JPH02230970A - High-performance wave activated power generating buoy - Google Patents

High-performance wave activated power generating buoy

Info

Publication number
JPH02230970A
JPH02230970A JP1046569A JP4656989A JPH02230970A JP H02230970 A JPH02230970 A JP H02230970A JP 1046569 A JP1046569 A JP 1046569A JP 4656989 A JP4656989 A JP 4656989A JP H02230970 A JPH02230970 A JP H02230970A
Authority
JP
Japan
Prior art keywords
floating body
power generation
air
air chamber
wave power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1046569A
Other languages
Japanese (ja)
Inventor
Koichi Nishikawa
公一 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1046569A priority Critical patent/JPH02230970A/en
Publication of JPH02230970A publication Critical patent/JPH02230970A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Abstract

PURPOSE:To effectively utilize the wave power and generate a high electric power output by forming an oblong floating body section with a pigeon breast- shaped cross section, providing a power generating device constituted of an air turbine and a power generator on the floating body, and connecting it to an air chamber. CONSTITUTION:A floating body section 1 has a pigeon breast-shaped cross section. An air chamber 2 is provided at a position separated from the floating body section 1, and a horizontal duct 3 communicated to it and opened at the terminal is fitted below it. A power generating device constituted of an air turbine 5 and a power generator 6 is provided on the floating body section 1 and connected to the air chamber 2. The large pitching motion of the floating body section 1 caused by waves is utilized to convert the air output of the air chamber 2 into electric power. A high electric power output can be generated accordingly.

