JPH02230714A - Parallelism adjusting system of original mask plate and substrate to be exposed - Google Patents

Parallelism adjusting system of original mask plate and substrate to be exposed

Info

Publication number
JPH02230714A
JPH02230714A JP1051468A JP5146889A JPH02230714A JP H02230714 A JPH02230714 A JP H02230714A JP 1051468 A JP1051468 A JP 1051468A JP 5146889 A JP5146889 A JP 5146889A JP H02230714 A JPH02230714 A JP H02230714A
Authority
JP
Japan
Prior art keywords
substrate
height
exposed
original plate
tilt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1051468A
Other languages
Japanese (ja)
Other versions
JP2720188B2 (en
Inventor
Hiroshi Yoshitake
吉竹 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12887772&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH02230714(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Electronics Engineering Co Ltd
Priority to JP5146889A priority Critical patent/JP2720188B2/en
Publication of JPH02230714A publication Critical patent/JPH02230714A/en
Application granted granted Critical
Publication of JP2720188B2 publication Critical patent/JP2720188B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To perform accurate parallelism adjustments by utilizing a plane equation for a substrate to be exposed, and converting the height data of the substrate which are measured with optical measuring devices into the height data at the positions of tilt mechanisms by the operation of a microprocessor. CONSTITUTION:The following coordinates are set: the X-Y coordinates on the surface of a substrate to be exposed 4 with an arbitrary position as an original point; and the Z coordinate with a projected position 1a which forms a specified gap for an original mask plate as an original point. A plane equation zr=alphaxr+betayr+gamma which expresses the substrate is operated in a microprocessor based on the X-Y coordinate values (xr, yr) of optical measuring devices 3 provided at three points and the measured data zr of the height coordinate of the substrate 1. Thus the constants alpha, beta and gamma are computed. The data of alpha, beta and gamma and the X-Y coordinate values (xs, ys) of the tilt mechanisms 5 are imparted into the equation zs=alphaxs+betays+gamma. Thus the height coordinate value zs of the substrate 1 with respect to each tilt mechanism 5 is computed. The substrate 1 is moved in the vertical direction by the distance corresponding to the height coordinate value zs computed in each tilt mechanism.

Description

【発明の詳細な説明】 [産業上の利用分升コ この発明は、半導体製造用の露光装置において、配線パ
ターンが設定されたマスク原板と被露光基板とが平行と
なるように調整する方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to a method for adjusting a mask original plate on which a wiring pattern is set and a substrate to be exposed to be parallel to each other in an exposure apparatus for semiconductor manufacturing. It is something.

[従来の技術] 半導体ICの製作においては、透明板に回路パターンを
描いたマスクを原板として、これを光学式によりウェハ
などの被露光基板に投影して複写される。
[Prior Art] In the production of semiconductor ICs, a mask in which a circuit pattern is drawn on a transparent plate is used as an original plate, and the mask is optically projected onto a substrate to be exposed such as a wafer and copied.

第3図(a).(b)は露光装置の要郎を示し図(a)
は垂直断面である。マスク原板1は適当な支持機構2に
より光学ユニット3に対して固定される。
Figure 3(a). (b) shows the main part of the exposure device, and (a)
is a vertical section. The mask original plate 1 is fixed to the optical unit 3 by a suitable support mechanism 2.

光学ユニット3にはマスク原板1の適当な3箇所に対応
して光学測定器A3a一里+ 83a−2+ C3a−
3が配設される。〜方、マスク原板1の下側に基板チャ
ック台4aを設け、この上に被露光基板4がチャックさ
れる。基板チャンク台4aに対してチルト機構ユニット
5を設け、これに基板チャック台4aを押圧する3個の
チルト機構D5a−1, E5a−2+[i’ 5a−
3を配設する。投影露光においては、マスク原板1と被
露光基板4とが微小距離Δg接近した投影位置において
両者が平行することが必嬰であり、上記の各光学測定W
A.B.Cにより基板の高さ位置を測定し、ril+定
データにより各チルト機横D,E,Fを動作させて基板
チヤ,ク台4aを上下力向に移動し、投影位置において
両者を平行させるものである。
The optical unit 3 has optical measuring instruments A3a Ichiri+ 83a-2+ C3a- corresponding to three appropriate locations on the mask original plate 1.
3 is arranged. On the other hand, a substrate chuck stand 4a is provided below the mask original plate 1, and the substrate to be exposed 4 is chucked onto this stand. A tilt mechanism unit 5 is provided for the substrate chunk table 4a, and three tilt mechanisms D5a-1 and E5a-2+[i' 5a- are provided to press the substrate chuck table 4a.
Place 3. In projection exposure, it is necessary that the mask original plate 1 and the exposed substrate 4 be parallel to each other at the projection position where they are close to each other by a minute distance Δg.
A. B. The height position of the substrate is measured by C, and each tilt machine lateral D, E, F is operated by ril + constant data to move the substrate tilting machine 4a in the vertical force direction, and make both parallel at the projection position. It is.

