JPH02232599A - Method and apparatus for disposal of liquid organic waste by sulfuric ore conversion - Google Patents

Method and apparatus for disposal of liquid organic waste by sulfuric ore conversion

Info

Publication number
JPH02232599A
JPH02232599A JP1767390A JP1767390A JPH02232599A JP H02232599 A JPH02232599 A JP H02232599A JP 1767390 A JP1767390 A JP 1767390A JP 1767390 A JP1767390 A JP 1767390A JP H02232599 A JPH02232599 A JP H02232599A
Authority
JP
Japan
Prior art keywords
reactor
liquid
waste
flow rate
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1767390A
Other languages
Japanese (ja)
Other versions
JP2848656B2 (en
Inventor
Alain Aspart
アラン・アスパール
Bruno Gillet
ブルーノ・ジレ
Sylvie Lours
シルビ・ルール
Bernard Guillaume
ベルナール・ギヨーム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of JPH02232599A publication Critical patent/JPH02232599A/en
Application granted granted Critical
Publication of JP2848656B2 publication Critical patent/JP2848656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/0009Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00164Controlling or regulating processes controlling the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00171Controlling or regulating processes controlling the density
    • B01J2219/00175Optical density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00193Sensing a parameter
    • B01J2219/00195Sensing a parameter of the reaction system
    • B01J2219/002Sensing a parameter of the reaction system inside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00191Control algorithm
    • B01J2219/00222Control algorithm taking actions
    • B01J2219/00227Control algorithm taking actions modifying the operating conditions
    • B01J2219/00229Control algorithm taking actions modifying the operating conditions of the reaction system
    • B01J2219/00231Control algorithm taking actions modifying the operating conditions of the reaction system at the reactor inlet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE: To keep continuos operation by introducing a liquid organic waste and a nitic acid or a hydrogen peroxide into a reactor which includes a concentrated sulfuric acid and is kept at about 150 deg. and adjusting a flow rate by using the optical concentration of the measured liquid medium as a function. CONSTITUTION: A reactor 1 is partly filled with a sulfuric acid 5 and an organic liquid waste to be processed is introduced into the reactor 1 through a pipe 7. The flow rate of the liquid waste is adjusted by a gear pump 9 and a small stream is introduced so as not to clog the pipe 7 due to carbonization of organic substance in the pump 9. A nitric acid or hydrogen peroxide used for reaction is introduced through a tube 11 immersing in a sulfuric acid 5 and its flow rate is adjusted by a pump 13. The reactor 1 is proved with a preheating means 14, a turbine 15 as a stirring means, a probe 17 for measuring the concentration of liquid medium, and optical concentration measuring means 21 and 23. A gas generating through reaction is discharged from an enclosing body through a pipe 19. The pipe 19 passes through a gas processing assembly and then it is connected with the ventilating circuit of a sealed body of nuclear facility. The means 21 is connected with a microprocessor 27 for controlling the pump 9.

Description

【発明の詳細な説明】 本発明は液体有機廃棄物を処理するための方法及び装置
に関する. 本発明は特に、安定した状悪に保持されノ)ばならない
、例えば原子力施設または化学工業研究所からでる放射
性または毒性物質に汚染された有機溶剤液体廃棄物によ
って構成される液体有機廃棄物の処理に適用される. 公知の廃棄物調整方法においてビチューメンで被覆する
ことは、液体有機生成物はビチューメンの軟化点を低下
させるので望ましくない.コンクリート被覆も浸出現象
を防止するためには廃棄物を希釈することが極めて大変
であるのでやはり望ましくない.重合可能な生成物への
取り込みも考えられるが、液体有機生成物に適用するの
は困難である. 従って、有機廃棄物を処理する最も信頼件のある処理方
法は、その長期間の状態維持を図るために有機廃棄物を
無v1物質に変換することからなる.これは、廃棄物の
灰化または乾式熱分解によって実施することができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for treating liquid organic waste. The invention particularly relates to the treatment of liquid organic wastes, which are constituted by organic solvent liquid wastes contaminated with radioactive or toxic substances, e.g. from nuclear installations or chemical industry laboratories, which must be kept in stable conditions. Applies to. Coating with bitumen in known waste preparation methods is undesirable because liquid organic products lower the softening point of the bitumen. Concrete coating is also undesirable since it is extremely difficult to dilute the waste to prevent leaching phenomena. Incorporation into polymerizable products is also possible, but it is difficult to apply to liquid organic products. Therefore, the most reliable treatment method for treating organic waste consists of converting it into V1-free substances in order to maintain its long-term condition. This can be carried out by incineration or dry pyrolysis of the waste.

