては第4図に示す様なNbT
i等の合釡で作られた超電導コイル21と、永久電流ス
イッチ22とで構成される閉回路中に永久電流を流して
励磁し、磁極として用いた。
Conventional technology Until now, NbT as shown in Figure 4 has been used as a superconducting magnetic pole.
A persistent current was passed through a closed circuit consisting of a superconducting coil 21 made of a composite pot such as I, and a persistent current switch 22 to excite it, and it was used as a magnetic pole.

また、励磁のために超電導コイル21と永久電流スイッ
チ22の接続部には励磁用の端子23が接続されていた
。永久電流スイッチ22は超電導線にヒーターを巻いた
構造であり、ヒーターに通電することにより常電導に転
移し、永久電流スイッチ22は抵抗状態となり、ヒータ
ーの電流を切ると零抵抗状態となるものである。
Furthermore, an excitation terminal 23 was connected to the connection portion between the superconducting coil 21 and the persistent current switch 22 for excitation. The persistent current switch 22 has a structure in which a heater is wrapped around a superconducting wire, and when the heater is energized, it changes to normal conductivity, and the persistent current switch 22 becomes a resistance state, and when the heater current is turned off, it becomes a zero resistance state. be.

励磁方法としては、永久電流スイッチ22を予め抵抗状
態にしておき、スイッチ24を閉じて電源25から電流
を超電導コイル21に流す。定常電流になったところで
永久電流スイッチ22を閉じ零抵抗状態にする。その後
電源25の電流を下げ零になったところでスイッチ24
を遮断する。
As an excitation method, the persistent current switch 22 is set in a resistance state in advance, the switch 24 is closed, and a current is caused to flow from the power source 25 to the superconducting coil 21. When the current reaches a steady state, the persistent current switch 22 is closed to create a zero resistance state. After that, the current of the power supply 25 is lowered and when it becomes zero, the switch 24 is turned off.
cut off.

このようにして超電導コイル21には永久電流が流れ、
励磁状態を保つ。尚、超電導コイル21と永久電流スイ
ッチ22とは液体ヘリウム温度(4.2K)程度に保た
れている。
In this way, a persistent current flows through the superconducting coil 21,
Maintain the excited state. Note that the superconducting coil 21 and persistent current switch 22 are maintained at about the liquid helium temperature (4.2 K).

一方、コイルに成形できない合金系超電導材料では、細
長い板状に成形した超電導板の両端をそれぞれ別の超電
導板と機械的に接続し、全体でコイル状に積層して超電
導コイルとして用いるという方法も従来から試みられて
いる。
On the other hand, for alloy-based superconducting materials that cannot be formed into coils, another method is to mechanically connect both ends of a superconducting plate formed into a long and thin plate to another superconducting plate, and then stacking the whole into a coil shape to use it as a superconducting coil. It has been tried before.

また、超電導体をリング状に形成した超電導リングを常
電導状態で磁界中に設置し、その磁界中で冷却すること
により超電導状態に転移させた後に磁界を除去しても、
超電導リングの中空部に磁束が捕捉されたままであるこ
とも確認されており、このような励磁方法も従来から知
られていた。
Furthermore, even if a superconducting ring made of a ring-shaped superconductor is placed in a magnetic field in a normal conducting state, the magnetic field is removed after the superconducting state is transferred to the superconducting state by cooling in the magnetic field.
It has also been confirmed that magnetic flux remains trapped in the hollow part of the superconducting ring, and such an excitation method has been known for some time.

発明が解決しようとする課題 ところで、液体窒素温度以上で超電導材料を用いるには
銅を含む金属酸化物超電導材料、例えばY系やBi系,
TI系等の酸化物超電導材料を用いなければならないが
、この様な酸化物材料は機械的に脆弱であり、長尺の超
電導線やコイル状に加工することは現在のところ極めて
困難である。
Problems to be Solved by the Invention By the way, in order to use superconducting materials above the liquid nitrogen temperature, metal oxide superconducting materials containing copper, such as Y-based, Bi-based,
Although oxide superconducting materials such as TI-based materials must be used, such oxide materials are mechanically fragile, and it is currently extremely difficult to process them into long superconducting wires or coils.

