JPH02231559A - Field effect transistor type ion sensor - Google Patents

Field effect transistor type ion sensor

Info

Publication number
JPH02231559A
JPH02231559A JP1051674A JP5167489A JPH02231559A JP H02231559 A JPH02231559 A JP H02231559A JP 1051674 A JP1051674 A JP 1051674A JP 5167489 A JP5167489 A JP 5167489A JP H02231559 A JPH02231559 A JP H02231559A
Authority
JP
Japan
Prior art keywords
ion
gate
film
fet
sodium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1051674A
Other languages
Japanese (ja)
Inventor
Shinichi Wakita
慎一 脇田
Kazuo Hiiro
日色 和夫
Masataka Yamane
山根 昌隆
Noboru Yamamoto
襄 山本
Iwao Yamashita
山下 岩男
Minoru Hirai
実 平井
Kazuo Tsutsumi
堤 和夫
Minoru Kashiwakura
柏倉 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Shindengen Electric Manufacturing Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1051674A priority Critical patent/JPH02231559A/en
Publication of JPH02231559A publication Critical patent/JPH02231559A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To miniaturize the sensor and to allow measurement even if the volume of the sample liquid to be measured is extremely slight by forming a sensitive film contg. an ion sensitive material in a polyurethane resin on an insulating gate film of the field effect transistor. CONSTITUTION:Copper wires coated with the polyurethane resin are connected to drain and source electrode taking-out parts 2', 3' of the FET element and after the element is put into a tube consisting of nylon, etc., the gate part is exposed and an epoxy resin is injected to the tube to seal the tube. The gate part 4 in the front end part of the FET element is immersed into the soln. of a sodium ion sensitive film and is rested for a while to allow tetrahydrofuran to evaporate and to form the uniform sodium ion sensitive film on the gate part 4. The ion sensor having such construction is capable of measuring the concn. of the sodium ions in a sodium ion concn. range of 10<-4> to 10<0>M.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は小形で生体や血液に対する適合性が良く、しか
も微量の試料液でも測定できる電界効果トランジスタ(
以下、FETと称す)応用のイオンサンセに関するもの
である。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a field effect transistor (field effect transistor) that is small, has good compatibility with living organisms and blood, and is capable of measuring even minute amounts of sample liquid.
The present invention relates to an applied ion sensor (hereinafter referred to as FET).

(従来技術と解決すべき問題点) イオンセンサとして、例えば各種感応物質とポリ塩化ビ
ニル樹脂やエポキシ樹脂等の高分子との混合物からなる
感応膜を用いた電極型のイオンセンサが知られている。
(Prior art and problems to be solved) Electrode-type ion sensors that use a sensitive membrane made of a mixture of various sensitive substances and polymers such as polyvinyl chloride resin and epoxy resin are known as ion sensors. .

しかし、このような電極型のイオンセンサは形状が大き
く、測定する試料液量にも必要量の制限があり、しかも
生体関連の計測では該感応膜が生体や血液適合性に劣り
、膜上に血栓を生成したり、生体自体が膜に対し組織反
応を起こしたりする等の欠点がある。
However, such electrode-type ion sensors are large in size, and there are limits to the amount of sample liquid required to be measured.Moreover, in biological measurements, the sensitive membrane has poor compatibility with living organisms and blood; There are drawbacks such as the formation of blood clots and the tissue reaction of the living body itself against the membrane.

(発明の目的) 本発明は従来のイオンセンサにおける上記欠点を解決で
きるばかりでなく、小形であって微量の試料液でも測定
でき、しかも生体関連の測定などに好適する従来の電極
型イオンセンサに代るFET型ナトリウムイオンセンサ
の提供を目的としてなされたものである。
(Object of the Invention) The present invention not only solves the above-mentioned drawbacks of conventional ion sensors, but also improves the conventional electrode-type ion sensor, which is small and can measure even a minute amount of sample liquid, and is suitable for biological-related measurements. This was made with the aim of providing an alternative FET type sodium ion sensor.