放射性元素に汚染された有機液体廃棄物を灰化すること
は、10−’Ci/s’よりも高いα活性及び10”’
Ci/m’よりも高いβまたはγ活性を有する廃棄物を
このように処理することは困難であるので、必然的に問
題を生じる。更に、液体廃棄物が有機リン化合物で構成
されている場合には、燃焼するとリン酸小滴を生じるの
で、これを火炎にギ酸カルシウムを添加することにより
中和する必要がある.そうするとビロリン酸カルシウム
が生成され、これが灰の容積をかなり増大させフィルタ
を詰まらせる.更に例外的な操伴条件を回避するために
は、溶剤のリン含有量が0.1%に制限されねばならな
い. 乾式熱分解方法は非常に活性の高い灰を取り扱うことに
なるので、これを高度に汚染された液体廃棄物に実施す
るのは困難である. 有機廃棄物を処理する別の方法として硫酸による鉱化が
あるが、これはいまのところ固体有1iHli棄物の処
理にしか使用されていない。この方法は、廃棄物を硫酸
によって炭化し、形成された炭素を硝酸及び/または過
酸化水素によって酸化することからなる.これは、式C
 . +1 .の有機廃棄物では反応: C,fl.,+n/2H,SO4    nll20+
n/2SO2+鶏C  (1)?+2H,So,  →
 211■0+2SO2+CO2    (υ3C+ 
4HNO,  →2}1,0+4NO+3CO2(3)
?C + 21180 3  →LO+2NO+ 3C
O   (4)C+H2SO.  →B20+SO.+
CO    (5)に対応する.255℃における反応
(2)〜(5)の速度定数は、 K2= 0.0018分一 Km + K3 +K4 + Ks = 0.016分
−1K,       = 0.011分一K. + 
Ks     = 0.0029分一である.炭素の酸
化はi!酸よりも硝酸によってより速く行なわれる(K
s>>Kt>.このように前記方法には、2つの段階: 1.H.SO.による炭化、 2,硝酸による炭素のCO及びCO.への酸化がある. 上記反応において形成される気体はSO■、CO2、N
O及びCOであるが、SO2は形成された酸化窒素及び
硝酸によって酸化され硫酸に変換することができる.従
って炭化に必要なli!酸を再生することが可能である
Ashing organic liquid waste contaminated with radioactive elements has an alpha activity higher than 10-'Ci/s' and 10"'
Processing wastes with β or γ activity higher than Ci/m′ in this way is difficult and therefore necessarily problematic. Additionally, if the liquid waste is composed of organophosphorus compounds, combustion produces phosphoric acid droplets which must be neutralized by adding calcium formate to the flame. Calcium birophosphate is then formed, which increases the ash volume considerably and clogs the filter. In order to further avoid exceptional operating conditions, the phosphorus content of the solvent must be limited to 0.1%. Dry pyrolysis methods involve handling highly active ash, which is difficult to implement on highly contaminated liquid wastes. Another method of treating organic waste is mineralization with sulfuric acid, but this has so far only been used to treat solid 1iHli waste. The method consists of carbonizing the waste with sulfuric acid and oxidizing the carbon formed with nitric acid and/or hydrogen peroxide. This is the formula C
.. +1. In organic waste, the reaction: C, fl. ,+n/2H,SO4 nll20+
n/2SO2+Chicken C (1)? +2H, So, →
211■0+2SO2+CO2 (υ3C+
4HNO, →2}1,0+4NO+3CO2(3)
? C + 21180 3 →LO+2NO+ 3C
O (4)C+H2SO. →B20+SO. +
Corresponds to CO (5). The rate constants of reactions (2) to (5) at 255°C are: K2 = 0.0018 min Km + K3 + K4 + Ks = 0.016 min - 1 K, = 0.011 min Km. +
Ks = 0.0029/1. Oxidation of carbon is i! is carried out faster by nitric acid than by acid (K
s>>Kt>. The method thus includes two steps: 1. H. S.O. 2. Carbonization of carbon with nitric acid and CO. There is oxidation to The gases formed in the above reaction are SO■, CO2, N
O and CO, but SO2 can be oxidized and converted to sulfuric acid by the formed nitrogen oxides and nitric acid. Therefore, the li required for carbonization! It is possible to regenerate the acid.

この種の方法は、LerehらがNuclear an
dChemical WasLe Managemen
t,第2巻,1981,pp265 〜277に記載し
ている. 本発明は、公知の乾式熱分解及び灰化法の欠点を解消す
ることができ且つ連続的に実施可能であるという長所を
有する硫酸鉱化による液体有機廃棄物の処理方法に関す
る. 本発明は、 少なくとも150℃の温度に維持され且つf4硫酸を含
む反応器内に、 区》処理されるべき液体有機廃棄物、並びにb)硝酸及
び7才たは過酸化水素を、 反応器内で、導入された液体廃棄物の硫酸による炭化と
、炭化の際に形成される炭素及びSO2の酸化とが行わ
れると同時に硫酸を再生するような流量で導入し、 反応器内に存在する液体媒質の光学濃度を連続的に測定
し, 測定された光学濃度の関数として、導入される液体有機
廃棄物の流盪並びに/または硝酸及び/もしくは過酸化
水素の流量を調節することを包含する液体有機廃棄物の
処理方法を提供する.即ち本発明では同じ反応器内で、
硫酸鉱化過程の炭化及び酸化という2つの段階と、反応
器内に導入された硝酸及び/または過酸化水素によって
302が酸化されることにより硫酸を再生する段階とが
同時に実施される.更に測定された光学濃度の関数とし
て、導入される液体廃棄物及び/または酸化剤の流量が
調節される. 光学濃度は反応媒質の元素状炭素濃度の関数として変化
する.更に前記光学濃度が、反応媒質において許容され
得る元素状炭素濃度に対応する設定レベルを越えたとき
には、有機液体廃棄物の供給速度を減少するもしくは供
給を停止するか、または反応媒質中に過剰に存在する炭
素を酸化するために硝酸及び/もしくは過酸化水素の供
給速度を増加する.光学濃度が再度設定レベル以下の値
となったならば直ぐに、液体廃棄物または硝酸及び/も
しくは過酸化水素の供給速度をその出発値に再度戻す.
このように本発明の方法は、硫酸な加えることなく連続
的に実施することができる。
This type of method has been described by Lereh et al.
dChemical WasLe Management
T, Vol. 2, 1981, pp. 265-277. The present invention relates to a method for treating liquid organic waste by sulfuric acid mineralization, which has the advantage of overcoming the drawbacks of known dry pyrolysis and ashing methods and can be carried out continuously. The present invention comprises: in a reactor maintained at a temperature of at least 150° C. and containing f4 sulfuric acid; b) the liquid organic waste to be treated; and b) nitric acid and hydrogen peroxide in the reactor. Then, carbonization of the introduced liquid waste with sulfuric acid and oxidation of carbon and SO2 formed during carbonization are carried out, and at the same time sulfuric acid is introduced at a flow rate such that sulfuric acid is regenerated, and the liquid present in the reactor is regenerated. continuously measuring the optical density of the medium and adjusting the flow rate of the introduced liquid organic waste and/or of the nitric acid and/or hydrogen peroxide as a function of the measured optical density; Provides a method for treating organic waste. That is, in the present invention, in the same reactor,
The two stages of carbonization and oxidation of the sulfuric acid mineralization process and the stage of regenerating sulfuric acid by oxidizing 302 with nitric acid and/or hydrogen peroxide introduced into the reactor are carried out simultaneously. Furthermore, as a function of the measured optical density, the flow rate of the introduced liquid waste and/or oxidizer is adjusted. The optical density varies as a function of the elemental carbon concentration of the reaction medium. Additionally, when the optical density exceeds a set level corresponding to an acceptable elemental carbon concentration in the reaction medium, the organic liquid waste feed rate may be reduced or stopped, or an excess of organic liquid waste may be added to the reaction medium. Increase the feed rate of nitric acid and/or hydrogen peroxide to oxidize the carbon present. As soon as the optical density is again below the set level, the liquid waste or nitric acid and/or hydrogen peroxide feed rate is returned to its starting value.
The process of the invention can thus be carried out continuously without the addition of sulfuric acid.