[解決しようとする課題コ 以Lにおいて、3箇所の光学測定nA,B,Cと、チル
ト機構D,E,Fがそれぞれ同−箇所に配設されている
ときは、光学測定器の測定データをそのまま使用して、
各チルト機構を移動させることにより両者が平行とされ
る。しかしながら、実際1二は、3個の光学測定器のう
ちには、上記の高さ測定のほかの目的、すなわちマスク
原板1と被露光基板4の甲而」一の位置合わせに兼用す
るものがあり、例えば図(b)に不すように、41リ定
7AAとCはマスク板1の両端近くの中央部に配設され
る。またチルト機構D,E,Fは基板チャソク台4aに
対してバランスの良好な抑圧をするために、例えば図(
b)に示すように配置される。これらの理由により、光
学測定器とチルト機構とは、異なった位置に配設される
ので、測定器の測定データをそのまま、チルト機構に適
用することはできない。従来においては、仁の差異を無
視して平行調整がなされているが、最近ではマスク原板
、被露光基板がともに大きくなり、かつ回路パターンが
微小化されるに従って、投影精度が劣化して良好な複写
がなされない欠点があった。そこで、測定データに対し
てなんらかの補正または変換を行って正確に平行調整を
行うことが必要となった。
[In the problem to be solved, when the three optical measurements nA, B, and C and the tilt mechanisms D, E, and F are installed at the same location, the measurement data of the optical measuring instrument Using as is,
By moving each tilt mechanism, both are made parallel. However, in reality, some of the three optical measuring instruments serve a purpose other than the above-mentioned height measurement, that is, the alignment of the mask original plate 1 and the exposed substrate 4. For example, as shown in FIG. 2B, the 41 holders 7AA and C are arranged in the center near both ends of the mask plate 1. In addition, the tilt mechanisms D, E, and F are used to suppress the substrate tilting table 4a in a well-balanced manner, for example, as shown in FIG.
b) are arranged as shown in FIG. For these reasons, the optical measuring instrument and the tilt mechanism are disposed at different positions, and therefore measurement data from the measuring instrument cannot be directly applied to the tilt mechanism. In the past, parallel adjustment was performed by ignoring the difference in grain, but recently, as both the mask original plate and the substrate to be exposed have become larger, and as circuit patterns have become smaller, projection accuracy has deteriorated and it has become difficult to achieve good results. There was a drawback that no copies were made. Therefore, it became necessary to perform some kind of correction or conversion on the measured data to accurately perform parallel adjustment.

この発明は以21二に鑑みてなされたもので、光学測定
器による測定データよりチルト機構の移動距離のデータ
を算出して正確に平行調整を行う方式を提供することを
目的とするものである。
This invention has been made in view of the above 212, and an object of the present invention is to provide a method for accurately performing parallel adjustment by calculating data on the movement distance of a tilt mechanism from measurement data by an optical measuring instrument. .

[課題を解決するための千段コ この発明は、透明板に回路パターンが設定されたマスク
原板に対面して、その下側に置かれた被露光基板に対し
て、3箇所に配設されたチルト機横により基板を上下方
向に移動してマスク原板の表面に平行させて回路パター
ンを投影露光する露光装置における、マスク原板と被露
光基板の平行調整方式であって、基板に対してXYZ座
標を設定する。チルト機構の3箇所とそれぞれ異なる3
箇所に設けられた光学測定器により481定された基板
の高さデータを、平面方程式: z=αx+βy+γ (α,β,γは定数)・・・・・
・(1) により、チルト機構の位置における基板の高さデータに
変換し、変換された高さデータによりチルト機構を移動
して、マスク原板に対して基板を平行とするものである
[Thousand Steps to Solve the Problems] This invention is arranged at three locations on a substrate to be exposed, which is placed under and facing a mask original plate on which a circuit pattern is set on a transparent plate. This is a parallel adjustment method between the mask original plate and the exposed substrate in an exposure apparatus that projects and exposes a circuit pattern by moving the substrate vertically using a horizontal tilt machine to make it parallel to the surface of the mask original plate. Set coordinates. 3 different parts of the tilt mechanism
The height data of the substrate determined by the optical measuring device installed at the location is calculated using the plane equation: z = αx + βy + γ (α, β, γ are constants)...
- According to (1), the height data of the substrate at the position of the tilt mechanism is converted, and the tilt mechanism is moved using the converted height data to make the substrate parallel to the mask original plate.