(問題点を解決するための本発明の手段)本発明者等は
ポリウレタン系樹脂が高分子材料の中で血液及び生体適
合性に優れていることに着目し、このポリウレタン系樹
脂にナトリウムイオン感応物質を含む感応膜を通常の半
導体製造技術で製造できる小形のFET型トランジスタ
のゲート部に形成することにより前記目的を達成しうろ
ことを見出してなされたものである。
(Means of the present invention for solving the problem) The present inventors focused on the fact that polyurethane resin has excellent blood and biocompatibility among polymeric materials, and developed this polyurethane resin with sodium ion sensitization. The present invention has been made based on the discovery that the above object can be achieved by forming a sensitive film containing a substance on the gate portion of a small FET type transistor that can be manufactured using ordinary semiconductor manufacturing techniques.

本発明には通常の半導体製造技術で製造した信号変換素
子としてのFETとポリウレタン系樹脂とナトリウムイ
オン感応物質と、所望に応じて混合される液膜溶媒やマ
ニオン排除剤の混合物からなるイオン感光材料が用いら
れる。
The present invention includes an ion-sensitive material comprising a FET as a signal conversion element manufactured by ordinary semiconductor manufacturing technology, a polyurethane resin, a sodium ion sensitive material, and a mixture of a liquid film solvent and a manion eliminating agent mixed as desired. is used.

FET型イオンセンサはMO S F ET即ち半導体
IC技術で作製できるので超小形であって、大量生産,
マルチ化,IC化が容易であり、応答性が早い等の長所
を有しているMOSFETのゲートの金属電極の代りに
イオン感光材によるイオン感応膜を形成したものである
。このFET型イオンセンサと液絡式のガラス比較電極
のような基準電極とを被測定液に入れ、FETのドレイ
ン電極に一定電圧Vカを印加しておくと、被測定イオン
の濃度に応じてドレイン電流IIlが変化する。ドレイ
ン電流■。を一定電流に保持しておけば基準電極とソー
ス間の電圧■GSがイオン濃度に応じて変化する。MO
SFETのゲート金属電極の役割を基準電極が、ゲート
信号の役割を被測定液中のイオンとイオン感応膜がする
ことになり、イオンセンサとなる。
FET type ion sensors can be manufactured using MOSFET, that is, semiconductor IC technology, so they are ultra-small and easy to mass produce.
An ion-sensitive film made of an ion-sensitive material is formed in place of the metal electrode of the MOSFET gate, which has advantages such as easy multiplication and IC integration and quick response. When this FET-type ion sensor and a reference electrode such as a liquid-junction type glass reference electrode are placed in a liquid to be measured, and a constant voltage V is applied to the drain electrode of the FET, the Drain current IIl changes. Drain current■. If the current is maintained at a constant current, the voltage between the reference electrode and the source (GS) will change depending on the ion concentration. M.O.
The reference electrode serves as the gate metal electrode of the SFET, and the ions in the liquid to be measured and the ion-sensitive membrane serve as the gate signal, resulting in an ion sensor.

FETはPまたはn型の半導体基板に反対導電型のn又
はP型のドレイン及びソース領域を形成し、このドレイ
ンとソース領域間に絶縁膜を形成して製作する.半導体
基板はSt,Ge,化合物半導体等の結晶又はアモルフ
ァスSt等の非品質半導体を用いることができる。
FETs are manufactured by forming n- or p-type drain and source regions of opposite conductivity type on a p- or n-type semiconductor substrate, and forming an insulating film between the drain and source regions. As the semiconductor substrate, crystals such as St, Ge, and compound semiconductors, or non-quality semiconductors such as amorphous St can be used.

一方イオン感応物賞としてはトリオクチルメチルアンモ
ニウム塩等の第4級アンモニウム塩,ドデシルりん酸カ
ルシウム等の高級アルキルりん酸塩,金属キレート化合
物,クラウンエーテル,バリノマイシン.その他のイオ
ノフォア等の中から任意に選択して用いることができる
On the other hand, the ion sensitizer award goes to quaternary ammonium salts such as trioctylmethylammonium salt, higher alkyl phosphates such as calcium dodecyl phosphate, metal chelate compounds, crown ether, and valinomycin. Any other ionophores can be selected and used.