Description

【発明の詳細な説明】 【産業上の利用分野〕 本発明は高性能波力発電ブイに関するもので、小型の発
電ブイは勿論のこと大型の波力発電装置として利用でき
、電力を波力により経済的に発生し得て、航路標識は勿
論のこと離島や交通の不便な地上の電力発生源として活
用できるものである. [従来の技術] 小型の発電ブイとして実用されている波力発電装置は現
在のところ航路標識用の波力発電ブイであり、その1例
を示すと第7図に示すように、浮力体の中央に下面開口
の長い筒状の中央パイプを設け、該中央バイブの上部に
空気室を形成し、該空気室の中央上部に空気タービンと
発電機を内蔵する弁箱が形成されている.また弁箱の外
周には空気路制御用の4枚の弁が設けられている.前記
小型発電ブイは中央パイプの長さ約4mで、ノズルのし
ぼり比(ノズル面積/空気室面積)=l/100の場合
で、比圧力(空気室圧力水頭/波高)のピークが0.3
という性能を発揮している. 大型の波力発電装置として実用実験された1例としては
海洋科学技術センターが山形県鶴岡市由良沖において実
施した「海明」の実験がある.海明は80mX12mX
5.5mで船の長さを波長の長さより長《して不動式の
浮体に形成して波の方向に向けて海面に係留し、該浮体
の底面を開放して多数の空気室を並列形成し、弁により
制御される空気流により空気タービンおよび発電機によ
り発電を行なうものである.海明の実験結果は比圧力で
0.1〜0.15であった. 大型の波力発電装置の他の1例としては第8図に示すも
のがある.これは波長と等しい長さを持った船体の前面
ならびに側面に開口を持った短い底板状空気室を有し、
前方または側方から来る波を受けて空気タービン型発電
機を回転するものである.その比圧力はしぼり比1/1
00の条件下で、0.3(船首部)〜0.15(船側部
)であるが、係留力が海明の約3倍であるという欠点が
ある. これらの従来技術にくらべ、大きく改良された高性能波
力発電ブイが特開昭62−233483号として提案さ
れている.このブイは水槽実験にて高性能が確認せられ
、そのあと海上実験が行われ好成績にて終了している. 海上実験されたのは第9図に示した単胴及びこれを2個
双胴に配した双胴の後曲げダクトブイであり,長さは2
,3mである.周期2.3秒の波で浮体巾の波エネルギ
ーの100%を空気出力に変換する高い変換効率を持っ
ている. なお、このブイの特長は浮体長が波長の0.4位でブイ
のピッチング周期と水平ダクトの共鳴周期に発電出力の
ピークがある点である.現在主な用途はテレメータブイ
など海上のブイ電源であるが、最大の目標は離島用の電
源としての使用であり,その実験例として第10図に英
国海域の波に対し設計された出力3000kwの大型波
力発電装置の一例を示す.このものは波の方向への長さ
が36m浮体部の長さが30m,横巾36mで、総重量
約1000tonがブイの重量であり、波の高い英国の
海岸で発電単価が15円〜20円/ k w hと計算
されている.しかし、これでは他の電力源に比較して高
すぎ、日本のような波の低い海での使用をも考えると、
装置の小型化、出力の増大と一段の改良、コストダウン
が強く要望されている. なお、本発明に関係ある従来技術として第11図に英国
のソルターダックの浮体形状を示している.これは大き
な首振り運動を起す高い効率の波力発電装置として知ら
れているが,首振り運動は中に装備したジャイロなどに
より油圧タービンを四転発電出力とするものである.. また同じく第12図に示すのは振子型波力発電機であり
、円形状の浮体底面の下前方に水中慣性体を、下後方に
カウンター重量を持ち、波により、強力なピッチング運
動を起すものである,上記のソルターダックおよび振子
型は実用はされていないが、充分な基礎試験と湖上又は
海上での実験を経験している. 〔発明が解決しようとする課題] 従来例における第10図に示した36m長の3000k
wの後曲げブイにおける大型波力発電装置の設計例は,
浮体長が波長の0.4と短かく、海明等に比べて、改善
されているが、経済性を得るためにはより一段と小型の
ブイで高出力が要求される. 本発明はこの要望に答え、波長の0.04〜0,06倍
と極めて短かい浮体部でより高い発電出力を発生させる
ことを目標にしたものである.[課屈を解決するための
手段] 本発明の高性能波力発電ブイは上記課題を解決するため
の手段として下記の構成を備えている.(1)海面に係
留される略垂直方向の空気室,該空気室にわん曲部を介
して連通ずる末端開放の水平ダクト、および該水平ダク
ト上に固定される浮体からなり,前記空気室上に空気タ
ービンおよび発電機からなる発電室を設け、前記浮体は
前記空気室より離れた位置に設けられた横長形状体で、
上面が水平、下面が後方の大きい曲率から前方の小さい
曲率に変化する(鳩胸形状)からなる断面形状を有する
こと. (2)前記(1)において浮体の横方向長さを当該海面
における最多波長の約0.04〜0.06倍とすること
. (3)前記(1)における水平ダクトの長さを空気室を
含め当該海面における最多波長の約0. 4倍とするこ
と. (4)前記(1)における下面鳩胸形状の浮体に代λて
,浮体が下面円形で前後に水中慣性体と重置物を取付け
たこと. (5)前記(4)における浮体の横方向長さを当該海面
における最多波長の約0.04〜0.06倍とすること
. (6)前記(4)における水中ダクトの長さを空気室を
含め当該海面における最多波長の約0. 4倍とするこ
と. (7)海面に係留される略垂直方向の前後2箇所の空気
室、該前後の空気室下部と各わん曲部を介して連通する
水平ダクト、該前後の空気室上部間を連通ずる上部空気
通路、および該水平ダクト上に固定される浮体かうなり
、前記水平ダクトには水を水柱が両空気室中央にくるよ
うに封入するとともに前記上部空気通路に空気タービン
および発電機からなる発電装置を設け,前記浮体は前記
前後の空気室から離れて水平ダクトの中間に設けられた
横長形状体で、上面水平、下面が後方の小さい曲率半径
から前方の大きい曲率半径に変化する曲面(鳩胸形状)
からなる断面形状を有すること. (8)前記(7)における浮体の横方向長さを当該海面
における最多波長の約0.04〜0.06倍とすること
. (9)前記(7)および(8)において前後の空気室を
横長浮体に隣接して設け、装置の波方向の長さをより短
くすること. (10)前記(9)において前後の空気室の下面または
側面を海水に対し開放し、より簡素化すること、 [作 用] 本発明の高性能波力発電ブイはブイを波長に対しいちじ
るしく短くするために従来技術のソルターのダクトブイ
にあるような鳩胸形状の浮体部の断面形状を採用するこ
とにより、強力なピッチング運動を発生させるか、又は
従来技術の振子型波力ブイにあるような浮体部の下前端
にケーブルにてつるされた水中慣性体を,また下後端に
カウンター重量をつけることにより波の上下動を浮体部
のピッチング運動として取出す. これにより第lO図に示した30m長の大型波力発電機
の浮体部が約9秒の波周期にマッチするために必要であ
るのに対し、浮体部の長さを10m以下と%に短かくし
、浮体部の重量と建造費の大巾な軽減をはかると共にピ
ッチングの運動を強力化する. 一方、空気室とそれに連結する末端開放の水平ダクトを
、この短くなった浮体部に固定するにあたり、空気室を
ピッチング運動する浮力体より前方に離して位置させる
ことにより、ピッチング運動を増巾して空気室における
波の相対運動として取上げる.この増巾により空気室と
末端開放の水平ダクトの波の進行方向と直角方向の長さ
(ダクトの巾)を減少することを可能にし、第8図に示
した大型波力発電機のダクト部の重量と建造費を大巾に
軽減することを可能にする. さらに、一つの設計として末端開放の水平ダクトの後端
を略垂直方向に曲げ、ここにも浮体部より後に離して位
置された空気室を置くことにより、前方の空気室と同じ
ように浮体部のピッチング運動を増巾し、水平ダクトの
中の水との相対運動により空気室と逆位相の空気圧を発
生し、空気タービンをより効率よく運転するものである
.これ等空気室を横長形状の波体より離すことは空気室
が受ける波との相対運動を大きく増申し,それにより空
気室中の減少をはかるものである.しかし一つの別の考
え方として,空気室中は横長形状浮体と略同じにし、か
わりに、空気室を浮体に隣接して配備することも起りつ
る設計である. 同じく、前後の空気室は各々下面または側面を海水に対
して開放し,横長形状浮体の鳩胸形状または水中慣性体
の作用によるピッチング運動を各空気室の空気出力とし
て吸収することも可能である. [実 施 例] 第1図は本発明実施例の1例を示す斜視図で、浮体部1
はブイを浮設する海面における最多波で最もよくピッチ
ングする断面形状の鳩胸型浮体である. これに組合せて取付けられた空気室2は浮体部1の前方
に位置し、かつ離して配置され、これに連通ずる末端開
放の水平ダクト3が下面に取付けられている.また浮体
部1の波に直角方向の長さは長く、一方ダクトの同じ方
向の長さは短く構成されている. 従来例では浮体部は空気室を含め長さを波長の0.4に
選ぶことにより、海明のような波長と等しい長さを必要
とした物より大巾な改良を加^てきた.しかし,経済性
ある波力発電を得るために浮体部lを鳩胸型とする.こ
れは第11図に示すように、波への後面はAを中心とす
る半径aの円形,前面はBを中心とするaよりやや長い
半径bの円形で構成した断面を持つものであり、波によ
るAを中心とする首振り運動は前面のふくらみ部の浮力
の波による変化を受け強力な首振り運動を誘起される.
これにより浮体長は波長の1/22#0.045と短く
しても第7図および第8図の箱形形状の浮体部にくらべ
首振りのピッチング運動力が強いものが得られる.但し
.0.045は最適条件の場合であり、実用上は0.0
4〜0.06倍の範囲である. 英国のエジンバラ大学の研究結果によれば,浮体長10
mの鳩胸断面の浮体は自由に浮んだ状態で、12秒と極
めて長い波長の波のエネルギーを50%以上吸収した強
力な首振り運動を起し、かつ5秒〜12秒の広い応答周
期巾を持っている.12秒の波は220mの波長であり
、かりに第8図のような箱型の浮体部を使うならばブイ
の長さは220mx0.4=88m必要となる.これを
10mの長さでよいことは、鳩胸形状の浮体部断面を採
用するメリットであり、応答の周期巾が広くなることも
別のメリットである. 一方空気室2ならびに水平ダクト3にはダクトの中の水
柱の振動周期の問題がある. いま、ダクトの中の水柱の長さをLとしたとき固定され
た一端を水中に開放したダクト内の水柱の自然振動周期
T2は ここでL=36m  g=9.8mとするとT.=12
秒となる.またL=24mではT.=9.8秒となる. 一方第8図に示した後曲げダクトブイの寸法はピッチン
グ周期T,を9秒にとった設計である.−aにピッチン
グ周期にて高出力を得るためには、ダクト内の水柱の自
然振動周期T2をT.<T2とし、ダクト内の水柱は動
かない条件か共鳴する条件で設計する.したがって、第
1図の場合浮体長10m、ダクト長24m〜36mが望
ましい寸法となる. 空気室2はこの長いダクト3に運通しており、浮体部l
より離れて前方に位置している.このことにより、空気
室2における波との相対運動は浮体部lが誘起する首振
り運動を増巾して感受し、より大きな空気圧を発生でき
る.発電出力は一穀に空気室の波との相対運動の自乗に
比例するから空気室やダクトの波の進行方向に直角な方
向の長さを短か《することができ、これにより空気室2
および水平ダクト3に要する材料および建設費の軽減を
はかることができる. 空気室の中の水面により押し引きされた空気は空気通路
4を通ってウェールズ式の空気タービン8を回転させ発
電機6により発電する.第2図には鳩胸形状をもった浮
体部1のピッチング運動が空気室2の位置で増巾される
状況を示して゜いる. 第3図には別の実施例を示す.この場合浮体部1の断面
形状は円でよいが、下前方につるした水パケット7は大
きな水の質量をたくことにより,引揚げに対し、動きに
くい作用をし、一方下後方に取付けたカウンター重量8
は浮体部1をもとにもどすのに作用する.これは波によ
り首振り運動を起す浮体部lの小型化の一つの方策であ
る.浮体部のピッチング運動を誘起する原理において異
なる外は空気室2、水平ダクト3、空気通路4、ウェー
ルズ式空気タービン5、発141116は第1図に同じ
である. 第4図は空気室1および水平ダクト2を改善した別の実
施例を示す.第7図および第3図の実施例においては水
平ダクト2は後端を水の中に開放した状態である.しか
し、水平ダクト2の長さは24mから36mもの長さを
(浮体部のピッチング周期T,)< (水平ダクトの中
の水の共鳴周期T.)の條件で得るために必要とし、も
し,T2>T,となると一般に水が動いて空気圧力が高
くならない.これは従来技術第5図の中央パイプブイで
中央パイプの長さを短くしたことにより空気圧力が急減
する実施例よりも明である。しかし、小型、軽量化の要
望は水平ダクトの長さを短かくすることに対しても何等
かの改良が強く要望される. 第4図に示したものはこれが対策としての実施例であり
、水平ダクト3は浮体部lの浮体長よりは長いが24m
〜36mにくらべては短かく、ダクトの中の水の自然振
動周期も浮体部lの首振りの周期よりも短かい長さとす
る.しかし、端末を海水に対して開放せず上に曲げて後
部空気室を形状させる.このようにクロスされたU字管
の振動の周期は、 となり、かりに、水柱の長さを16mとしてもT,は5
.7秒と浮体部2の首振りの周期にくらべて短いもので
ある. 浮体部2の首振り運動により増申された上下動をする前
部ならびに後部の空気室の空気圧力は反抗する水面が動
くことにより各室毎には低い圧力であるが、上部空気通
路4によりタービン5につながり2つの空気室2,9か
逆位相であるので和となって作用する. また後部空気室9も前部と同じように浮力体lより離し
て位置し、それによって首振り運動をより増巾して利用
することを可能にするのは無論である. 第5図に示したものは第4図の実施例の1変形であり、
前部空気室2および後部空気室9は浮体部lに隣接して
配置されている.そのため水平ダクト3の水柱の振動周
!tll T .は横長形状の浮体部1のピッチング周
期T,より短くなる.T1〉T,の条件では水柱は不動
でなく動いて、水柱の差が空気圧と等しくなる位置で停
止するので、比圧力はやや低くなることを意味している
.それの極端な例は第6図に示した前方空気室2後方空
気室9の下面を海水に対して開放した条件である.ばT
s =2.2secとあり、水柱すぐ動き或る圧力でバ
ランスする. このような条件では空気圧力は比圧力で0.2位が最大
であるが、先に説明したように2ケ所の空気室が互に逆
位相化作用し、空気圧差が和になること、および空気室
の位置が浮体の運動中心より離して位置されている効果
により空気出力を増大させることが可能となる. 以上説明するように,浮体部lの長さを大巾に減少させ
るだけでなく、空気室およびダクトの波に対し直角方向
の長さも減少させ、さらにはその長さも浮体部の外側に
空気室を離しておける範囲で長さも減少し、出力につい
ては,首振り運動の強力化により向上させることが可能
であるこれにより現在KWH当り20〜15円の波力発
電の発電費をKWH当り7円以下となし、離島用として
、また小型のものの実現を目標となしつる. [発明の効果] (1)横長形状の浮体部を用いその断面形状を鳩胸状と
することにより、長さを短《して波力を有効に利用する
ことができる. (2)横長形状の浮体部を用いその断面形状を円形とし
前後に水中慣性体と重量物を付設することにより、長さ
を短かくして波力を有効に利用することができる. (3)浮体部を空気室と離して水平ダクト上に配置する