上記において、被露光基板の表面に任意の位置を原点と
するXY座標と、マスク原板に対して定のギャップをな
す投影位置を原点とするZ座標を設定する。3箇所に設
けられた光学測定器のXyPJA標値( x r + 
Y r)と、測定した基板の高さ座標の測定データzr
とより、マイクロプロセッサにより、基板を表す牢而方
程式: zr=α)(r +βyr +γ (rは3箇所の光学測定器に対するパラメータ)・・・
・・・(2) についての演算を行って定数α,βおよびγを算出シ、
α,β,γのデータと各チルト機構のXY座標値( x
 s + V s )を次式:zs=αXS+βys+
γ (Sは3箇所のチルト機構に対するパラメータ)・・・
・・・(3) に5えて各チルト機構に対する基板の高さ座標値ZSを
算出する。各チルト機構により、算出され高さ座標値Z
Sに相当する距離づつ基板を1一下方向に移動するもの
である。
In the above, an XY coordinate whose origin is an arbitrary position on the surface of the substrate to be exposed, and a Z coordinate whose origin is a projection position that forms a certain gap with respect to the mask original plate are set. The XyPJA target value of the optical measuring device installed at three locations ( x r +
Y r) and measurement data zr of the measured height coordinates of the substrate
Therefore, the microprocessor generates a prison equation representing the substrate: zr=α)(r +βyr +γ (r is a parameter for the three optical measuring instruments)...
...(2) Calculate the constants α, β, and γ by performing calculations on
α, β, γ data and XY coordinate values of each tilt mechanism (x
s + V s ) as follows: zs=αXS+βys+
γ (S is a parameter for the tilt mechanism at three locations)...
...(3) Calculate the height coordinate value ZS of the substrate for each tilt mechanism by substituting 5. The height coordinate value Z calculated by each tilt mechanism
The substrate is moved downward by a distance corresponding to S.

[作用] 第1図によりこの発明による平行調整方式の原理を説明
する。図において、被露光基板4は来而であるので、甲
而−Lの任意の点PのXY座標(Xp.yp )に対す
る高さZ座15zpは平面方程式:zp=αxp+βy
p+γ    ・・・・・・(1′)により表される。
[Operation] The principle of the parallel adjustment method according to the present invention will be explained with reference to FIG. In the figure, since the substrate 4 to be exposed is in the background, the height Z 15zp with respect to the XY coordinates (Xp.yp) of any point P on the surface L is determined by the plane equation: zp=αxp+βy
Represented by p+γ...(1').

ここで、α,βはそれぞれ平面のX1Y方向に対する傾
斜角を表す定数、γは常数である。マイクロプロセッサ
の演算処理によりこの方程式に、光学測定器の座標値(
x,V)と、測定された高さデータZを入れて定数α,
βおよびγが求められる。さらにα,βおよびγのデー
タと、チルト機構の座標値を代入れて、チルト機構の位
置における基板の高さデータかえられる。
Here, α and β are constants representing inclination angles of the plane with respect to the X1Y directions, respectively, and γ is a constant. The coordinate values of the optical measuring instrument (
x, V) and the measured height data Z to create a constant α,
β and γ are determined. Further, by substituting the data of α, β, and γ and the coordinate values of the tilt mechanism, the height data of the substrate at the position of the tilt mechanism can be changed.

マイクロプロセッサの制御により、チルト機構を移動し
て、マスク原板に対して被露光基板が平行とされる。
Under the control of the microprocessor, the tilt mechanism is moved to make the substrate to be exposed parallel to the mask original plate.

さて、式(l′)を適用する場合、XY座標の原点は任
意でよいが、Z座標の原点としてマスク原板に対して一
定のギャップをなす投影位置1aをとる。これにより、
以下に説明する高さ座標値が没影位置に対する値となり
制御に好都合となる。
Now, when formula (l') is applied, the origin of the XY coordinates may be arbitrary, but the projection position 1a that forms a certain gap with respect to the mask original plate is taken as the origin of the Z coordinate. This results in
The height coordinate value described below becomes a value for the projected position, which is convenient for control.