本発明では、反応器内に導入されるべき液体有機廃棄物
、硝酸及び/または過酸化水素の流量を所定の値に固定
し、測定された光学濃度が設定値以上になったときには
液体廃棄物の反応器への導入を中断し、特に液体廃棄物
の流れに対して還択された値に応じた停止時間の後に供
給を自動的に再開することが好ましい。流量が小さい場
合には停止時間は数秒間、例えば1〜3秒とし、流量が
より大きいならば停止はより長くする6 廃棄物の炭化に使用される硫酸は一般に濃VfL酸、例
えば250℃において16〜18M硫酸である.炭素及
びSO2の酸化に使用される硝酸も濃硝酸、例えば12
〜14M硝酸が好ましい. 過酸化水素を使用するのであれば、これは30%過酸化
水素(110容積)であるのが好ましい.本発明の方法
は特に、放射線照射済核燃料再処理施設において使用さ
れるような有機溶剤によって楕成される液体有機廃棄物
の処理に適用可能である. かかる溶剤の例は、リン酸トリブチルのごとき有機リン
化合物及びトリラウリルアミンのごときアミンから選択
される少なくとも1種の化合物並びにこれらの混合物を
有するものである.処理されるべき液体有機溶剤が恐ら
くは有機希釈剤を含有する有機溶剤である場合には、(
存在し得る酸及び硝酸イオンを除去するための)予備中
和処理と、鉱化の際に部分的に気化し易い軽生成物であ
る希釈剤及びアルコールを除去して処理されるべき液体
の容積を小さくするために、蒸留による濃縮とを行なう
ことが好ましい.中和処理は、溶剤を炭酸ナトリウム溶
液と接触させることにより周囲温度で実施することがで
きる.この炭酸ナトリウム溶液によって、蒸留に際して
望ましくない反応を起こすであろう存在し得る酸及び硝
酸イオンを除去することができる.更にウランまたはプ
ルトニウムといったカチオンも溶解することができる. 蒸留濃縮操作はほとんどの場合減圧下で実施される.し
かしながら、液体廃棄物が例えばエタノール、プロバノ
ール及びブロビオン酸のごとき高い揮発性を示す生成物
を含有する場合には、′蒸留を周囲温度で実施すること
が好ましい。この蒸留によって、蒸留分は除染されてい
ると共に鉱化されるべき溶剤の容積を小さくできるし、
また反応閏頗系内で望ましくない塩酸が生成するのを回
避するために、一般に高い揮発性を示す希釈剤及び塩素
誘導物質を除去することもできる.この蒸留は、溶剤の
劣化を防止し且つタールの形成を制限するように滞留時
間が短い装置を使用し、密閉体内で実施するとよい.こ
の装置は、洗浄廃物が付着しないように、蒸発の際に残
る付着物を排出するための回転ベルトを備えているとよ
い.容器内に得られた濃縮有機残渣を回収することが可
能であり、それが高い粘度を有する場合及び/または沈
澱を防止するために必要であれば再度加熱する. その検査に際していかなる放射性の再汚染も防止するた
めに、濃縮物は別個の密閉体中に排出する. もし溶剤が放射線照射済燃料再処理施設からでるもので
あれば、これらすべての操作は窒素雰囲気下にグローブ
ボックス内で実施する.次いで本発明の処理を実施する
ためには、有機残渣を適当なレベルの温度、例えば使用
する酸化剤が硝酸であれば200℃以上に加熱した反応
器内に導入する. 有機二トロ誘導体は200℃以上では形成し得ない。こ
の場合は温度220〜270℃、例えば250℃で操作
するのが好ましい. 過酸化水素の場合には温度150〜200℃、例えば1
70℃が適当である. 更に本発明は、反応器と、反応器を加熱する手段と、処
理されるべき有機液体廃棄物を反応器に導入する手段と
、硝酸及び/または過酸化水素を反応器に導入する手段
とを従来の装置のように包含するが、更に、反応器内に
存在する液体媒質の光学濃度を測定する手段と、測定さ
れた光学濃度の関数として、導入される有機液体廃棄物
の流量並びに7または硝酸及び/もしくは過酸化水素の
流量を調節する手段とを包含する液体有機廃棄物の処理
のための装置にも関する。
In the present invention, the flow rate of liquid organic waste, nitric acid and/or hydrogen peroxide to be introduced into the reactor is fixed at a predetermined value, and when the measured optical density exceeds the set value, the liquid waste is It is preferred to interrupt the introduction of the liquid waste into the reactor and automatically restart the feed after a stoppage time depending on the values set for the liquid waste stream, in particular. If the flow rate is low, the stop time will be a few seconds, e.g. 1-3 seconds; if the flow rate is higher, the stop time will be longer.6 The sulfuric acid used for waste carbonization is generally concentrated VfL acid, e.g. at 250°C. It is 16-18M sulfuric acid. The nitric acid used for the oxidation of carbon and SO2 is also concentrated nitric acid, e.g.
~14M nitric acid is preferred. If hydrogen peroxide is used, it is preferably 30% hydrogen peroxide (110 volumes). The method of the present invention is particularly applicable to the treatment of liquid organic wastes evaporated by organic solvents, such as those used in irradiated nuclear fuel reprocessing facilities. Examples of such solvents include at least one compound selected from organic phosphorus compounds such as tributyl phosphate and amines such as trilaurylamine, and mixtures thereof. If the liquid organic solvent to be treated is an organic solvent possibly containing an organic diluent, (
the volume of liquid to be treated by pre-neutralization (to remove any acids and nitrate ions that may be present) and by removing diluents and alcohols, which are light products that are susceptible to partial vaporization during mineralization; In order to reduce the amount of water, it is preferable to perform concentration by distillation. Neutralization can be carried out at ambient temperature by contacting the solvent with a sodium carbonate solution. This sodium carbonate solution makes it possible to remove any acid and nitrate ions that may be present, which would cause undesirable reactions during distillation. It can also dissolve cations such as uranium or plutonium. Distillation and concentration operations are almost always carried out under reduced pressure. However, if the liquid waste contains highly volatile products such as ethanol, probanol and brobionic acid, it is preferred to carry out the 'distillation at ambient temperature. By this distillation, the distillate is decontaminated and the volume of solvent to be mineralized can be reduced,
Diluents and chlorine derivatives, which are generally highly volatile, can also be removed to avoid unwanted hydrochloric acid formation within the reaction funnel system. This distillation is preferably carried out in a closed body, using equipment with short residence times to prevent solvent degradation and limit tar formation. This device is preferably equipped with a rotating belt for discharging the deposits remaining during evaporation to prevent cleaning waste from adhering. It is possible to collect the concentrated organic residue obtained in the container and heat it again if it has a high viscosity and/or if necessary to prevent precipitation. The concentrate is discharged into a separate enclosure to prevent any radioactive recontamination during its testing. If the solvent originates from an irradiated fuel reprocessing facility, all these operations should be performed in a glove box under a nitrogen atmosphere. To carry out the treatment of the invention, the organic residue is then introduced into a reactor heated to a suitable level of temperature, for example 200° C. or higher if the oxidizing agent used is nitric acid. Organic nitro derivatives cannot be formed above 200°C. In this case, it is preferable to operate at a temperature of 220 to 270°C, for example 250°C. In the case of hydrogen peroxide, the temperature is 150-200°C, e.g.
70℃ is appropriate. The invention further provides a reactor, means for heating the reactor, means for introducing the organic liquid waste to be treated into the reactor, and means for introducing nitric acid and/or hydrogen peroxide into the reactor. as in a conventional device, but further comprising means for measuring the optical density of the liquid medium present in the reactor and, as a function of the measured optical density, the flow rate of the organic liquid waste introduced as well as 7 or and means for regulating the flow rate of nitric acid and/or hydrogen peroxide.