ことにより、ピッチング運動を増巾することができる. (4)前部および後部に空電室を設け、その上下部を、
水平ダクトと上部空気通路で連通ずることにより、両空
気室の位相差を有効に利用できる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a high-performance wave power generation buoy, which can be used not only as a small power generation buoy but also as a large wave power generation device, and can generate electricity by wave power. It can be generated economically and can be used not only as a navigational aid but also as a power generation source on remote islands and on land where transportation is inconvenient. [Prior Art] Wave power generation devices that are currently in practical use as small power generation buoys are wave power generation buoys for navigational aids, and one example of this is shown in Figure 7, in which a buoyant body A long cylindrical central pipe with a bottom opening is provided at the center, an air chamber is formed above the central vibe, and a valve box containing an air turbine and a generator is formed at the upper center of the air chamber. Additionally, four valves for controlling air passages are installed around the outer circumference of the valve box. The small power generation buoy has a central pipe length of approximately 4 m, and when the nozzle squeeze ratio (nozzle area/air chamber area) = l/100, the peak of the specific pressure (air chamber pressure head/wave height) is 0.3.
It demonstrates this performance. One example of a practical experiment as a large-scale wave power generation device is the ``Kaimei'' experiment conducted by the Japan Marine Science and Technology Center off the coast of Yura, Tsuruoka City, Yamagata Prefecture. Kaimei is 80mX12mX
The length of the ship is 5.5 m, which is longer than the wavelength, and is formed into an immovable floating body, moored on the sea surface facing the direction of the waves, and the bottom of the floating body is opened to accommodate a number of air chambers in parallel. The system generates electricity using an air turbine and a generator using airflow controlled by valves. Kaimei's experimental results showed a specific pressure of 0.1 to 0.15. Another example of a large wave power generation device is shown in Figure 8. It has a short bottom plate-like air chamber with openings on the front and sides of the hull with a length equal to the wavelength,
It rotates an air turbine generator by receiving waves coming from the front or side. The specific pressure is squeeze ratio 1/1
Under the conditions of 00, it is 0.3 (bow) to 0.15 (ship side), but it has the disadvantage that the mooring force is about three times that of Kaimei. A highly improved high-performance wave power generation buoy compared to these conventional techniques has been proposed in Japanese Patent Application Laid-Open No. 62-233483. The high performance of this buoy was confirmed in an aquarium experiment, and subsequent sea trials were conducted with good results. What was tested at sea was a single-hulled and two twin-hulled duct buoys with a length of 2.
, 3m. It has a high conversion efficiency that converts 100% of the wave energy of the width of the floating body into air power with a wave period of 2.3 seconds. The feature of this buoy is that the floating body length is about 0.4 of the wavelength, and the power generation output peaks at the pitching period of the buoy and the resonance period of the horizontal duct. Currently, its main use is as a power source for offshore buoys such as telemeter buoys, but the biggest goal is to use it as a power source for remote islands. An example of a large wave power generation device is shown below. This buoy has a length of 36 m in the direction of the waves, a floating part of 30 m in length, and a width of 36 m.The total weight of the buoy is approximately 1000 tons, and the unit power generation cost is 15 to 20 yen on the British coast where waves are high. It is calculated as yen/kwh. However, this is too expensive compared to other power sources, and considering its use in low-wave oceans like Japan.
There is a strong demand for smaller equipment, increased output, further improvements, and cost reduction. As a prior art related to the present invention, Figure 11 shows the floating shape of a British salter duck. This is known as a highly efficient wave power generation device that generates a large oscillating motion, but the oscillating motion is generated by turning a hydraulic turbine into four-turn power output using a gyro installed inside. .. Also shown in Figure 12 is a pendulum-type wave power generator, which has an underwater inertial body at the bottom and front of the circular floating bottom and a counterweight at the bottom and rear, and generates a powerful pitching motion by waves. Although the salter duck and pendulum types mentioned above have not been put into practical use, they have undergone sufficient basic tests and experiments on lakes and seas. [Problem to be solved by the invention] A conventional example of 3000k with a length of 36m shown in FIG.
A design example of a large wave power generation device in a backward bending buoy is as follows.
The length of the floating body is short at 0.4 of the wavelength, which is an improvement over Kaimei and others, but in order to achieve economic efficiency, a smaller buoy and higher output are required. The present invention meets this need and aims to generate higher power generation output with a floating body that is extremely short, 0.04 to 0.06 times the wavelength. [Means for solving the problem] The high-performance wave power generation buoy of the present invention has the following configuration as a means for solving the above problem. (1) Consisting of a substantially vertical air chamber moored to the sea surface, a horizontal duct with an open end communicating with the air chamber via a curved part, and a floating body fixed on the horizontal duct, A power generation chamber consisting of an air turbine and a generator is provided in the air chamber, and the floating body is an oblong body located at a position away from the air chamber,