また、板状超電導体を積層してコイル状に形成する方法
も知られているが、酸化物超電導体同志の接続部が超電
導状態にはならず抵抗状態となり永久電流が流れなくな
り使用できない。
A method is also known in which plate-shaped superconductors are laminated to form a coil shape, but the connecting portions of the oxide superconductors do not become superconducting and become resistant, causing a persistent current to flow, making the method unusable.

また、先に述べた酸化物超電導材を成形してなる超電導
リングを磁界中で常電導から超電導に転移させて励磁す
る方法は、超電導リングが冷却されている時には一度臨
界温度以上に昇湿させる必要があり、励磁に時間がかか
ってしまう問題が有った。
In addition, the method of exciting the superconducting ring formed by molding the oxide superconducting material mentioned above by making the transition from normal conductivity to superconductivity in a magnetic field is to first raise the humidity above the critical temperature when the superconducting ring is cooled. However, there was a problem in that it took a long time to excite.

課題を解決するための手段 前記課題を解決するために本発明の超電導磁極は、リン
グ状の超電導ブロックと励磁コイルを並置し超電導ブロ
ックの中空部と、励磁コイルの中空部を貫通する様に磁
性体から成るヨークを配設した構造となっている。
Means for Solving the Problems In order to solve the problems described above, the superconducting magnetic pole of the present invention has a ring-shaped superconducting block and an excitation coil arranged side by side, and a magnetic pole that penetrates the hollow part of the superconducting block and the hollow part of the excitation coil. It has a structure with a yoke consisting of the body.

この超電導ブロックは、リング状の超電導成形体を一個
または複数個積層して構成している。また、超電導成形
体の材料が、鋼元素を含む金属酸化物超電導成形体を用
いる場合には特に有効である。
This superconducting block is constructed by laminating one or more ring-shaped superconducting molded bodies. Further, it is particularly effective when the material of the superconducting compact is a metal oxide superconducting compact containing a steel element.

また、本発明の超電導磁極の励磁方法は、励磁コイルに
直流またはパルス電流を通電してヨーク中に磁束変化を
発生させ、超電導状態にある超電導ブロック中に臨界電
流密度を越える反磁場電流を流せしめて前記超電導ブロ
ックの一部の超電導状態を少なくとも一度破壊すること
により、前記超電導ブロックの中空部に磁束を捕捉させ
、その後、前記励磁コイルを流れる電流を減少させた後
、励磁回路を切断することにより、前記超電導ブロック
の中空部の周辺に永久電流を誘起させて励磁を行うもの
である。
In addition, the method of exciting a superconducting magnetic pole of the present invention involves passing a direct current or pulse current through an excitation coil to generate a magnetic flux change in the yoke, and causing a demagnetizing field current exceeding a critical current density to flow in a superconducting block in a superconducting state. The superconducting state of a part of the superconducting block is destroyed at least once to trap magnetic flux in the hollow part of the superconducting block, and then, after reducing the current flowing through the excitation coil, the excitation circuit is disconnected. By doing so, a persistent current is induced around the hollow part of the superconducting block to perform excitation.

作用 本発明の超電導磁極の構成において、永久電流を流す物
体がリング状の超電導成形体で良いためその作成が容易
である。また、磁性体から成るヨークにより超電導成形
体の集合体である超電導ブロックと励磁コイルとの磁気
結合を強め、励磁を有効に行うことが可能である。
Function: In the structure of the superconducting magnetic pole of the present invention, the object through which persistent current flows can be a ring-shaped superconducting molded body, which is easy to manufacture. Further, the magnetic coupling between the superconducting block, which is an aggregate of superconducting molded bodies, and the excitation coil is strengthened by the yoke made of a magnetic material, and it is possible to perform excitation effectively.

また、励磁方法において、励磁コイルに直流またはパル
ス電流を通電して励磁コイルから発生する磁束を変化さ
せることにより、ヨークで磁気的に結合している超電導
ブロックに、マイスナー効果および電磁誘導作用により
超電導ブロック中に臨界電流密度を越える反磁場電流を
誘起させる。
In addition, in the excitation method, by applying direct current or pulse current to the excitation coil and changing the magnetic flux generated from the excitation coil, the superconducting block that is magnetically coupled with the yoke can be made superconducting by the Meissner effect and electromagnetic induction. A demagnetizing field current exceeding a critical current density is induced in the block.