前記の平面方程式(2)に3箇所の光学測定器のXY座
標(xr,Yr)と高さの測定データzrとを5えて定
数α,β,γを求め、えられたα,β,γの値と、3箇
所のチルト機構のXY座標( X S +ys)を前記
の式(3)に与えて基板に対する各チルト機構の高さの
座標値ZSが求められる。チルト機構により基板をこの
ZSに相当する距離づつーl−下方向に移動すると、基
板は投影位置(z=0)に停止してマスク原板に平行と
される。
Add the XY coordinates (xr, Yr) of the three optical measuring instruments and the height measurement data zr to the plane equation (2) above to obtain the constants α, β, and γ, and the obtained α, β, and γ and the XY coordinates (X S +ys) of the three tilt mechanisms to the above equation (3) to determine the coordinate value ZS of the height of each tilt mechanism with respect to the substrate. When the substrate is moved downward by a distance corresponding to ZS by the tilt mechanism, the substrate stops at the projection position (z=0) and becomes parallel to the mask original plate.

[実施例コ 第2図(a ) , (b ) , (c )は、この
発明によるマスク原板と被露光基板の平行調整力式の実
施例を示すもので、図(a)において、被露光基板4の
任意の点POを原点とするXY座標を設定し、また図(
b)のように、マスク原板1に対して一定のギャップを
なす投影位置1aを原点とするZ座標を設定する。3個
の各光学測定3A,B,Cの中心位置をそれぞれpa 
+ pb + p cとし、各中心位置の座標pa(x
a+ya)などは予め計a1する。計測された座標値と
、各光学測定器により測定された基板の高さデータZa
などを前記の式(2)に代入して定数α,βおよびγを
算出する。α,β,γと、各チルト機横D.E.Fの中
心位置pdll)elpfに対する座標pd(xd,Y
d )などを前記の式(3)に代入することにより、図
(C)に示す各チルト機構の投影位置に対する高さ座標
値zdなどが算出される。各チルト機構により,基板チ
ャック台4aを算出されたZdなどの距離づつ1ユド方
向に移動して被露光基板4を投影位置1aに停1[ユシ
、マスク板1に対して平行とされる。
[Example 2] Figures 2 (a), (b), and (c) show an example of the parallel adjustment force type for the mask original plate and the exposed substrate according to the present invention. Set the XY coordinates with an arbitrary point PO on the board 4 as the origin, and also
As shown in b), the Z coordinate is set with the projection position 1a forming a constant gap with respect to the mask original plate 1 as the origin. The center position of each of the three optical measurements 3A, B, C is pa
+ pb + p c, and the coordinates pa(x
a+ya) etc., the total is a1 in advance. Measured coordinate values and substrate height data Za measured by each optical measuring device
The constants α, β, and γ are calculated by substituting the above equation (2). α, β, γ and each tilt machine side D. E. Coordinates pd(xd, Y
By substituting d) etc. into the above equation (3), the height coordinate value zd etc. for the projected position of each tilt mechanism shown in Figure (C) are calculated. Each tilt mechanism moves the substrate chuck table 4a in one direction by a distance such as the calculated distance Zd, and the exposed substrate 4 is stopped at the projection position 1a, parallel to the mask plate 1.

以−1−における各式(2),(3)に対する演算と、
各チルト機構の駆動制御はすべてマイクロプロセッサに
より行われるもので、ここでは詳細説明を省略する。
Calculations for each equation (2) and (3) in below-1-,
Drive control of each tilt mechanism is all performed by a microprocessor, and detailed explanation will be omitted here.