The top surface is horizontal, and the bottom surface has a cross-sectional shape that changes from a large curvature at the rear to a small curvature at the front (pigeon chest shape). (2) In (1) above, the lateral length of the floating body is approximately 0.04 to 0.06 times the maximum wavelength on the sea surface. (3) The length of the horizontal duct in (1) above, including the air chamber, should be approximately 0.0 mm of the maximum wavelength at the sea surface. Make it 4 times. (4) Instead of the floating body having a pigeon-chest shape on the bottom surface in (1) above, the floating body has a circular bottom surface and underwater inertia bodies and heavy objects are attached to the front and rear. (5) The lateral length of the floating body in (4) above is approximately 0.04 to 0.06 times the maximum wavelength on the sea surface. (6) The length of the underwater duct in (4) above, including the air chamber, should be approximately 0.00 mm of the maximum wavelength at the sea surface. Make it 4 times. (7) Two air chambers moored to the sea surface in a substantially vertical direction, front and rear, horizontal ducts that communicate with the lower parts of the front and rear air chambers via each curved part, and upper air that communicates between the upper parts of the front and rear air chambers. a passageway, and a floating body fixed on the horizontal duct; water is sealed in the horizontal duct so that a water column is centered in both air chambers; and a power generation device consisting of an air turbine and a generator is installed in the upper air passageway. The floating body is an oblong body located in the middle of a horizontal duct apart from the front and rear air chambers, and has a horizontal top surface and a curved bottom surface that changes from a small radius of curvature at the rear to a large radius of curvature at the front (pigeon chest shape).
It must have a cross-sectional shape consisting of: (8) The lateral length of the floating body in (7) above is approximately 0.04 to 0.06 times the maximum wavelength on the sea surface. (9) In (7) and (8) above, the front and rear air chambers are provided adjacent to the oblong floating body to further shorten the length of the device in the wave direction. (10) In (9) above, the lower or side surfaces of the front and rear air chambers are opened to seawater to further simplify the process. In order to do this, a strong pitching motion can be generated by adopting a pigeon-chest cross-sectional shape of the floating body as in the prior art Salter duct buoy, or a floating body as in the prior art pendulum type wave buoy. By attaching an underwater inertial body suspended by a cable to the lower front end of the floating body and a counterweight to the lower rear end, the vertical motion of the waves can be extracted as the pitching motion of the floating body. This reduces the length of the floating body to 10 m or less, whereas the floating body of a large wave power generator with a length of 30 m shown in Figure 1 is required to match the wave period of approximately 9 seconds. This not only greatly reduces the weight and construction cost of the floating body, but also strengthens the pitching motion. On the other hand, when fixing the air chamber and the open-ended horizontal duct connected to it to the shortened floating body, the pitching movement can be amplified by positioning the air chamber ahead of and away from the pitching buoyant body. This is taken up as the relative motion of waves in an air chamber. This width increase makes it possible to reduce the length of the air chamber and the open-end horizontal duct in the direction perpendicular to the wave traveling direction (the width of the duct), as shown in Figure 8. This makes it possible to significantly reduce the weight and construction cost of the machine. Furthermore, as one design, the rear end of the horizontal duct with an open end is bent in a nearly vertical direction, and by placing an air chamber spaced at a distance behind the floating body here, the floating body This amplifies the pitching motion of the water in the horizontal duct, and generates air pressure that is in the opposite phase to the air chamber due to its relative movement with the water in the horizontal duct, thereby operating the air turbine more efficiently. Separating the air chamber from the oblong wave body greatly increases the relative motion of the air chamber with the waves, thereby reducing the amount of force inside the air chamber. However, another way to think about it is to make the air chamber almost the same as that of the oblong floating body, and instead place the air chamber adjacent to the floating body. Similarly, the front and rear air chambers each have their lower or side surfaces open to the seawater, and it is also possible to absorb the pitching motion caused by the pigeon-chest shape of an oblong floating body or the action of an underwater inertial body as air output in each air chamber. [Embodiment] FIG. 1 is a perspective view showing an example of an embodiment of the present invention, in which a floating body part 1
is a pigeon-chest type floating body with a cross-sectional shape that pitches best in the highest number of waves on the sea surface where the buoy is floating. An air chamber 2 attached in combination with this is located in front of the floating body part 1 and is placed apart from it, and a horizontal duct 3 with an open end communicating with this is attached to the lower surface. Furthermore, the length of the floating body part 1 in the direction perpendicular to the waves is long, while the length of the duct in the same direction is short. In the conventional model, the length of the floating body including the air chamber was chosen to be 0.4 of the wavelength, which was a major improvement over the Kaimei model, which required a length equal to the wavelength. However, in order to obtain economical wave power generation, the floating body part l is designed to have a pigeon-chest shape. As shown in Fig. 11, the rear face of the wave has a circular cross section with radius a centered at A, and the front face has a circular cross section with radius b slightly longer than a centered at B. The swinging motion centered on A due to the waves is induced by the change in the buoyancy of the front bulge caused by the waves.
As a result, even if the length of the floating body is shortened to 1/22 #0.045 of the wavelength, it is possible to obtain a structure with a stronger pitching force when compared to the box-shaped floating body shown in Figures 7 and 8. however. 0.045 is for optimal conditions, and in practice it is 0.0
The range is 4 to 0.06 times. According to research results from the University of Edinburgh in the UK, the floating body length is 10
The floating body with a pigeon-chest cross-section of 1.5 m is freely floating and generates a powerful oscillating motion that absorbs more than 50% of the energy of waves with an extremely long wavelength of 12 seconds, and has a wide response period width of 5 to 12 seconds. have. A 12 second wave has a wavelength of 220 m, so if a box-shaped floating body like the one shown in Figure 8 is used, the length of the buoy would be 220 m x 0.4 = 88 m. The advantage of adopting a pigeon-chest-shaped floating body cross section is that it only needs to be 10 meters long, and another advantage is that the periodic width of the response becomes wider. On the other hand, air chamber 2 and horizontal duct 3 have a problem with the vibration frequency of the water column inside the duct. Now, when the length of the water column in the duct is L, the natural vibration period T2 of the water column in the duct with one fixed end opened underwater is T. =12