この時、超電導ブロック中の一部では常電導状態への転
移が起こり、超電導電流回路が切断され磁束が超電導ブ
ロックの中空部に侵入する。その後超電導状態に戻った
後に、励磁コイルに通電していた電流を減少させると、
超電導ブロック中にはマイスナー効果により永久電流が
流れ、中空部に磁束が捕捉されたまま残る、即ち、励磁
完了させることか出来るこ゛とを見出した。
At this time, a transition to a normal conductive state occurs in a part of the superconducting block, the superconducting current circuit is cut off, and magnetic flux enters the hollow part of the superconducting block. After returning to the superconducting state, when the current flowing through the excitation coil is reduced,
It was discovered that a persistent current flows in the superconducting block due to the Meissner effect, and that the magnetic flux remains trapped in the hollow part, that is, it is possible to complete the excitation.

実施例 第1図は本発明の実施例を示す断面図である。Example FIG. 1 is a sectional view showing an embodiment of the present invention.

第1図に於いて、弾性体として鈍鉄を用いたヨーク1が
励磁コイル2と、超電導成形体3から成るリング状の超
電導ブロック5の中空部を貫通している。ヨーク1は磁
界測定用にギャップ4をあけて磁気回路を形成している
。超電導ブロック5は、超電導成形体3を1個または複
数個積層して構成している。超電導成形体3は、Y:B
a:Cu=1:2:3の組成を有する臨界温度約90K
を示すY−Ba−Cu一〇系超電導材料を用い、第2図
に示すような中空部7を有するリング形状の焼結体3(
その寸法は、外径35mm,内径19胴,厚さ2.8+
+m+である。)を用いた。
In FIG. 1, a yoke 1 made of blunt iron as an elastic body passes through an excitation coil 2 and a hollow portion of a ring-shaped superconducting block 5 made of a superconducting molded body 3. The yoke 1 forms a magnetic circuit with a gap 4 for magnetic field measurement. The superconducting block 5 is constructed by laminating one or more superconducting molded bodies 3. The superconducting molded body 3 is Y:B
Critical temperature of approximately 90K with composition of a:Cu=1:2:3
A ring-shaped sintered body 3 (
Its dimensions are outer diameter 35mm, inner diameter 19mm, thickness 2.8+
+m+. ) was used.

第1図では、3個の超電導成形体3を積層して超電導ブ
ロック5を構成している。また、各超電導成形体3の間
には特に絶縁のための手段は施していない。
In FIG. 1, a superconducting block 5 is constructed by stacking three superconducting molded bodies 3. Furthermore, no particular means for insulation is provided between the superconducting molded bodies 3.

この超電導ブロック5を液体窒素温度まで冷却し、ヨー
ク1のギャップ4にホール素子6を配置して、そこから
発生する磁束密度を測定した。
This superconducting block 5 was cooled to liquid nitrogen temperature, a Hall element 6 was placed in the gap 4 of the yoke 1, and the magnetic flux density generated therefrom was measured.

次に励磁方法について第1図を用いて説明する。Next, the excitation method will be explained using FIG. 1.

先ず超電導ブロック5を液体窒素温度まで冷却する。次
に励磁コイル2に直流電源を接続し、励磁電流を流した
。この時励磁電流を増加させて行くと、途中でヨーク1
のギャップ4に挿入したホール素子6に磁界が大きくな
る変化が観測された。
First, the superconducting block 5 is cooled to liquid nitrogen temperature. Next, a DC power source was connected to the excitation coil 2, and an excitation current was applied. At this time, when the excitation current is increased, the yoke 1
A change in the magnetic field was observed in the Hall element 6 inserted into the gap 4.

このことは、超電導ブロック5の中空部(超電導成形体
3の中空部7)の中に磁束の侵入が起こり、中空部を貫
通するヨーク1中を超電導ブロックによる磁束が通りギ
ャップ4に磁界変化を起こさせたことを明示している。
This means that magnetic flux enters the hollow part of the superconducting block 5 (hollow part 7 of the superconducting molded body 3), and the magnetic flux from the superconducting block passes through the yoke 1 that penetrates the hollow part, causing a change in the magnetic field in the gap 4. It clearly shows what happened.