またポリウレタン系樹脂としては溶剤可溶性の熱可塑性
ポリウレタンが好ましい。このポリウレタンはジオール
とジイソシアネートの重付加反応により得られる。該ジ
オールは両端末に水酸基を有し、かつ分子量が数百から
数千程度のポリエステル,ポリエーテル等が用いられる
。又ジイソシアネートは4.4゛−ジフエニルメタンジ
イソシアネ−比へキサメチレンジイソシアネート等が用
いられる.さらに所望に応じ、エチレングリコール等の
低分子ジオール或いはエチレンジアミン等の低分子ジア
ミンをジオールとジイソシアネートを重付加反応させた
後、鎖延長反応を行って高分子量化したものを用いるこ
とができる.これらの成分の他に第三成分を添加して得
られるポリウレタンやいわゆる医用ポリウレタン〔高分
子加工,第35巻158ページ(1986)記載〕も用
いることができる. これらのポリウレタン系樹脂は抗血栓性が優れている上
に、赤血球破壊.血小板機能低下,白血球の一過性減少
等の血液生理機能に及ぼす影響が極めて少なく、血液適
合性,生体適合性に優れている。
Further, as the polyurethane resin, a solvent-soluble thermoplastic polyurethane is preferable. This polyurethane is obtained by polyaddition reaction of diol and diisocyanate. The diol used is polyester, polyether, etc., which have hydroxyl groups at both terminals and have a molecular weight of about several hundred to several thousand. As the diisocyanate, hexamethylene diisocyanate having a ratio of 4.4'-diphenylmethane diisocyanate is used. Furthermore, if desired, low-molecular diols such as ethylene glycol or low-molecular diamines such as ethylene diamine may be polyaddition-reacted with diisocyanate, followed by chain extension reaction to increase the molecular weight. In addition to these components, polyurethanes obtained by adding a third component and so-called medical polyurethanes [described in Kobunshi Kako, Vol. 35, p. 158 (1986)] can also be used. These polyurethane resins not only have excellent antithrombotic properties, but also prevent red blood cell destruction. It has extremely little effect on blood physiological functions such as decreased platelet function and temporary decrease in white blood cells, and has excellent blood compatibility and biocompatibility.

本発明において、ポリウレタン樹脂とイオン感応物質の
混合性の向上,ゲート膜と感応膜との密着性の向上,感
応膜の科学的.機械的特性の改善、得られるイオンセン
サの応答特性や電気的特性の改善等の目的で該ポリウレ
タン系樹脂とイオン感応物質との混合物に、要求に応じ
て液膜溶媒、例えばアルキルりん酸塩,エステル類,エ
ーテル類.アルコール類,ケトン類の添加や、イオン選
択性をよくするためにテトラフェニル硼酸塩等のアニオ
ン排除剤等を添加してもよい。
In the present invention, improvements in the mixability of the polyurethane resin and the ion-sensitive material, improvement in the adhesion between the gate film and the sensitive film, and the scientific improvement of the sensitive film are achieved. For the purpose of improving mechanical properties, response properties and electrical properties of the resulting ion sensor, a liquid film solvent such as an alkyl phosphate, Esters, ethers. Alcohols and ketones may be added, and an anion scavenger such as tetraphenyl borate may be added to improve ion selectivity.

FETのゲート部への感応膜の形成方法の例として、適
当な溶媒にポリウレタン系樹脂を溶解し、これにイオン
感応物質及び要求に応じて添加される第三成分を混合し
た後、この混合物をゲート部に塗布し、溶媒を揮発させ
て膜を形成する。混合物をゲートへ塗布する方法として
は、ゲート部への混合物の滴下、はけ塗りするか、ゲー
ト部の混合物への浸漬等の手段があり、その塗布後振り
切り、回転等で均一な膜の形成,重ね塗り等の調整等が
ある。
As an example of a method for forming a sensitive film on the gate part of an FET, a polyurethane resin is dissolved in a suitable solvent, an ion sensitive material and a third component added as required are mixed therein, and then this mixture is mixed. It is applied to the gate area and the solvent is evaporated to form a film. Methods for applying the mixture to the gate include dropping the mixture onto the gate, brushing, or dipping the gate into the mixture. After application, shake off, rotate, etc. to form a uniform film. , adjustments such as overcoating, etc.