Seconds. Also, at L=24m, T. = 9.8 seconds. On the other hand, the dimensions of the back-bending duct buoy shown in Figure 8 are designed with a pitching period T of 9 seconds. In order to obtain high output at pitching period -a, the natural vibration period T2 of the water column in the duct must be set to T. <T2, and the water column inside the duct is designed under conditions where it does not move or resonates. Therefore, in the case of Figure 1, the desirable dimensions are a floating body length of 10 m and a duct length of 24 m to 36 m. The air chamber 2 is conveyed through this long duct 3, and the floating body l
It is located further away and in front. As a result, the relative motion with the waves in the air chamber 2 is amplified by the oscillation motion induced by the floating body part 1, and a larger air pressure can be generated. Since the power generation output is proportional to the square of the relative motion with the waves in the air chamber, the length of the air chamber or duct in the direction perpendicular to the direction of wave propagation can be shortened.
In addition, the materials and construction costs required for the horizontal duct 3 can be reduced. The air pushed and pulled by the water surface in the air chamber passes through the air passage 4, rotates a Welsh-type air turbine 8, and generates electricity by a generator 6. Figure 2 shows a situation where the pitching motion of the floating body part 1, which has a pigeon-chest shape, is amplified at the position of the air chamber 2. Figure 3 shows another example. In this case, the cross-sectional shape of the floating body part 1 may be circular, but the water packet 7 suspended at the lower front has a large mass of water, making it difficult to move when being salvaged, while the counter mounted at the lower rear Weight 8
acts to return floating body part 1 to its original position. This is one way to downsize the floating body part l, which causes oscillating motion due to waves. The air chamber 2, horizontal duct 3, air passage 4, Welsh air turbine 5, and station 141116 are the same as in Fig. 1 except for the principle of inducing the pitching motion of the floating body. Figure 4 shows another embodiment in which the air chamber 1 and horizontal duct 2 are improved. In the embodiments shown in FIGS. 7 and 3, the horizontal duct 2 has its rear end open into the water. However, the length of the horizontal duct 2 is required to be between 24 m and 36 m under the condition of (pitting period T, of the floating body part) < (resonant period T. of water in the horizontal duct), and if When T2>T, the water generally moves and the air pressure does not increase. This is clearer than the example of the prior art shown in FIG. 5, in which the air pressure suddenly decreases due to the shortening of the length of the central pipe in the central pipe buoy. However, the desire for smaller size and lighter weight also strongly calls for some kind of improvement in reducing the length of the horizontal duct. The one shown in Figure 4 is an example of this as a countermeasure, and the horizontal duct 3 is longer than the floating body length of the floating body part l, but is 24 m.
It is shorter than ~36m, and the natural vibration period of the water in the duct is also shorter than the swing period of floating body part l. However, the rear air chamber is shaped by bending the terminal upwards instead of opening it to seawater. The period of vibration of the U-shaped tubes crossed in this way is, and even if the length of the water column is 16 m, T is 5.
.. This is 7 seconds, which is shorter than the oscillation period of floating body part 2. The air pressure in the front and rear air chambers, which move up and down due to the oscillation of the floating body 2, is low in each chamber due to the movement of the opposing water surface, but due to the upper air passage 4 The two air chambers 2 and 9 connected to the turbine 5 have opposite phases, so they act as a sum. It goes without saying that the rear air chamber 9 is also located away from the buoyant body 1 in the same way as the front, thereby making it possible to utilize the oscillating motion to a greater degree. What is shown in FIG. 5 is a variation of the embodiment of FIG.
The front air chamber 2 and the rear air chamber 9 are arranged adjacent to the floating body part l. Therefore, the vibration frequency of the water column in horizontal duct 3! tll T. becomes shorter than the pitching period T of the horizontally elongated floating body part 1. Under the condition T1>T, the water column is not stationary but moves and stops at a position where the difference in the water column is equal to the air pressure, which means that the specific pressure is slightly lower. An extreme example of this is the condition in which the lower surfaces of the front air chamber 2 and the rear air chamber 9 are open to seawater, as shown in Figure 6. BaT
s = 2.2 seconds, and the water column moves quickly and balances at a certain pressure. Under these conditions, the maximum air pressure is around 0.2 in terms of specific pressure, but as explained earlier, the two air chambers act to reverse the phase of each other, and the difference in air pressure becomes the sum. The effect of locating the air chamber away from the center of motion of the floating body makes it possible to increase the air output. As explained above, not only the length of the floating body part l is greatly reduced, but also the length of the air chamber and duct in the direction perpendicular to the wave, and furthermore, the length of the air chamber is increased to the outside of the floating body part. The length can be reduced to the extent that they can be kept apart, and the output can be improved by making the swinging motion more powerful.This will reduce the power generation cost of wave power generation, which currently costs 20 to 15 yen per KWH, to 7 yen per KWH. The goal is to create a small model for use on remote islands, as shown below. [Effects of the Invention] (1) By using a horizontally elongated floating body and making its cross-sectional shape pigeon-chested, the length can be shortened and wave power can be used effectively. (2) By using a horizontally elongated floating body with a circular cross-sectional shape and attaching an underwater inertial body and heavy objects to the front and rear, the length can be shortened and wave power can be used effectively. (3) Pitching motion can be amplified by placing the floating body part on a horizontal duct away from the air chamber. (4) A static chamber is provided at the front and rear, and the upper and lower sections are
By communicating with the horizontal duct through the upper air passage, the phase difference between both air chambers can be effectively utilized.