この励磁方法は、ヨーク1で磁気的に強《結合させた励
磁コルイ2により磁界変化を起こさせ、敢えて超電導ブ
ロック5に大きな誘起電流またはマイスナー電流を流し
て超電導状態を破壊させ、磁束を捕捉させるという発想
を本発明者等が生み出し、実験により確認出来たもので
ある。励磁コイル2に電流を通電する方法において、そ
の電流増加率が高い程、低い起磁力でも磁束捕捉が見ら
れ、パルス電流では、より有効にしかも単時間で磁束捕
捉が観測された。これは励磁コイル2からの磁界変化に
よる電磁誘導による誘導電流が、超電導ブロック5の臨
界電流を越えるためによるものと考えられる。
In this excitation method, a magnetic field change is caused by an excitation coil 2 that is strongly magnetically coupled with a yoke 1, and a large induced current or Meissner current is intentionally passed through the superconducting block 5 to destroy the superconducting state and capture the magnetic flux. This idea was created by the inventors and was confirmed through experiments. In the method of applying current to the excitation coil 2, the higher the current increase rate, the more magnetic flux trapping was observed even with a lower magnetomotive force, and with pulsed current, magnetic flux trapping was observed more effectively and in a short period of time. This is considered to be because the induced current due to electromagnetic induction due to changes in the magnetic field from the excitation coil 2 exceeds the critical current of the superconducting block 5.

均磁方法の説明を続ける。ギャップ4の磁界変化が観測
されるまで励磁コイル2に起磁力を与えた後、励磁電流
を減少させた。励磁コイル2に流す励磁電流が零となっ
ても、ギャップ4には有限の磁界が発生したまま即ち励
磁された状態であった。鈍鉄から成るヨーク1は軟磁性
体であり、磁化ヒステリシスは微小であり、超電導ブロ
ック5を除いた系では磁界は観測されなかった。従って
残留磁界は超電導ブロック5に永久電流が流れて捕捉さ
れた磁束によるものであることが判明した。
Continue explaining the uniform magnetization method. After applying magnetomotive force to the excitation coil 2 until a change in the magnetic field in the gap 4 was observed, the excitation current was decreased. Even when the excitation current flowing through the excitation coil 2 becomes zero, a finite magnetic field remains generated in the gap 4, that is, the gap 4 remains in an excited state. The yoke 1 made of blunt iron is a soft magnetic material and has minute magnetization hysteresis, and no magnetic field was observed in the system except for the superconducting block 5. Therefore, it was found that the residual magnetic field was caused by magnetic flux trapped by a persistent current flowing through the superconducting block 5.

ちなみにこのままの状態で超電導ブロック5の温度を上
げてい《と、臨界温度に近づくにつれギャップ4の残留
磁界が減少し、臨界温度以上になると残留磁界はほぼ零
となった。このことからも、磁束捕捉は超電導ブロック
5により行われていることが証明される。また、ギャッ
プ4で観測された残留磁束は、励磁コイル2に流す電流
の最大値がある値以上で飽和する傾向にあり、これはほ
ぼ超電導成形体3の臨界電流密度と相関があることも確
認している。また、励磁電流の方向を逆にすると、ギャ
ップ4の残留磁界の飽和値は、その向きが180゜逆方
向で絶対値がほぼ等しくなることも観測しており、これ
らの現象は再現性を確認している。
Incidentally, when the temperature of the superconducting block 5 was raised in this state, the residual magnetic field in the gap 4 decreased as it approached the critical temperature, and when the temperature exceeded the critical temperature, the residual magnetic field became almost zero. This also proves that magnetic flux capture is performed by the superconducting block 5. It was also confirmed that the residual magnetic flux observed in the gap 4 tends to be saturated when the maximum current flowing through the excitation coil 2 exceeds a certain value, and this is almost correlated with the critical current density of the superconducting compact 3. are doing. We also observed that when the direction of the excitation current is reversed, the saturation value of the residual magnetic field in gap 4 becomes almost equal in absolute value when the direction is 180° reversed, confirming the reproducibility of these phenomena. are doing.