好ましくは光学濃度を測定する手段は、第1の光導波路
内に案内された光ビームが反応器の液体媒質中の経路を
通過した後に第2の光導波路内に案内されるように相補
的に配置された第1の光導波路及び第2の光導波路と、
光ビームを前記第1の光導波路に導入する手段と、前記
第2の光導波路から出る光ビームの強度を測定する手段
とを包含する. 以下添付の図面を参照して非限定的な具体例に関し本発
明をより詳細に説明する. 第1図は、ボンプ9を備えたバイプ7を通して鉱化され
るべき有機溶剤が導入され且つボンプ13を備えた管1
1を通して1硝酸が導入される反応器1を具備する設備
を示す.反応器1は加熱手段14によって加熱すること
ができる.反応によって生じたガスはバイブ19を通し
て排出される.バイプ19は、空気が導入される凝縮器
Cと関係する第1の精留塔Rに連結されている.凝縮器
Cの出口では、希薄なHNO.及びH,SO.が回収さ
れ、貯蔵される.一方、酸化窒素及び空気を含有する回
収ガスは、接触再結合塔(caLalytic rec
oaibination?olumn)20内でこの塔
20の上部から導入される水と接触的に再結合され硝酸
を形成する。酸化窒素が除去されたガスはナトリウムト
ラップ22に移送され、そこではCO■と最後に残った
微量の不純物([803、}180■及び]1■SO.
>とがソーダによって捕獲される. 第2図は、例えば剛性のポリテトラフルオ口エチレン製
のカバー3によって上部が封止されている例えばパイレ
ックスガラスでできた反応2S1を具備する本発明に係
る装置を示す. 反応器1の一部には硫酸5が充填されており、処理され
るべき有機液体廃棄物はバイプ7を通して導入される.
バイブ7は硫酸5中に浸没してはいない.液体廃棄物の
流量はギャボンブ9で調節される.ギヤボンプ9は、有
機物の炭化によってバイプ7が詰まらないように小さな
空気流も導入させる。
Preferably the means for measuring optical density are complementary such that the light beam guided in the first light guide is guided into the second light guide after passing through the path in the liquid medium of the reactor. a first optical waveguide and a second optical waveguide arranged;
It includes means for introducing a light beam into the first optical waveguide, and means for measuring the intensity of the light beam exiting from the second optical waveguide. The invention will now be explained in more detail by way of non-limiting examples with reference to the accompanying drawings, in which: FIG. FIG. 1 shows that the organic solvent to be mineralized is introduced through a pipe 7 with a pump 9 and a pipe 1 with a pump 13.
1 shows an installation comprising a reactor 1 through which nitric acid is introduced. Reactor 1 can be heated by heating means 14. The gas generated by the reaction is exhausted through the vibrator 19. The pipe 19 is connected to a first rectification column R associated with a condenser C into which air is introduced. At the outlet of condenser C, dilute HNO. and H, S.O. is collected and stored. On the other hand, the recovered gas containing nitrogen oxide and air is sent to a catalytic recombination column (caLalytic rec).
oaibination? The nitric acid is catalytically recombined in the column 20 with water introduced from the top of the column 20 to form nitric acid. The gas from which the nitrogen oxides have been removed is transferred to the sodium trap 22, where it collects CO■ and the last traces of impurities ([803, }180■ and ]1SO.
> is captured by Soda. FIG. 2 shows an apparatus according to the invention comprising a reactor 2S1, for example made of Pyrex glass, which is sealed on top by a cover 3 made of, for example, rigid polytetrafluoroethylene. A part of the reactor 1 is filled with sulfuric acid 5 and the organic liquid waste to be treated is introduced through a pipe 7.
Vibe 7 is not immersed in sulfuric acid 5. The flow rate of liquid waste is regulated by gabonbu 9. The gear bomb 9 also introduces a small air flow to prevent the pipe 7 from clogging due to carbonization of organic matter.