(5)前後空気室を横長形状浮体に隣接して配すること
により、浮体の長さも短かくでき,また各空気室の下通
又は側面を海水に対し開敢することによりより一層の小
型化をはかれる。
(5) By arranging the front and rear air chambers adjacent to the oblong floating body, the length of the floating body can be shortened, and further miniaturization can be achieved by opening the bottom or side of each air chamber to seawater. be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施第1例を示す斜視図、第2図はそ
の動作説明図である.第3図は同じく実施第2例、第4
図は同じく実施第3例、第5図は同じ《実施第4例、第
6図は同じく実施第5側を示す断面図である.また第7
図〜第12図は従来例を示す図面である. 図中の符号はそれぞれ下記部材を示す.l:浮体部 2:空気室 3;水平ダクト 4:空気通路 5:空気タービン 6二発電機 :水パケット :カウンター重量
FIG. 1 is a perspective view showing a first embodiment of the present invention, and FIG. 2 is an explanatory diagram of its operation. Figure 3 shows the second implementation example and the fourth implementation example.
The figure is a sectional view of the third embodiment, FIG. 5 is a fourth embodiment, and FIG. 6 is a sectional view of the fifth embodiment. Also the 7th
Figures 1 to 12 are drawings showing conventional examples. The symbols in the diagram indicate the following parts. l: Floating body part 2: Air chamber 3; Horizontal duct 4: Air passage 5: Air turbine 6 Two generators: Water packet: Counter weight