具体的な例を挙げると、3個の超電導成形体3をそれ゛
ぞれ1個ずつ用いて超電導ブロック5として励磁を行い
、ギャップ4の飽和残留磁界を測定するとそれぞれ22
ガウス,40ガウス,45ガウスの値が得られ、超電導
磁極の励磁が確認できた。これら3個を絶縁処理を施す
ことな《積層して超電導ブロック5を構成したとき、ギ
ャップ4の飽和残留磁界強度は105ガウスの値が得ら
れ、ほぼ3個の超電導成形体3の飽和残留磁界の和に等
しい値であった。これは、あたかもそれぞれの超電導成
形体3にほぼ臨界電流値に近い電流がそれぞれ流れて起
こる協働作用とみなすことが出来る。異なる試料による
実験でも同様の現象を確認している。
To give a specific example, when three superconducting molded bodies 3 are each used as a superconducting block 5 and excited, and the saturation residual magnetic field of the gap 4 is measured, each of them is 22
Gauss, 40 Gauss, and 45 Gauss values were obtained, confirming the excitation of the superconducting magnetic pole. When these three pieces are laminated to form a superconducting block 5 without insulation treatment, the saturation residual magnetic field strength of the gap 4 is 105 Gauss, and the saturation residual magnetic field of the three superconducting compacts 3 is approximately The value was equal to the sum of This can be regarded as a cooperative action that occurs when a current close to a critical current value flows through each superconducting molded body 3, respectively. A similar phenomenon was confirmed in experiments using different samples.

合金系の超電導体に電流を流した場合には、第3図(a
)に示す様に、マイスナー効果により超電導体13の磁
場侵入長程度の厚みの表皮部分11に電流が流れ、それ
より内部12には電流が流れないことは、幾多の教科書
に述べられている事柄である。従って、超電導体13を
積層した場合、第3図(b)に示す様に、超電導体13
同志の接続部の表面はマイスナー効果により電流が流れ
ず、超電導体13を積層した全体の表面14のみに電流
が流れ、その内部15には電流が流れなくなる。従って
、第3図(b)の臨界電流はそれぞれの超電導体13の
臨界電流値の和よりも少な《なる。
When a current is passed through an alloy superconductor, Fig. 3 (a
), it is stated in numerous textbooks that current flows through the skin part 11 of the superconductor 13, which is as thick as the magnetic field penetration depth, due to the Meissner effect, but no current flows into the interior 12. It is. Therefore, when the superconductors 13 are stacked, as shown in FIG. 3(b), the superconductors 13
Current does not flow through the surface of the connecting portions of the comrades due to the Meissner effect, and current flows only through the entire surface 14 of the stacked superconductors 13, and no current flows through the interior 15 thereof. Therefore, the critical current shown in FIG. 3(b) is less than the sum of the critical current values of the respective superconductors 13.

然るに、本発明の実施例では、3個の超電導成形体3(
第1図)の各々に、それぞれ独立した場合の最大の臨界
電流値の永久電流が流れ、全体で総和の起磁力となり磁
束捕捉が行われるかの如くの現象が見られており、新し
い発見である。
However, in the embodiment of the present invention, three superconducting molded bodies 3 (
A phenomenon has been observed in which a persistent current with the maximum critical current value when independent flows in each of the two (Fig. be.

尚、本発明の実施例の説明において、超電導成形体3と
してY−Ba−Cu−0系焼結体を用いたが、何もこれ
に限定するわけでなく、他の超電導材料を用いても良い
ことは明白である。また、中空部を有する超電導薄膜を
積層しても同様の効果が得られることを本発明者等は確
認している。
In the description of the embodiments of the present invention, a Y-Ba-Cu-0 based sintered body was used as the superconducting molded body 3, but the present invention is not limited to this, and other superconducting materials may also be used. The good is obvious. Furthermore, the present inventors have confirmed that similar effects can be obtained even when superconducting thin films having hollow portions are laminated.