[発明の効果コ 以上の説明により明らかなように、この発明によるマス
ク原板と被露光基板の平行調整方式においては、被露光
基板に対する平面方程式を利用して、マイクロプロセッ
サの演算処理により、光学測定器により測定した基板の
高さデータをチルト機構の位置における高さデータに変
換し、チルト機構により被露光基板を移動して投影位置
においてマスク原板に対して平行とするもので、それぞ
れ任意の位置に配設された光学測定器とチルト機構に適
用するこができ、半導体ICなどの高精度の露光装置に
大きく寄与するものである。
[Effects of the Invention] As is clear from the above explanation, in the parallel adjustment method of the mask original plate and the exposed substrate according to the present invention, optical measurement is performed by using a plane equation for the exposed substrate and by arithmetic processing by a microprocessor. The height data of the substrate measured by the device is converted to the height data at the position of the tilt mechanism, and the tilt mechanism moves the exposed substrate so that it is parallel to the mask original plate at the projection position. The present invention can be applied to optical measuring instruments and tilt mechanisms disposed in semiconductor ICs, and greatly contributes to high-precision exposure devices such as semiconductor ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明によるマスク原板と被露光基板の平
行調整方式に対する作用説明図、第2図(a),(b)
および(C)は、この発明によるマスク原板と被露光基
板の平行114整方式の実施例に対する説明図、第3図
(a)および(b)は、露光装置における光学測定器と
チルト機構の配列と動作の説明図である。 1・・・マスク原板、    1a・・・投影位置、2
・・・支持機構、     3・・・光学ユニソト、3
a− 1・・・光学測定器A13a−2・・・光学測定
器B13a−3・・・光学測定器C,  4・・・被露
光基板、4a・・・基板チャソク台、5・・・チルトユ
ニット、5a−1・・・チルトa構1),  5a−2
・・・チルト機構E15a−3・・・チルト機横F0
FIG. 1 is an explanatory diagram of the effect of the parallel adjustment method of the mask original plate and the exposed substrate according to the present invention, and FIGS. 2(a) and (b)
3(C) is an explanatory diagram of an embodiment of the parallel 114 alignment method of the mask original plate and the substrate to be exposed according to the present invention, and FIGS. 3(a) and 3(b) are the arrangement of the optical measuring device and the tilt mechanism in the exposure apparatus. and is an explanatory diagram of the operation. 1...Mask original plate, 1a...Projection position, 2
...Support mechanism, 3...Optical UniSoto, 3
a- 1... Optical measuring instrument A13a-2... Optical measuring instrument B13a-3... Optical measuring instrument C, 4... Substrate to be exposed, 4a... Substrate swing stand, 5... Tilt Unit, 5a-1...Tilt a structure 1), 5a-2
...Tilt mechanism E15a-3...Tilt machine side F0

Claims (2)

【特許請求の範囲】[Claims] (1)透明板に回路パターンが設定されたマスク原板に
対面して下側に置かれた被露光基板に対して、3箇所に
配設されたチルト機構により、該基板を上下方向に移動
して上記マスク原板の表面に平行させて上記回路パター
ンを投影露光する露光装置において、該基板に対してX
YZ座標を設定し、上記チルト機構の3箇所とそれぞれ
異なる3箇所に設けられた光学測定器により測定された
該基板の高さデータを、平面方程式: z=αx+βy+γ(α、β、γは定数) により、上記チルト機構の位置における該基板の高さデ
ータに変換し、該変換された高さデータにより上記チル
ト機構を移動して、上記マスク原板に対して該基板を平
行とすることを特徴とする、マスク原板と被露光基板の
平行調整方式。
(1) A substrate to be exposed is placed on the lower side facing a mask original plate on which a circuit pattern is set on a transparent plate, and the substrate is moved vertically using tilt mechanisms arranged at three locations. In an exposure apparatus that projects and exposes the circuit pattern parallel to the surface of the mask original plate,
The YZ coordinates are set, and the height data of the substrate measured by optical measuring instruments installed at three different locations than the three locations of the above-mentioned tilt mechanism is calculated using the plane equation: z = αx + βy + γ (α, β, γ are constants) ) is converted into height data of the substrate at the position of the tilt mechanism, and the tilt mechanism is moved based on the converted height data to make the substrate parallel to the mask original plate. A parallel adjustment method for the mask original plate and the exposed substrate.
(2)上記において、上記被露光基板の表面に任意の位
置を原点とするXY座標と、上記マスク原板と一定のギ
ャップをなす投影位置を原点とするZ座標を設定し、上
記3箇所に設けられた光学測定器のXY座標値(xr、
yr)と、該光学測定器により測定した該基板の高さ座
標の測定データzrとより、マイクロプロセッサにより
、該基板を表す平面方程式: zr=αxr+βyr+γ (rは3箇所の光学測定器に対するパラメータ)につい
ての演算を行って該定数α、βおよびγを算出し、該α
、β、γのデータと上記各チルト機構のXY座標値(x
s、ys)を次式: zs=αxs+βys+γ (sは3箇所のチルト機構に対するパラメータ)に与え
て上記各チルト機構における該基板の高さ座標値zsを
算出し、上記各チルト機構により、該算出された高さ座
標値zsに相当する距離づつ該基板を上下方向に移動す
る、請求項1記載のマスク原板と被露光基板の平行調整
方式。
(2) In the above, an XY coordinate whose origin is an arbitrary position on the surface of the exposed substrate and a Z coordinate whose origin is a projection position that forms a certain gap with the mask original plate are set, and The XY coordinate values (xr,
yr) and measurement data zr of the height coordinates of the substrate measured by the optical measuring device, a microprocessor generates a plane equation representing the substrate: zr=αxr+βyr+γ (r is a parameter for the optical measuring device at three locations) The constants α, β, and γ are calculated by calculating the constants α, β, and γ.
, β, γ data and the XY coordinate values (x
s, ys) to the following formula: zs = αxs + βys + γ (s is a parameter for the three tilt mechanisms) to calculate the height coordinate value zs of the substrate in each of the above tilt mechanisms, and by each of the above tilt mechanisms, the calculation 2. A parallel adjustment method for a mask original plate and a substrate to be exposed according to claim 1, wherein the substrate is moved vertically by a distance corresponding to the height coordinate value zs.
JP5146889A 1989-03-03 1989-03-03 Parallel adjustment method of mask original plate and substrate to be exposed Expired - Lifetime JP2720188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146889A JP2720188B2 (en) 1989-03-03 1989-03-03 Parallel adjustment method of mask original plate and substrate to be exposed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146889A JP2720188B2 (en) 1989-03-03 1989-03-03 Parallel adjustment method of mask original plate and substrate to be exposed