Claims (1)

【特許請求の範囲】 1、海面に係留され波に対し横長形状体で、上面が水平
、下面円形で後方の小さい曲率半径から前方の大きい曲
率半径に変化する曲面(鳩胸形状)からなる断面形状を
有する浮体、該浮体より離れた位置に設けられた略垂直
方向の空気室、該空気室にわん曲部を介して連通する末
端開放の水平ダクト、からなり、前記浮体上に空気ター
ビンおよび発電機からなる発電装置を設けて空気室と連
結し波により前記浮体が起す大きなピッチング運動を利
用して空気室の空気出力を電力に変換することを特徴と
する高性能波力発電ブイ。 2、前記特許請求の範囲1に記載の浮体の横方向長さを
当該海面における最多波長の約0.04〜0.06倍と
することを特徴とする高性能波力発電ブイ。 3、前記特許請求の範囲1に記載の水平ダクトの長さを
空気室を含めて当該海面における最多波長の約0.4倍
とすることを特徴とする高性能波力発電ブイ。 4、海面に係留され波に対し横長形状体で、上面が水平
、下面円形の断面形状であり、かつ該下面の一方の側に
水バケツのごとき水中慣性体をまた他方の側に重量物を
取付けた浮体、該浮体より離れた位置に設けられた略垂
直方向の空気室、該空気室にわん曲部を介して連通する
末端開放の水平ダクト、からなり、前記浮体上に空気タ
ービンおよび発電機からなる発電装置を設け、波により
前記浮体が起す大きなピッチング運動を利用して空気室
の空気出力を電力に変換することを特徴とする高性能波
力発電ブイ。 5、前記特許請求の範囲4に記載の浮体の横方向長さを
当該海面における最多波長の約0.04〜0.06倍と
することを特徴とする高性能波力発電ブイ。 6、前記特許請求の範囲4に記載の水平ダクトの長さを
空気室を含めて当該海面における最多波長の約0.4倍
とすることを特徴とする高性能波力発電ブイ。 7、海面に係留され波に対し横長形状体で、上面が水平
、下面円形で後方の小さい曲率半径から前方の大きい曲
率半径に変化する曲面(鳩胸形状)または水中慣性体の
作用で波により効果的なピッチング運動を起す浮体で、
該浮体より離して前後に2ケ所設けられた空気室、該前
後の空気室下部と各わん曲部を介して連通する水平ダク
ト、該前後の空気室上面間を連通する上部空気通路、か
らなり、前記水平ダクトには水を水柱が両空気室中央に
くるように封入するとともに前記上部空気通路に空気タ
ービンおよび発電機からなる発電装置を設け、波により
前記浮体が起す大きなピッチング運動を利用して空気室
の空気出力を電力に変換することを特徴とする高性能波
力発電ブイ。 8、前記特許請求の範囲7に記載の浮体の横方向長さを
当該海面における最多波長の約0.04〜0.06倍と
することを特徴とする高性能波力発電ブイ。 9、前記特許請求の範囲7および8に記載の高性能波力
発電において、2ケ所の空気室を横長形の浮体に隣接し
て前後に配置することにより、水平ダクトを含む装置の
波方向の長さを短くしたことを特徴とする高性能波力発
電ブイ。 10、前記特許請求の範囲9に記載の高性能波力発電ブ
イにおいて、横長形の浮体に隣接して前後に配置シタ空
気室は、下面または側面を開放して2つの空気室を結ん
だ水平ダクトを省略したことを特徴とする高性能波力発
電ブイ。
[Scope of Claims] 1. A horizontally elongated body moored on the sea surface with respect to the waves, with a horizontal upper surface, a circular lower surface, and a cross-sectional shape consisting of a curved surface (pigeon chest shape) that changes from a small radius of curvature at the rear to a large radius of curvature at the front. a floating body having a floating body, a substantially vertical air chamber provided at a position remote from the floating body, a horizontal duct with an open end communicating with the air chamber via a curved part, and an air turbine and a power generation unit mounted on the floating body. 1. A high-performance wave power generation buoy, characterized in that a power generation device consisting of a generator is provided and connected to an air chamber, and the air output of the air chamber is converted into electric power by utilizing the large pitching motion caused by the floating body due to waves. 2. A high-performance wave power generation buoy, characterized in that the lateral length of the floating body according to claim 1 is about 0.04 to 0.06 times the maximum wavelength on the sea surface. 3. A high-performance wave power generation buoy, characterized in that the length of the horizontal duct according to claim 1, including the air chamber, is approximately 0.4 times the maximum wavelength on the sea surface. 4. It is moored on the sea surface and has an oblong shape with a horizontal upper surface and a circular lower surface, and has an underwater inertial body such as a water bucket on one side of the lower surface and a heavy object on the other side. It consists of an attached floating body, a substantially vertical air chamber provided at a position remote from the floating body, and a horizontal duct with an open end communicating with the air chamber via a curved part, and an air turbine and a power generation unit are mounted on the floating body. 1. A high-performance wave power generation buoy, characterized in that it is equipped with a power generation device consisting of a generator, and converts the air output of an air chamber into electric power by utilizing the large pitching motion caused by the floating body due to waves. 5. A high-performance wave power generation buoy, characterized in that the lateral length of the floating body according to claim 4 is about 0.04 to 0.06 times the maximum wavelength on the sea surface. 6. A high-performance wave power generation buoy, characterized in that the length of the horizontal duct according to claim 4, including the air chamber, is about 0.4 times the maximum wavelength on the sea surface. 7. It is moored on the sea surface and has a horizontally elongated shape with a horizontal top surface and a circular bottom surface that changes from a small radius of curvature at the rear to a large radius of curvature at the front (pigeon chest shape) or is effective against waves due to the action of an underwater inertial body. A floating body that causes a pitching motion,
It consists of two air chambers located at the front and rear of the floating body, a horizontal duct that communicates with the lower part of the front and rear air chambers via each curved part, and an upper air passage that communicates between the upper surfaces of the front and rear air chambers. , Water is sealed in the horizontal duct so that the water column is located at the center of both air chambers, and a power generation device consisting of an air turbine and a generator is installed in the upper air passage to utilize the large pitching motion caused by the floating body due to waves. A high-performance wave power generation buoy characterized by converting the air output of the air chamber into electricity. 8. A high-performance wave power generation buoy, characterized in that the lateral length of the floating body according to claim 7 is about 0.04 to 0.06 times the maximum wavelength on the sea surface. 9. In the high-performance wave power generation according to claims 7 and 8, by arranging two air chambers in front and back adjacent to the oblong floating body, the wave direction of the device including the horizontal duct is improved. A high-performance wave power generation buoy characterized by its short length. 10. In the high-performance wave power generation buoy as set forth in claim 9, the lower air chambers arranged in the front and back adjacent to the oblong floating body are horizontal air chambers connecting two air chambers with an open bottom or side surface. A high-performance wave power generation buoy characterized by the omission of ducts.
JP1046569A 1989-03-01 1989-03-01 High-performance wave activated power generating buoy Pending JPH02230970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046569A JPH02230970A (en) 1989-03-01 1989-03-01 High-performance wave activated power generating buoy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046569A JPH02230970A (en) 1989-03-01 1989-03-01 High-performance wave activated power generating buoy