このようにしてFETのゲート部に形成されたイオン選
択性感応膜は、ポリウレタン系樹脂の中にイオン感応物
質が完全に保持されているので、被測定液中の電解質濃
度の変化が、該感応膜によって電位に変換され、接して
いるFETのゲート部の電位となり、ゲート直下のドレ
インーソース間に電子又はホールを発生させてチャンネ
ルを形成し、ドレイン電流I,を変化させる。従ってド
レイン電流I,を定電流としておけば、イオン濃度は基
準電掻一ソース間の電圧VCSの変化として検出される
In the ion-selective sensitive membrane thus formed at the gate of the FET, the ion-sensitive substance is completely retained in the polyurethane resin, so changes in the electrolyte concentration in the liquid to be measured will be caused by the ion-selective sensitive membrane. This is converted into a potential by the film, becomes the potential of the gate of the FET in contact with it, generates electrons or holes between the drain and source directly under the gate, forms a channel, and changes the drain current I. Therefore, if the drain current I is set as a constant current, the ion concentration is detected as a change in the voltage VCS between the reference electrode and the source.

次にFET型ナトリウムイオンセンサの実施例について
説明する。
Next, an example of the FET type sodium ion sensor will be described.

(実施例) P型シリコン基板に通常の半導体製造技術でn型を形成
する不純物、例えばりんを所定のパターンに拡散し、ド
レイン及びソース領域を形成し、ゲート形成部以外のP
型領域にP゛型を形成する不純物、例えば硼酸を拡散し
てP″領域を作ってチャンネルストツパを形成する。そ
してドレイン電極取り出し部を前記と同様にN゛に、ソ
ース電極取り出し部をソースフロア型のFETとする為
のn゛とP゛を形成する。また少なくとも被測定液に接
する部分を液と絶縁する為に表面.裏面,側面をシリコ
ン酸化膜及びシリンコ窒化膜等で絶縁被覆したのち、ゲ
ート部のこれらの絶縁膜をエッチングで除去して、改め
て不純物の少ないシリコン酸化膜及びシリコン窒化膜を
形成して絶縁ゲート膜とする。次いでドレイン及びソー
ス電極取り出し部の絶縁膜を除去してクローム及びニッ
ケルの電極金属を形成し、その上に鉛一錫系の半田をの
せたのち、電極取り出し部を形成してFET素子を作製
する.第1図はこれによって作られたFET素子の全体
の構造、第2図にFET素子のゲート部の断面構造を示
す。夫々の図で(1)はP型シリコン基板、(2)及び
(3)はn型のドレイン及びソース領域、(2゛)及び
(3゛)はドレイン及びソース電極の取り出し部、(4
)はゲート部、(5)はP゛型のチャンネルストッヒパ
領域、(6)はダイオードの順方向電圧■,の温度依存
性を利用して温度を検出する為のダイオード電極、(7
)は被測定液と絶縁する為の絶縁膜、(8)はシリコン
酸化膜、(9)はシリコン窒化膜である。00)は後記
のイオン感応膜を形成した場合の感応膜を示す。
(Example) An impurity that forms an n-type, such as phosphorus, is diffused into a P-type silicon substrate in a predetermined pattern using normal semiconductor manufacturing technology to form drain and source regions, and
A channel stopper is formed by diffusing an impurity that forms a P'' type, such as boric acid, into the type region to form a P'' region.Then, the drain electrode extraction portion is made N'' as before, and the source electrode extraction portion is made source. N' and P' are formed to make it a floor type FET. Also, in order to insulate at least the part that comes into contact with the liquid to be measured from the liquid, the front, back, and side surfaces are insulated with a silicon oxide film, a silicon nitride film, etc. Afterwards, these insulating films in the gate area are removed by etching, and a silicon oxide film and a silicon nitride film with low impurities are formed again to form an insulating gate film.Then, the insulating film in the drain and source electrode extraction areas is removed. After forming chrome and nickel electrode metals and placing lead-tin solder on top of them, an electrode extraction part is formed to fabricate an FET element. Figure 1 shows the FET element thus fabricated. The overall structure and the cross-sectional structure of the gate part of the FET element are shown in Figure 2. In each figure, (1) is a P-type silicon substrate, (2) and (3) are n-type drain and source regions, (2)゛) and (3゛) are the extraction parts of the drain and source electrodes, (4
) is the gate part, (5) is the P' type channel stopper region, (6) is the diode electrode for detecting the temperature using the temperature dependence of the forward voltage of the diode, (7
) is an insulating film for insulating the liquid to be measured, (8) is a silicon oxide film, and (9) is a silicon nitride film. 00) indicates a sensitive film when an ion-sensitive film described later is formed.