また、ヨーク1の形状として本実施例では、磁界測定用
ギャップ4を有する閉磁気回路を構成する様にしたが、
こうした磁気回路は設計事項であり、本発明の本質とは
関係がなく、リング状の超電導成形体3からなる超電導
ブロック5の中空部と励磁コイルの中空部とをそれぞれ
貫通して磁気的に結合する様にヨークlが配殺されてい
れば良いのは言うまでもない。
Furthermore, in this embodiment, the shape of the yoke 1 is configured to form a closed magnetic circuit having a magnetic field measurement gap 4.
Such a magnetic circuit is a design matter and has nothing to do with the essence of the present invention, and is magnetically coupled by penetrating the hollow part of the superconducting block 5 made of the ring-shaped superconducting molded body 3 and the hollow part of the excitation coil. Needless to say, it would be better if York L was killed as he did.

発明の効果 以上の如く本発明によれば、下記の効果を奏する。Effect of the invention As described above, according to the present invention, the following effects are achieved.

(1)超電導成形体を相互接続することなしに、リング
状超電導成形体の積層数に比例した永久電流を確保する
ことが可能となる。
(1) It is possible to secure a persistent current proportional to the number of laminated ring-shaped superconducting molded bodies without interconnecting the superconducting molded bodies.

(2)  上記(1)により、リング状超電導成形体の
積層数を増加させるとき、超電導成形体相互の接続や、
絶縁体の介在が不要となる。
(2) According to (1) above, when increasing the number of stacked ring-shaped superconducting molded bodies, the mutual connection of superconducting molded bodies,
No intervening insulator is required.

(3)超電導成形体相互の接続部を持たないので、リン
グ状超電導成形体は、接続部からの熱的損傷を受けるこ
とがない。
(3) Since the superconducting molded bodies do not have mutual connection parts, the ring-shaped superconducting molded bodies do not suffer thermal damage from the connection parts.

(4)超電導成形体の作成及び保存の簡略化が可能とな
り、経済的である。
(4) It is possible to simplify the preparation and storage of superconducting molded bodies, which is economical.

(5)励磁コイルに通電する時間が短時間で済むため励
磁コイルの発熱量が僅かであるので、励磁コイルの線径
を細《し、小型の励磁コイルで大きな起磁力を発生する
ことが出来、小型で強力な超電導磁極を実現することが
可能となる。
(5) Since the time to energize the excitation coil is short, the amount of heat generated by the excitation coil is small, so the wire diameter of the excitation coil can be made small and a large magnetomotive force can be generated with a small excitation coil. , it becomes possible to realize a compact and powerful superconducting magnetic pole.

以上の様に本発明の実施により多くの有益な効果を生じ
、一般民生機器.OA機器,自動車電装機器などの磁極
としての貢献は大なるものが期待される。
As described above, the implementation of the present invention brings about many beneficial effects and improves general consumer equipment. It is expected that it will make a great contribution as a magnetic pole for office automation equipment, automobile electrical equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導磁極の一実施例を示す断面図、
第2図は本発明の実施例に用いた超電導成形体の外観斜
視図、第3図は超電導体中を電流が流れるときの様子を
示す模式断面図、第4図は従来例を示す超電導磁極を示
す模式図である。 1・・・・・・ヨーク、2・・・・・・励磁コイル、3
・・・・・・超電導成形体、5・・・・・・超電導ブロ
ック。9・・・・・・中空部代理人の氏名 弁理士 粟
野重孝 ほか1名第 図 第 第 図 図
FIG. 1 is a sectional view showing an embodiment of the superconducting magnetic pole of the present invention,
Fig. 2 is an external perspective view of a superconducting molded body used in an example of the present invention, Fig. 3 is a schematic cross-sectional view showing how current flows through the superconductor, and Fig. 4 is a superconducting magnetic pole showing a conventional example. FIG. 1... Yoke, 2... Excitation coil, 3
...Superconducting molded body, 5... Superconducting block. 9... Name of the Hollow Department agent Patent attorney Shigetaka Awano and one other person Fig. Fig. Fig.