反応に使用される硝酸または過酸化水素は硫酸5中に浸
没された管11によって導入され、その流量はボンブ1
3によって調節される.更に反応器は加熱手段14と、
例えばポリテトラフル才口エチレンでできたタービン1
5によって構成される撹拌手段と,液体媒質の温度を測
定するブロープl7と、光学濃度の測定手段21、23
とを具備している.反応によって生じたガスはバイブ1
9によって包囲体から排出される.バイブ19は、第1
図に示したようなガス処理組立て体を通過した後、原子
力施設の密閉体の換気回路に連結されている.第2図に
示した実施態様においては、光学濃度は、液体媒質から
分離するために透明な管25内に設置された光源23に
向かい合った反応器の端部に設置された光電気センサ2
1によって測定される.光源は石英ヨウ素ランプとする
ことができる.光源23は一般に、この場合には明らか
に透明である反応器1の壁から約1c+++のどころに
ある.光電気セル21は溶液の光学濃度を表示し、且つ
処理されるべき液体廃棄物を供給するボンブ9を制御す
るマイクロプロセッサ27に接続されている。
The nitric acid or hydrogen peroxide used in the reaction is introduced by a tube 11 immersed in sulfuric acid 5, the flow rate of which is controlled by the bomb 1.
Adjusted by 3. Furthermore, the reactor has heating means 14;
For example, a turbine 1 made of polytetrafluoroethylene
5, a probe l7 for measuring the temperature of the liquid medium, and optical density measuring means 21, 23.
It is equipped with the following. The gas generated by the reaction is vibrator 1.
9 is ejected from the enclosure. Vibrator 19 is the first
After passing through the gas handling assembly shown in the figure, it is connected to the ventilation circuit of the enclosed enclosure of the nuclear facility. In the embodiment shown in FIG. 2, the optical density is determined by a photoelectric sensor 2 installed at the end of the reactor opposite a light source 23 installed in a transparent tube 25 to separate it from the liquid medium.
It is measured by 1. The light source can be a quartz iodine lamp. The light source 23 is generally approximately 1c+++ from the wall of the reactor 1, which in this case is clearly transparent. The photoelectric cell 21 is connected to a microprocessor 27 which displays the optical density of the solution and controls the bomb 9 which supplies the liquid waste to be treated.

マイクロプロセッサ27は、光学濃度が例えば反応媒質
の炭素含有量1〜59/1に対応する設定レベルを越え
たならば、処理されるべき有n廃棄物の供給流を一時的
に停止または低減するためにボンブ9を作動化するよう
にプログラムされている。
The microprocessor 27 temporarily stops or reduces the feed stream of the waste material to be treated if the optical density exceeds a set level corresponding to, for example, the carbon content of the reaction medium from 1 to 59/1. It is programmed to activate bomb 9 for this purpose.

この実施R様においては、管11によって導入される硝
酸または過酸化水素の流れはボンブ13によって固定値
に調節されている.光学濃度が設定レベルを越えたとき
に硝酸または過酸化水素の流れを増大するために、ボン
ブ13がマイクロプロセッサ27に従うようにすること
もできることは明らかである. 第3図は、反応器内に存在する液体媒質の光学濃度を測
定する手段の別の実施悪様を示す。この場合には、第2
図の降下または浸没管25は第3図の組立て体30で置
き換えられている.この組立て体30は例えばポリテト
ラフルオ口エチレンでできたホールダーまたはエンベロ
ーブ29を具備しており、エンベローブ29は反応媒質
をこのエンベロープ29に再度流入させ得るオリフィス
31を有する.エンベロープ29内にはその下方部分3
3aが湾曲した第1の光導波路33が備えられている.
その下方部分33gはオリフィス31の高さ丈で達して
おり、その上方に第2の光導波路35が具備され、これ
ら2つの導波路間には反応媒質中の光路Tに対応するス
ペースが提供されている.図には示していないが反応器
の外部には光発生器が、光ビームを第1の光導波路33
に導入するように設置されている一次いでその光ビーム
は紅iTに沿って液体媒質をflI!断し、第2の光導
波路35によって案内される.第2の光導波路35は、
出て来た光ビームの強度を測定し且つその値から光路T
に存在する液体媒質の光学濃度を誘導するために、反応
器の外部にある光電気セルと組合わさっている.光導波
路35と組合わさっている光電気セルは、前記したよう
に処理されるべき液体廃棄物の導入量を制御するマイク
ロプロセッサ27に接続されている.前記したように、
光路Tは溶液約leanに対応する.この第2の装置は
、光導波路及び検出用の光電気セルの両方を密閉体、例
えばグローブボックスの外部に設置することができるの
で、密m体において操作するのに特に適合している。
In this implementation R, the flow of nitric acid or hydrogen peroxide introduced by pipe 11 is regulated by bomb 13 to a fixed value. It is clear that the bomb 13 could also be made to follow the microprocessor 27 in order to increase the flow of nitric acid or hydrogen peroxide when the optical density exceeds a set level. FIG. 3 shows another implementation of the means for measuring the optical density of the liquid medium present in the reactor. In this case, the second
The drop or dip tube 25 shown has been replaced by the assembly 30 of FIG. The assembly 30 comprises a holder or envelope 29 made of, for example, polytetrafluoroethylene, the envelope 29 having an orifice 31 through which the reaction medium can flow back into the envelope 29. Within the envelope 29 is its lower part 3
A first optical waveguide 33 in which 3a is curved is provided.
Its lower portion 33g reaches the height of the orifice 31, and above it a second optical waveguide 35 is provided, and a space corresponding to the optical path T in the reaction medium is provided between these two waveguides. ing. Although not shown in the figure, a light generator is installed outside the reactor to direct the light beam to the first optical waveguide 33.
The light beam is then arranged to introduce the liquid medium along the red iT! and is guided by the second optical waveguide 35. The second optical waveguide 35 is
Measure the intensity of the emitted light beam and use that value to determine the optical path T.
in combination with a photoelectric cell external to the reactor to induce the optical density of the liquid medium present in the reactor. The photoelectric cell associated with the optical waveguide 35 is connected to a microprocessor 27 which controls the amount of liquid waste introduced to be treated as described above. As mentioned above,
The optical path T corresponds to a solution approximately lean. This second device is particularly suited for operation in compact bodies, since both the optical waveguide and the optoelectronic cell for detection can be installed outside a closed body, for example a glove box.