このFET素子のドレイン及びソース電極取り出し部(
2’)(3”)に、ポリウレタンのような樹脂を被覆し
た銅線を鉛一錫系の半田で接続してシリコーン樹脂.ナ
イロン等のチューブに入れたのちゲート部を露出させて
、チューブ内のFET素子部を室温硬化型(RTV)シ
リコーンゴム,エボキシ樹脂等を注入してシールする。
The drain and source electrode extraction portions of this FET element (
2') (3"), connect a copper wire coated with a resin such as polyurethane with lead-tin solder and place it in a tube made of silicone resin. After exposing the gate part, insert it inside the tube. The FET element part is sealed by injecting room temperature curable (RTV) silicone rubber, epoxy resin, etc.

またFET素子の反対側の電極引き出し絶縁被覆銅線が
出ているチューブ端も前記と同様に樹脂でシールする。
Further, the end of the tube on the opposite side of the FET element from which the electrode lead-out insulated copper wire comes out is also sealed with resin in the same manner as described above.

一方ナトリウムイオン感応物質としてナトリウムイオノ
フォア40mg,ポリウレタン系樹脂としてポリウレタ
ン樹脂KP−13(鐘淵化学製)600■,アニオン排
除剤であるテトラフェニル硼酸ナトリウムを1.8■含
有させたO−ニトロフエニルオクチルエーテル360■
を、テトラヒド口フラン6000■に溶解して均一な溶
液に調整してナトリウムイオン感応膜を溶解した溶液を
作製する。そしてこのナトリウムイオン感応膜の溶液に
FET素子の先端(ゲート部(4))を浸漬して引き上
げたのち、数回振ることにより均一な膜を得るようにす
る。
On the other hand, O-nitrophenyl containing 40 mg of sodium ionophore as a sodium ion-sensitive substance, 600 cm of polyurethane resin KP-13 (manufactured by Kanebuchi Chemical Co., Ltd.) as a polyurethane resin, and 1.8 μ of sodium tetraphenyl borate as an anion scavenger. Octyl ether 360■
was dissolved in 6000 ml of tetrahydrofuran and adjusted to a uniform solution to prepare a solution in which the sodium ion sensitive membrane was dissolved. Then, the tip of the FET element (gate portion (4)) is immersed in the solution of this sodium ion sensitive membrane, pulled up, and then shaken several times to obtain a uniform membrane.

そして暫く放置してテトラヒド口フランを揮発させる。Then, leave it for a while to volatilize the tetrahydrofuran.

この操作を数回繰り返してビンホールのない均一なナト
リウムイオン感応膜θ0をFETのゲート部(4)に形
成する。なおイオン感応膜の形成はチューブに組立てる
前のFET素子のゲート部に行ってもよい。
This operation is repeated several times to form a uniform sodium ion sensitive film θ0 without any via holes at the gate portion (4) of the FET. Note that the ion-sensitive film may be formed on the gate portion of the FET element before it is assembled into a tube.

このようにして作製したFET型ナトリウムイオンセン
サをガラス比較電極を基準電極として塩化ナトリウム水
溶液に浸漬し、ドレイン電圧■。
The FET type sodium ion sensor thus produced was immersed in a sodium chloride aqueous solution with the glass comparison electrode as the reference electrode, and the drain voltage was set to ■.