Publications (1)

Publication Number Publication Date
JPH02230970A true JPH02230970A (en) 1990-09-13

Family

ID=12750951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046569A Pending JPH02230970A (en) 1989-03-01 1989-03-01 High-performance wave activated power generating buoy

Country Status (1)

Country Link
JP (1) JPH02230970A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3015797A1 (en) * 2013-12-24 2015-06-26 Enthalpies Dev ELECTRICITY PRODUCTION ON BOARD SHIPS, FISHING, WAR AND FLOATING STRUCTURES THROUGH THE USE OF ROLLING ENERGY
CN109072863A (en) * 2016-02-23 2018-12-21 危险水域波浪发电有限公司 Wave power conversion/converter
WO2023169602A1 (en) * 2022-05-18 2023-09-14 中国科学院广州能源研究所 Gas powered-type wave energy power supply subsurface buoy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237143A (en) * 1975-09-10 1977-03-22 Fuaburikachionsu Ag Slide fastener and method and device for producing same
JPS53350A (en) * 1976-06-24 1978-01-05 Mitsubishi Heavy Ind Ltd Wave subdue generator
JPS62233483A (en) * 1986-04-01 1987-10-13 Koichi Nishikawa High performance wave power generation buoy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237143A (en) * 1975-09-10 1977-03-22 Fuaburikachionsu Ag Slide fastener and method and device for producing same
JPS53350A (en) * 1976-06-24 1978-01-05 Mitsubishi Heavy Ind Ltd Wave subdue generator
JPS62233483A (en) * 1986-04-01 1987-10-13 Koichi Nishikawa High performance wave power generation buoy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3015797A1 (en) * 2013-12-24 2015-06-26 Enthalpies Dev ELECTRICITY PRODUCTION ON BOARD SHIPS, FISHING, WAR AND FLOATING STRUCTURES THROUGH THE USE OF ROLLING ENERGY
CN109072863A (en) * 2016-02-23 2018-12-21 危险水域波浪发电有限公司 Wave power conversion/converter
WO2023169602A1 (en) * 2022-05-18 2023-09-14 中国科学院广州能源研究所 Gas powered-type wave energy power supply subsurface buoy

Similar Documents

Publication Publication Date Title
EP2245299B1 (en) Wave energy conversion apparatus
EP2496829B1 (en) Energy converter
JP3493130B2 (en) Wave power generator
US4741157A (en) Wave-activated power generating apparatus having a backwardly open duct
JPS5970887A (en) Wave force generating buoy suitable for shallow sea
GB2458630A (en) Deformable wave energy converter with electroactive material
WO2010007418A4 (en) Wave powered generator
JP2007132336A (en) Wave activated power generation unit
AU2007311869A1 (en) Wave energy converter
AU2015341522B2 (en) Wave power converter
CA1048894A (en) Apparatus for use in the extraction of energy from waves on water
US8704395B2 (en) Wave activated power generator
WO2008048050A1 (en) Wave energy converter
US7549288B1 (en) Wave energy power extraction system
JPH02230970A (en) High-performance wave activated power generating buoy
JPS64597B2 (en)
JP3218462B2 (en) Wave energy conversion device
EP3423704A1 (en) Wave power device
JP5462647B2 (en) Power generation equipment by ship sway
McCormick Ocean wave energy concepts
GB2311565A (en) Floating wave power device
US11692524B2 (en) Buoy with radiated wave reflector
CN111373141A (en) Floating wave energy converter
GB2559764A (en) Buoy for converting wave energy into electricity
JPS55151176A (en) Wave force utilizing power plant equipped with resonance sleeve