本発明の装置には、光源、光電気セルまたは硝酸供給が
故障した場合にいかなる事故も回避するための安全装置
または補助装置を備えることができる.全ての場合に有
機液体廃棄物の供給は停止される.温度降下に際しては
、有a液体廃棄物の供給を停止することができる. 本発明の方法を説明するために以下の実施例を与える. 1:リン トリプ ルの 埋 この実施例では、250℃に加熱され且つ18M硫?0
,5!を含む1l反応器を使用し、バイプ11を通して
14N硝酸を流量197±Zmll時で導入し、タービ
ン15を速度300r.p.m.で動作させた.バイブ
7を通してリン酸トリプチル(TBP)を流量100m
//時で導入し、マイクロプロセッサ27を、光学濃度
が液体媒質中の炭素1g/!に対応する値を越えたなら
ばリン酸トリブチルの供給を停止するように調整した.
リン酸トリブチルの供給は数秒後には自動的に再度元に
戻される.4時間作動させた後、平均TOP流量と、炭
素に対するIINO ,及びI1■SO4の消費レベル
と、ナトリウムトラップにおける炭素に対する0ト消費
レベルを測定した.炭素量は導入されたTBPの量をも
とにして決定した.得られた結果を表1に示す. ル笠■ユ この例は実施例1と同じ方法に従うが、但し、反応につ
いて目視検査を実施し、リン酸トリブチルの供給を手動
で開始及び停止した.これらの条外で得られた結果を表
1に示す. これらの結果を実施例1のものと比較すると、光学セン
サ制御は処理能力に利益をもたらし、硝酸及び硫酸の消
費を低減し、ガスのアルカリ洗浄の場合の試薬の消費を
低減することが判る。
The device of the invention can be equipped with safety or auxiliary devices to avoid any accidents in case of failure of the light source, photoelectric cell or nitric acid supply. In all cases the supply of organic liquid waste will be stopped. In the event of a temperature drop, the supply of a-liquid waste can be stopped. The following example is given to illustrate the method of the invention. 1: In this example, the phosphorus triple was heated to 250°C and 18M sulfuric acid was used. 0
,5! 14N nitric acid was introduced through the pipe 11 at a flow rate of 197±Zml hours, and the turbine 15 was set at a speed of 300 r.m. p. m. I got it working. Flow rate of triptyl phosphate (TBP) 100m through Vibe 7
// hours, microprocessor 27 is introduced at an optical density of 1 g/! of carbon in a liquid medium. Adjustments were made so that the supply of tributyl phosphate would be stopped if the value corresponding to was exceeded.
The supply of tributyl phosphate is automatically restored again after a few seconds. After 4 hours of operation, the average TOP flow rate, the consumption levels of IINO and I1SO4 on carbon, and the zero consumption level on carbon in the sodium trap were measured. The amount of carbon was determined based on the amount of TBP introduced. The results obtained are shown in Table 1. This example follows the same method as Example 1, except that a visual inspection of the reaction was performed and the tributyl phosphate feed was started and stopped manually. Table 1 shows the results obtained outside these conditions. Comparing these results with those of Example 1 shows that the optical sensor control benefits throughput, reduces the consumption of nitric acid and sulfuric acid, and reduces the consumption of reagents in the case of alkaline cleaning of gases.

2〜6:リン トlブ ル 理 これらの実施例では、硝酸流量の反応器の処理能力に及
ぼす影皆を調査した.250℃に維持され且つ188 
i!酸0.51を含む11反応器を使用した.14N硝
酸を、流量を実施例の関数として208〜300aa1
7時に変化させて導入した。リン酸トリブチルの供給は
流量100ml/時とし、実施例1と同様に検出器21
が炭素1g#!に対応する以上の光学濃度を検出したと
きにはリン酸トリブチルの供給を停止した.硝酸の流量
、リン酸トリブチルの平均流量及びこれらの条件で得ら
れた炭素に対する硝酸消費を表2に示す.表2から、2
50K*17時以上では処理能力の増加がないので、1
l反応器においては硝酸流量の最適値は250s+1/
時であることが判る.11匠Lヱ旦 これらの実施例では、硝酸の流量を一定とし実m例1と
同様に光学センサによって溶剤の流れを停止するよう操
作し、種々の有機溶剤を処理した.この結果と処理条件
とを表3に示す。
2 to 6: Lint Bull Process In these examples, the effect of the nitric acid flow rate on the throughput of the reactor was investigated. maintained at 250°C and 188°C
i! Eleven reactors containing 0.51 of the acid were used. 14N nitric acid from 208 to 300 aa1 as a function of flow rate in the example.
It was changed and introduced at 7 o'clock. Tributyl phosphate was supplied at a flow rate of 100 ml/hour, and the detector 21 was supplied in the same manner as in Example 1.
is 1g of carbon #! The supply of tributyl phosphate was stopped when an optical density higher than that corresponding to . Table 2 shows the flow rate of nitric acid, the average flow rate of tributyl phosphate, and the nitric acid consumption relative to carbon obtained under these conditions. From Table 2, 2
50K*There is no increase in processing capacity after 17:00, so 1
1 reactor, the optimum value of nitric acid flow rate is 250s+1/
It turns out that it's time. In these examples, various organic solvents were treated by keeping the flow rate of nitric acid constant and using an optical sensor to stop the flow of the solvent as in Example 1. Table 3 shows the results and processing conditions.