=3■,ドレイン電流L=50μA液温25℃で基準電
極一ソース電極間の電圧■。,を測定し応答特性を求め
た。その結果を第3図に示す。第3図はナトリウムイオ
ン濃度とFETの出力電圧VGSの関係を示すグラフで
あり、本発明のFET型イオンセンサは10−4〜10
’ Mのナトリウムイオン濃度の範囲でナトリウムイオ
ン濃度を測定することができる。さらに本ナトリウムイ
オンセンサのイオン選択性についても測定した。その結
果を第1表に示す。なお、イオン選択性は公知の混合溶
液法で行い、ニコルスキー,アイゼンマンの式で定義さ
れる選択係数を算出して求めた。また血液との適合性を
みるため、血清中での測定を行った。
= 3■, drain current L = 50 μA, voltage between the reference electrode and the source electrode at a liquid temperature of 25°C. , were measured to determine the response characteristics. The results are shown in FIG. FIG. 3 is a graph showing the relationship between sodium ion concentration and FET output voltage VGS.
' Sodium ion concentration can be measured within the sodium ion concentration range of M. Furthermore, the ion selectivity of this sodium ion sensor was also measured. The results are shown in Table 1. The ion selectivity was determined by a known mixed solution method and by calculating the selectivity coefficient defined by the Nikolsky and Eisenman equations. In addition, to check compatibility with blood, measurements were performed in serum.

その結果は第4図である.参考の為にポリ塩化ビニルP
VCとナトリウムイオノフォアで作製したFET型ナト
リウムセンサの血清中での測定結果を第5図に示す.血
清中のそれぞれの妨害イオンの濃度から考えて、妨害を
受けず、血清中のナトリウムイオン濃度が測定できる.
血液との適合性についても第4図及び第5図からわかる
ように本発明のポリウレタン系樹脂を用いたナトリウム
イオンセンサはPVCを用いたものより優れていること
がわかる。なお、第4図の血清中での測定は恒温槽を用
いていないので多少ドリフトがあるが、ナトリウムイオ
ン濃度差に対応して電位応答が現れており、血液中での
ナトリウムイオンの測定ができることを示している。
The result is shown in Figure 4. For reference, polyvinyl chloride P
Figure 5 shows the measurement results in serum of a FET-type sodium sensor fabricated using VC and a sodium ionophore. Considering the concentration of each interfering ion in serum, the sodium ion concentration in serum can be measured without interference.
Regarding compatibility with blood, as can be seen from FIGS. 4 and 5, the sodium ion sensor using the polyurethane resin of the present invention is superior to the one using PVC. Note that the measurement in serum shown in Figure 4 does not use a constant temperature bath, so there is some drift, but a potential response appears corresponding to the difference in sodium ion concentration, and it is possible to measure sodium ions in blood. It shows.

(発明の効果) 以上のように本発明のFET型イオンセンサは、感応膜
の基材樹脂としてポリウレタン系樹脂を、信号変換素子
としてFETを用いているので、小形で測定する試料液
量が超微量であっても測定でき、また血液中の電解質成
分の測定にも適しているので、各種イオン濃度測定用と
して効果は大きい.
(Effects of the Invention) As described above, the FET type ion sensor of the present invention uses polyurethane resin as the base resin of the sensitive membrane and FET as the signal conversion element, so it is small and can measure an extremely large amount of sample liquid. It can be used to measure even minute amounts and is also suitable for measuring electrolyte components in blood, making it highly effective for measuring various ion concentrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すFET素子の全体図、
第2図は第1図のFET素子のゲート部の断面図、第3
図はナトリウムイオン濃度とFETの出力電圧vc.s
の関係図、第4図及び第5図は本発明及びポリ塩化ビニ
ール樹脂基材感応膜の血清中でのナトリウムイオン測定
結果を示す図である。 (1)・・・シリコン基板、(2)及び(3)・・・ド
レイン及びソース領域、(2’)(3’)・・・ドレイ
ン及びソース電極の取り出し部、(4)・・・ゲート部
、(5)・・・チャンネルストツパ領域、(6)・・・
ダイオード電極、(7)・・・絶縁膜、(8)・・・シ
リコン酸化膜、(9)・・・シリコン窒化膜、00)・
・・イオン感応膜. 第 1 口
FIG. 1 is an overall diagram of an FET device showing an embodiment of the present invention;
Figure 2 is a cross-sectional view of the gate part of the FET element in Figure 1;
The figure shows sodium ion concentration and FET output voltage vc. s
FIGS. 4 and 5 are diagrams showing the results of sodium ion measurement in serum of the present invention and the polyvinyl chloride resin-based sensitive membrane. (1)...Silicon substrate, (2) and (3)...Drain and source regions, (2') (3')...Drain and source electrode extraction parts, (4)...Gate Part, (5)...Channel stopper area, (6)...
Diode electrode, (7)...insulating film, (8)...silicon oxide film, (9)...silicon nitride film, 00)
...Ion-sensitive membrane. 1st mouth