Publications (2)

Publication Number Publication Date
JPH02230714A true JPH02230714A (en) 1990-09-13
JP2720188B2 JP2720188B2 (en) 1998-02-25

Family

ID=12887772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146889A Expired - Lifetime JP2720188B2 (en) 1989-03-03 1989-03-03 Parallel adjustment method of mask original plate and substrate to be exposed

Country Status (1)

Country Link
JP (1) JP2720188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164595A (en) * 2010-01-14 2011-08-25 Nsk Ltd Proximity exposing device and proximity exposure method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637426A (en) * 1986-06-27 1988-01-13 Hitachi Constr Mach Co Ltd Vibration suppressor for working machine
JPS6312594A (en) * 1986-07-03 1988-01-19 日立建機株式会社 Vibration damper for working machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637426A (en) * 1986-06-27 1988-01-13 Hitachi Constr Mach Co Ltd Vibration suppressor for working machine
JPS6312594A (en) * 1986-07-03 1988-01-19 日立建機株式会社 Vibration damper for working machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164595A (en) * 2010-01-14 2011-08-25 Nsk Ltd Proximity exposing device and proximity exposure method

Also Published As

Publication number Publication date
JP2720188B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
TWI581068B (en) Lithographic apparatus, device manufacturing method, and method of applying a pattern to a substrate
TWI714048B (en) Substrate carrier, method of patterning a plurality of substrates and processing system
US20190226831A1 (en) Optical measurement device and method
JPH0845814A (en) Exposure device and positioning method
CN105807576B (en) The method of exposure device and manufacturing equipment
CN109916342A (en) A kind of locating platform straight line degree measurement system and method
KR100237941B1 (en) Exposure apparatus and method of exposing wafer to the light
TWI652551B (en) Optical measuring device and method
JP2646412B2 (en) Exposure equipment
CN104678714B (en) Positioning device, lithographic equipment and article manufacturing method
KR20200115379A (en) Optical measurement apparatus and method
JP3348918B2 (en) Alignment method, exposure method using the method, and device manufacturing method
CN108037647A (en) A kind of Proximity stepper real-time leveling system and leveling method
EP1677985A1 (en) Pattern generating apparatus and an apparatus for measuring the physical properties of the surface
JP3289264B2 (en) Alignment method and apparatus, exposure method and apparatus, and device manufacturing method
JPH02230714A (en) Parallelism adjusting system of original mask plate and substrate to be exposed
CN107024185A (en) A kind of basal surface type measuring method and measurement apparatus
JP2012133122A (en) Proximity exposing device and gap measuring method therefor
JP2860857B2 (en) Substrate exposure equipment
KR102282153B1 (en) Lithography machine, vertical control method and exposure method for lithography machine
JPH04140691A (en) Positioner
CN106527052A (en) Lithography apparatus, pattern forming method, and method for manufacturing product
JP3387072B2 (en) Exposure method and apparatus, and element manufacturing method
JP3472553B2 (en) Gap adjusting device and adjusting method
JPS60123028A (en) Exposing device