表から、溶剤がトリラウリルアミンを含有する場合には
能力が大幅に低下することが判る.即ちトリラウリルア
ミンの炭素長鎖は、リン酸トリブチルのものよりも抵抗
性がある。実施例8の結果は、リン酸トリブチルと混合
したトリラウリルアミンを処理することが好ましいこと
を示す.轟」 試験番号 RHO,の流量(I11・時−1) 平均TOP流量輸l・時″′》 比較例1 実施例1 C(1) (1)炭素量は導入したTBPの化学式に基づき計算し
た. (2)ナトリウムトラップは@量のFINO,、HNO
.及び+12SO.と全てのCO、とを捕獲した。pl
+約8に達したならばソーダを置き換えた。更に、CO
はIICO,−の形態で捕獲され、011−のみがCO
2によって消費された. 衣ス 実施例番号 148 1180,の流量 (ml・時−1) 表1 実施例番号    7    8     9    
10(モル・時゛1》 (1)炭素量は導入したTBPの化学式に基づき計算し
た. C(1) TBP=リン酸トリブチル 几^=トリラウリルアミン (1》炭素量は導入したT[lr’及び/またはTI.
^の化学式に基づき計算した。
From the table, it can be seen that the performance is significantly reduced when the solvent contains trilaurylamine. That is, the long carbon chains of trilaurylamine are more resistant than those of tributyl phosphate. The results of Example 8 show that it is preferable to treat trilaurylamine mixed with tributyl phosphate. Todoroki” Test number RHO, flow rate (I11・hr−1) Average TOP flow rate I×hr”》 Comparative example 1 Example 1 C(1) (1) The amount of carbon was calculated based on the chemical formula of the introduced TBP. (2) Sodium trap is @ amount of FINO,,HNO
.. and +12SO. and all CO. pl
+ Once it reached about 8, I replaced the soda. Furthermore, CO
is captured in the form of IICO,-, and only 011- is CO
Consumed by 2. Example number 148 1180, flow rate (ml/hour-1) Table 1 Example number 7 8 9
10 (mol/hour゛1》) (1) The amount of carbon was calculated based on the chemical formula of the introduced TBP. 'and/or T.I.
Calculated based on the chemical formula of ^.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は設備の概略図、第2図は本発明C!′)装直の
概略図、第3図は光学濃度測定手段の変形楕造の図であ
る. 1・・・反応器、5・・・硫酸、7.19・・・パイプ
、9.13・・・ポンプ、11・・・管、】4・・・加
然手段、20・・・接触再結合塔,22・・・ナ1−リ
ウムトラップ、23・・・光源,29・・・エンベロー
ブ、3ト・・オリフィス、33・・・第1の光導波路、
35・・・第2の光導′$l路、C・・・凝縮器、R・
・・精留塔.五季良人
Fig. 1 is a schematic diagram of the equipment, and Fig. 2 is a diagram of the present invention C! ') Schematic diagram of remounting, Figure 3 is a diagram of a modified ellipse of the optical density measuring means. 1... Reactor, 5... Sulfuric acid, 7.19... Pipe, 9.13... Pump, 11... Tube, ]4... Addition means, 20... Contact re- Coupling tower, 22... sodium trap, 23... light source, 29... envelope, 3... orifice, 33... first optical waveguide,
35...Second light guide path, C...Condenser, R.
...Rectification tower. Yoshito Goki

Claims (9)

【特許請求の範囲】[Claims] (1)少なくとも150℃の温度に維持され且つ濃硫酸
を含む反応器内に、 a)処理されるべき液体有機廃棄物、並びにb)硝酸及
び/または過酸化水素を、 前記反応器内で、導入された液体廃棄物の硫酸による炭
化と、炭化の際に形成される炭素及びSO_2の酸化と
が行われると同時に硫酸を再生するような流量で導入し
、 前記反応器内に存在する液体媒質の光学濃度を連続的に
測定し、 測定された光学濃度の関数として、導入される液体有機
廃棄物の流量並びに/または硝酸及び/もしくは過酸化
水素の流量を調節することを特徴とする液体有機廃棄物
を連続的に処理する方法。
(1) in a reactor maintained at a temperature of at least 150° C. and containing concentrated sulfuric acid, a) the liquid organic waste to be treated, and b) nitric acid and/or hydrogen peroxide in said reactor; introducing at a flow rate such that the carbonization of the introduced liquid waste with sulfuric acid and the oxidation of the carbon and SO_2 formed during carbonization take place at the same time that the sulfuric acid is regenerated, and the liquid medium present in said reactor continuously measuring the optical density of the liquid organic waste, and adjusting the flow rate of the introduced liquid organic waste and/or the flow rate of nitric acid and/or hydrogen peroxide as a function of the measured optical density. A method of continuously processing waste.
(2)前記反応器内に導入される液体有機廃棄物、硝酸
及び/または過酸化水素の流量が所定の値に固定されて
おり、前記液体廃棄物の反応器への導入が、測定された
光学濃度が設定レベル以上のときに停止されることを特
徴とする請求項1に記載の方法。
(2) The flow rate of liquid organic waste, nitric acid and/or hydrogen peroxide introduced into the reactor is fixed at a predetermined value, and the introduction of the liquid waste into the reactor is measured. 2. The method of claim 1, wherein the method is stopped when the optical density is above a set level.
(3)前記液体有機廃棄物が有機溶剤であることを特徴
とする請求項1または2に記載の方法。
(3) The method according to claim 1 or 2, wherein the liquid organic waste is an organic solvent.
(4)前記有機溶剤が、リン酸トリブチル及びトリラウ
リルアミンから選択される少なくとも1種の化合物を含
有することを特徴とする請求項3に記載の方法。
(4) The method according to claim 3, wherein the organic solvent contains at least one compound selected from tributyl phosphate and trilaurylamine.
(5)前記有機溶剤が有機希釈剤を含有することを特徴
とする請求項3または4に記載の方法。
(5) The method according to claim 3 or 4, wherein the organic solvent contains an organic diluent.
(6)前記有機溶剤を前記反応器に導入する前に、まず
存在し得る酸及び硝酸イオンを除去するために前記有機
溶剤を中和し、次いで中和された有機溶剤を極めて揮発
性の高い物質を除去するために蒸留により濃縮すること
からなる予備処理にかけることを特徴とする請求項3か
ら5のいずれか一項に記載の方法。
(6) Before introducing the organic solvent into the reactor, first neutralize the organic solvent to remove any acid and nitrate ions that may be present, and then convert the neutralized organic solvent into a highly volatile 6. Process according to claim 3, characterized in that it is subjected to a pretreatment consisting of concentration by distillation in order to remove the substances.
(7)前記反応器が、選択した酸化剤の関数として15
0〜200℃または220〜270℃の温度に維持され
ることを特徴とする請求項1から6のいずれか一項に記
載の方法。
(7) that the reactor has 15
7. A method according to any one of claims 1 to 6, characterized in that the temperature is maintained between 0 and 200<0>C or between 220 and 270<0>C.
(8)反応器と、反応器加熱手段と、処理されるべき有
機液体廃棄物を前記反応器に導入する手段と、硝酸及び
/または過酸化水素を前記反応器に導入する手段とを包
含する有機液体廃棄物を処理するための装置であって、
更に前記反応器内に存在する液体媒質の光学濃度を測定
する手段と、測定された光学濃度の関数として、導入さ
れる液体有機廃棄物の流量並びに/または硝酸及び/も
しくは過酸化水素の流量を調節する手段とを包含するこ
とを特徴とする装置。
(8) comprising a reactor, means for heating the reactor, means for introducing the organic liquid waste to be treated into said reactor, and means for introducing nitric acid and/or hydrogen peroxide into said reactor. An apparatus for treating organic liquid waste, the apparatus comprising:
Furthermore, means for measuring the optical density of the liquid medium present in said reactor and for determining the flow rate of the introduced liquid organic waste and/or the flow rate of nitric acid and/or hydrogen peroxide as a function of the measured optical density. A device characterized in that it includes means for adjusting.
(9)前記光学濃度測定手段が、第1の光導波路内を案
内される光ビームが反応器の液体媒質中の経路を通過し
た後に第2の光導波路内を案内され得るように相互に位
置決めされた第1の光導波路及び第2の光導波路と、光
ビームを前記第1の光導波路内に導入する手段と、前記
第2の光導波路から出る光ビームの濃度を測定する手段
とを包含することを特徴とする請求項8に記載の装置。
(9) the optical density measuring means are mutually positioned such that the light beam guided in the first optical waveguide can be guided in the second optical waveguide after passing through the path in the liquid medium of the reactor; a first optical waveguide and a second optical waveguide, means for introducing a light beam into the first optical waveguide, and means for measuring the concentration of the light beam exiting from the second optical waveguide. 9. The device according to claim 8, characterized in that:
JP2017673A 1989-01-27 1990-01-26 Method and apparatus for liquid organic waste treatment by sulfuric mineralization Expired - Lifetime JP2848656B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8901031A FR2642563B1 (en) 1989-01-27 1989-01-27 PROCESS AND DEVICE FOR TREATING LIQUID ORGANIC WASTE BY SULFURIC MINERALIZATION
FR8901031 1989-01-27