Claims (4)

【特許請求の範囲】[Claims] (1)リング状の超電導成形体を積層して構成した超電
導ブロックと、前記超電導ブロックの中空部が同軸上に
位置する様配設した励磁コイルと、前記超電導ブロック
の中空部および前記励磁コイルの中空部を貫通する様に
配設した磁性体から成るヨークとから構成される超電導
磁極。
(1) A superconducting block constructed by laminating ring-shaped superconducting molded bodies, an excitation coil arranged so that the hollow part of the superconducting block is located coaxially, and a A superconducting magnetic pole consisting of a yoke made of a magnetic material that extends through a hollow part.
(2)超電導成形体が、銅元素を含む金属酸化物超電導
体である請求項1記載の超電導磁極。
(2) The superconducting magnetic pole according to claim 1, wherein the superconducting molded body is a metal oxide superconductor containing copper element.
(3)超電導成形体が、板状セラミックスまたは基板上
に形成された薄膜の形状を有する請求項1または2記載
の超電導磁極。
(3) The superconducting magnetic pole according to claim 1 or 2, wherein the superconducting molded body has the shape of a plate-shaped ceramic or a thin film formed on a substrate.
(4)請求項1における励磁コイルに直流またはパルス
電流を通電してヨーク中に磁束変化を発生させ、超電導
状態にある超電導ブロックの一部の超電導状態を少なく
とも一度破壊することにより前記超電導ブロックの中空
部に磁束を捕捉させ、その後、前記励磁コイルを流れる
電流を減少させた後、励磁回路を切断することにより前
記超電導ブロックの中空部の周辺に永久電流を誘起させ
てこの永久電流により励磁を行う超電導磁極の励磁方法
(4) A direct current or a pulse current is applied to the excitation coil according to claim 1 to generate a change in magnetic flux in the yoke, and the superconducting state of a part of the superconducting block in the superconducting state is destroyed at least once, so that the superconducting block is The magnetic flux is captured in the hollow part, and then the current flowing through the excitation coil is reduced, and then the excitation circuit is cut off to induce a persistent current around the hollow part of the superconducting block, and the permanent current is used to excite the superconducting block. How to excite superconducting magnetic poles.
JP1054014A 1989-03-07 1989-03-07 Superconducting magnetic pole and excitation thereof Pending JPH02232904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054014A JPH02232904A (en) 1989-03-07 1989-03-07 Superconducting magnetic pole and excitation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054014A JPH02232904A (en) 1989-03-07 1989-03-07 Superconducting magnetic pole and excitation thereof

Publications (1)

Publication Number Publication Date
JPH02232904A true JPH02232904A (en) 1990-09-14

Family

ID=12958732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054014A Pending JPH02232904A (en) 1989-03-07 1989-03-07 Superconducting magnetic pole and excitation thereof

Country Status (1)

Country Link
JP (1) JPH02232904A (en)

Similar Documents

Publication Publication Date Title
Autler Superconducting electromagnets
US6348275B1 (en) Bulk amorphous metal magnetic component
US6346337B1 (en) Bulk amorphous metal magnetic component
Kato et al. Coercivity enhancements by high-magnetic-field annealing in sintered Nd–Fe–B magnets
US6744342B2 (en) High performance bulk metal magnetic component
US4894360A (en) Method of using a ferromagnet material having a high permeability and saturation magnetization at low temperatures
JPH02232904A (en) Superconducting magnetic pole and excitation thereof
EP0327683B1 (en) Superconducting switching device
Hulm et al. High-Field Superconducting Magnets
JPS63268204A (en) Superconducting magnet
Wipf A superconducting direct-current generator
Riemersma et al. A Variable Composition, High Field Superconducting Solenoid
US5306701A (en) Superconducting magnet and fabrication method
JP2001238349A (en) Current limiter
Yntema Niobium superconducting magnets
Takemura et al. Study on the PFM behavior of GdBCO bulk joined by ErBCO and its FEM simulation
JP4283406B2 (en) Method and apparatus for magnetizing oxide superconducting material
JPH0782939B2 (en) Magnet using oxide superconductor and method for manufacturing the same
JPH05175034A (en) Superconductor magnet
Israelsson et al. Superconducting magnet and fabrication method
JPH02178904A (en) Magnetizing device for high coercive force permanent magnet
Fukushima et al. Fabrication and Transport Properties of Bi-2212/Ag Continuously-wound 16-Stack Pancake Coil
Ikeda et al. Iron loss of stacked cores using amorphous alloys
Tanaka et al. Ac losses in superconducting parallel conductors in saturation case
Rodewald Magnetic Properties of Nd sub 15--x Dy sub x Fe sub 77 B sub 8 Alloys.(Retroactive Coverage)