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタの絶縁ゲート膜上にポリウレタン
系樹脂にイオン感応物質を含む感応膜を形成したことを
特徴とする電界効果トランジスタ型イオンセンサ。
A field effect transistor type ion sensor characterized in that a sensitive film containing an ion sensitive substance made of polyurethane resin is formed on an insulated gate film of a field effect transistor.
JP1051674A 1989-03-03 1989-03-03 Field effect transistor type ion sensor Pending JPH02231559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051674A JPH02231559A (en) 1989-03-03 1989-03-03 Field effect transistor type ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051674A JPH02231559A (en) 1989-03-03 1989-03-03 Field effect transistor type ion sensor

Publications (1)

Publication Number Publication Date
JPH02231559A true JPH02231559A (en) 1990-09-13

Family

ID=12893429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051674A Pending JPH02231559A (en) 1989-03-03 1989-03-03 Field effect transistor type ion sensor

Country Status (1)

Country Link
JP (1) JPH02231559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002839A (en) * 2007-06-22 2009-01-08 Hitachi Ltd Analyzing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220854A (en) * 1986-03-24 1987-09-29 Toshiba Corp Fet ion sensor
JPS62222157A (en) * 1986-03-25 1987-09-30 Toshiba Corp Fet ion sensor
JPS63229356A (en) * 1987-03-18 1988-09-26 Agency Of Ind Science & Technol Ion selective electrode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220854A (en) * 1986-03-24 1987-09-29 Toshiba Corp Fet ion sensor
JPS62222157A (en) * 1986-03-25 1987-09-30 Toshiba Corp Fet ion sensor
JPS63229356A (en) * 1987-03-18 1988-09-26 Agency Of Ind Science & Technol Ion selective electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002839A (en) * 2007-06-22 2009-01-08 Hitachi Ltd Analyzing apparatus

Similar Documents

Publication Publication Date Title
Moss et al. Potassium ion-sensitive field effect transistor
Smith et al. An integrated sensor for electrochemical measurements
Akiyama et al. Ion-sensitive field-effect transistors with inorganic gate oxide for pH sensing
JPS5825221B2 (en) FET reference electrode
Sibbald Chemical-sensitive field-effect transistors
JPH0633063U (en) Graphite-based solid polymer membrane ion-selective electrode
US5505836A (en) Solid-state ion sensor
El Degheidy et al. Optimization of an implantable coated wire glucose sensor
Urbanowicz et al. A miniaturized solid-contact potentiometric multisensor platform for determination of ionic profiles in human saliva
Van den Vlekkert et al. Multi-ion sensing system based on glass-encapsulated pH-ISFETs and a pseudo-REFET
US6508921B1 (en) Lithium ion-selective electrode for clinical applications
Wróblewski et al. Towards advanced chemical microsensors—an overview
AU2001247614A1 (en) Lithium ion-selective electrode for clinical applications
US4716448A (en) CHEMFET operation without a reference electrode
JPH02231559A (en) Field effect transistor type ion sensor
TWI393880B (en) Method for sodium ion selective electrode, sodium ion selective electrode therefrom and sodium ion sensing device
Wyglądacz et al. Design of miniaturized nitrite sensors based on silicon structure with back-side contacts
Covington et al. Ion-selective field-effect transitors (ISFETs)
US20020038762A1 (en) Solid-state ion selective electrodes and methods of producing the same
Hsieh et al. High-performance extended gate field-effect-transistor-based dissolved carbon dioxide sensing system with a packaged microreference electrode
Dror et al. Potassium ion-selective electrodes based on valinomycin/PVC overlayered solid substrates
JPH0469338B2 (en)
Khanna Advances in chemical sensors, biosensors and microsystems based on ion-sensitive field-effect transistor
RU2097755C1 (en) Ion-selective field-effect transistor
JP3388942B2 (en) Solid film type ion sensor and its stabilization method