Publications (2)

Publication Number Publication Date
JPH02232599A true JPH02232599A (en) 1990-09-14
JP2848656B2 JP2848656B2 (en) 1999-01-20

Family

ID=9378181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017673A Expired - Lifetime JP2848656B2 (en) 1989-01-27 1990-01-26 Method and apparatus for liquid organic waste treatment by sulfuric mineralization

Country Status (3)

Country Link
JP (1) JP2848656B2 (en)
FR (1) FR2642563B1 (en)
GB (1) GB2240872B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5960368A (en) * 1997-05-22 1999-09-28 Westinghouse Savannah River Company Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials
CN109273129A (en) * 2018-11-01 2019-01-25 深圳中广核工程设计有限公司 The cracking of nuclear power station radioactivity debirs and mineralising treatment reactor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1958464A1 (en) * 1969-11-21 1971-06-03 Alkem Gmbh Process for wet chemical combustion of organic material
US4313845A (en) * 1979-11-28 1982-02-02 The United States Of America As Represented By The United States Department Of Energy System for chemically digesting low level radioactive, solid waste material
JPS60150881A (en) * 1984-01-18 1985-08-08 Japan Atom Energy Res Inst Treatment of tributyl phosphate in waste reprocessing solvent
JPS61104299A (en) * 1984-10-26 1986-05-22 日揮株式会社 Method of disposing radioactive decontaminated waste liquor
GB2206341B (en) * 1987-06-29 1990-11-21 Atomic Energy Authority Uk Treatment of organically-based waste matter

Also Published As

Publication number Publication date
GB2240872B (en) 1993-12-01
FR2642563A1 (en) 1990-08-03
GB9003094D0 (en) 1990-04-11
GB2240872A (en) 1991-08-14
JP2848656B2 (en) 1999-01-20
FR2642563B1 (en) 1994-03-25

Similar Documents

Publication Publication Date Title
US4432344A (en) Method and apparatus for solar destruction of toxic and hazardous materials
FI104320B1 (en) Method and apparatus for treating liquids loaded with harmful substances
US4416748A (en) Process for reduction of the content of SO2 and/or NOx in flue gas
US4352332A (en) Fluidized bed incineration of waste
US5582812A (en) Process for gas phase conversion of diethylzinc to zinc oxide powder
Ravishankara et al. Rate of reaction of OH with COS
DE2855650C2 (en) Process for the pyrohydrolytic decomposition of phosphorus-containing liquids contaminated with highly enriched uranium
KR102431449B1 (en) Wastewater treatment apparatus and method of acitvated carbon regeneration tank using superheated steam
JPH02232599A (en) Method and apparatus for disposal of liquid organic waste by sulfuric ore conversion
KR102113585B1 (en) Method for Treatment of Radioactive Organic Wastes and Apparatus for incinerating the Same
US5807491A (en) Electron beam process and apparatus for the treatment of an organically contaminated inorganic liquid or gas
JPS58199739A (en) Removal of germanium from gaseous effluent during optical fiber manufacturing process
KR100954365B1 (en) Apparatus removing sulfur oxides and nitrogen oxides
DE3219624C2 (en)
Enokida et al. Neptunium valence adjustment through photochemically induced redox reactions at low concentrations
DK3007805T3 (en) PROCEDURE FOR TREATING AT LEAST ONE GAS SHOPPING OUTPUT
Vikis Iodine removal from a gas phase
US4469629A (en) Method for extracting fluoride ions from a nuclear fuel solution
JPH05161824A (en) Treatment of waste alcohol solution with high salt concentration
JPH0147401B2 (en)
JP4136016B2 (en) Exhaust gas purification method
Spencer et al. Initial Assessment of Ruthenium Removal Systems for Tritium Pretreatment Off-Gas
JPH0442054B2 (en)
JPH07128318A (en) Method for measuring composition quantity of organic compound
RU2131846C1 (en) Method and system for treating gaseous uranium hexafluoride