JPH0223007B2 - - Google Patents
Info
- Publication number
- JPH0223007B2 JPH0223007B2 JP58139406A JP13940683A JPH0223007B2 JP H0223007 B2 JPH0223007 B2 JP H0223007B2 JP 58139406 A JP58139406 A JP 58139406A JP 13940683 A JP13940683 A JP 13940683A JP H0223007 B2 JPH0223007 B2 JP H0223007B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- oxide
- mol
- resistor
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 116
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 51
- 239000011787 zinc oxide Substances 0.000 claims description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 21
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 17
- 239000002253 acid Substances 0.000 claims description 16
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 15
- 238000005530 etching Methods 0.000 claims description 12
- 229910052810 boron oxide Inorganic materials 0.000 claims description 10
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 10
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 10
- 239000004110 Zinc silicate Substances 0.000 claims description 9
- 239000000919 ceramic Substances 0.000 claims description 9
- KUJOABUXCGVGIY-UHFFFAOYSA-N lithium zinc Chemical compound [Li].[Zn] KUJOABUXCGVGIY-UHFFFAOYSA-N 0.000 claims description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 9
- 235000019352 zinc silicate Nutrition 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 claims description 3
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 20
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 16
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 11
- 229910017604 nitric acid Inorganic materials 0.000 description 11
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 9
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910018068 Li 2 O Inorganic materials 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 229910000416 bismuth oxide Inorganic materials 0.000 description 5
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- KAGOZRSGIYZEKW-UHFFFAOYSA-N cobalt(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Co+3].[Co+3] KAGOZRSGIYZEKW-UHFFFAOYSA-N 0.000 description 4
- 229910000480 nickel oxide Inorganic materials 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 3
- 239000002196 Pyroceram Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910004283 SiO 4 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- GHPGOEFPKIHBNM-UHFFFAOYSA-N antimony(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Sb+3].[Sb+3] GHPGOEFPKIHBNM-UHFFFAOYSA-N 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 2
- 229910052912 lithium silicate Inorganic materials 0.000 description 2
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000005368 silicate glass Substances 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910008659 Li2O—SiO2—B2O3 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910020410 SiO2—B2O3—PbO Inorganic materials 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- GUTLYIVDDKVIGB-YPZZEJLDSA-N cobalt-57 Chemical compound [57Co] GUTLYIVDDKVIGB-YPZZEJLDSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 oxygen ions Chemical class 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Glass Compositions (AREA)
- Thermistors And Varistors (AREA)
Description
〔発明の利用分野〕
本発明はアレスタやサージアブソーバなどに使
用できる酸化亜鉛を主成分とした焼結体から成る
電圧非直線抵抗体及びその製法に関する。
〔発明の背景〕
酸化亜鉛系の電圧非直線抵抗体は一般に良く知
られているセラミツクス焼結技術で製造される。
その概要は酸化亜鉛(ZnO)粉末を主成分とし
て、それに酸化ビスマス(Bi2O3)、酸化アンチ
モン(Sb2O3)、酸化コバルト(Co2O3)、酸化マ
ンガン(MnO2)、酸化クロム(Cr2O3)、酸化ケ
イ素(SiO2)、酸化ホウ素(B2O3)、酸化アルミ
ニウム(Al2O3)などを加え十分に混合し、これ
に水及びポリビニルアルコールなど適当なバイン
ダを加えて造粒して成形する。焼成は電気炉を用
いて1000〜1300℃の温度で行う。焼成した抵抗体
は沿面放電防止の目的で抵抗体の側面にホウケイ
酸鉛系の低融点ガラス膜を400〜900℃で焼付けた
後、電極を形成する両端面を所定の厚さに研磨調
整し、溶射又は焼付け法によつて電極を形成して
電圧非直線抵抗体としている。また、ガラスとし
て軟化点が350〜650℃の鉛ガラスに耐火物の充て
ん物を混合したものを用いた例も知られている。
しかし、この方法で得られた抵抗体には次のよ
うな欠点である。第1にはガラスを400〜900℃の
温度で焼付けると抵抗体の非直線係数がガラス焼
付け前に比べ小さくなるという欠点がある。第2
には用いるガラスの耐湿性が悪いために、高湿度
中での使用時や電極形成前のエツチング処理時に
ガラスが変質したり、侵食されたり、あるいはア
レスタのように窒素中に封入して使用されると、
コロナ放電により生成する硝酸ガスによつてガラ
スが侵されて抵抗体の沿面耐圧が低下するという
欠点がある。
〔発明の目的〕
本発明は上記にかんがみてなされたものであ
り、その目的は、非直線係数及び沿面耐圧など特
性の安定な電圧非直線抵抗体及びその製法を提供
することにある。
〔発明の概要〕
本発明を概説すれば、本発明の第1の発明は電
圧非直線抵抗体の発明であつて、酸化亜鉛を主成
分とした焼結体の少なくとも側面にセラミツクス
高抵抗層を介し、又は介することなく、ガラス層
が形成され、かつ焼結体上下両端面に電極が形成
された電圧非直線抵抗体において、上記ガラス層
が以下の成分:
酸化リチウム(Li2O):10〜30モル%
酸化ケイ素(SiO2):50〜70モル%
酸化亜鉛(ZnO):5〜15モル%
酸化ホウ素(B2O3):0〜10モル%
酸化アルミニウム(Al2O3):0〜5モル%
を含むリチウムケイ酸亜鉛系ガラスであることを
特徴とする。
そして、本発明の第2の発明は前記電圧非直線
抵抗体の一例の製法の発明であつて、酸化亜鉛を
主成分とする焼結体の側面にセラミツクス高抵抗
層を形成し、かつその上に酸化リチウム10〜30モ
ル%、酸化ケイ素50〜70モル%、酸化亜鉛5〜15
モル%、酸化ホウ素0〜10モル%、酸化アルミニ
ウム0〜5モル%を含有するリチウムケイ酸亜鉛
系ガラス成分と結合剤とから成るペーストを塗布
する工程、酸素含有ガス雰囲気中において950℃
以上で前記焼結体の焼成温度よりも低く、かつガ
ラスの軟化温度より100〜200℃高い温度で焼付け
てガラス層を形成する工程、及び前記焼結体の両
端面に電極を形成する工程の各工程を包含するこ
とを特徴とする。
第1図に、本発明の電圧非直線抵抗体の一例の
構造を断面概略図として示した。第1図中1は焼
結体、2はガラス層、3は電極を意味する。ま
た、第2図は電圧非直線抵抗体の熱処理温度(横
軸)(℃)と非直線係数の変化率(縦軸)(%)と
の関係を示すグラフである。第2図中Aは大気中
で各温度1時間、Bは酸素雰囲気中で各温度1時
間熱処理を行つたグラフである。
本発明者等が種種検討した結果、(1)第2図に見
られるように、焼成後の抵抗体を熱処理した場合
500〜900℃の温度範囲では抵抗体の非直線係数が
低下するが950℃以上では熱処理前とほゞ同じか
逆に大きくなること。(2)抵抗体と電極との密着性
を良くするためには、研磨後の抵抗体表面を塩酸
や硝酸などの酸でエツチングすれば良い。このた
めには側面コーテイング用ガラスとして耐酸性の
良いものを用いる必要があること。(3)一般にリチ
ウムケイ酸系ガラスの耐酸性はガラス中のSiO2
やLi2Oをある程度増し、Li2O・SiO2、Li2O・
2SiO2なる結晶をもつガラスにすることによつて
大きくなる。ガラスの組成は酸化ケイ素50〜70モ
ル%、酸化リチウム10〜30モル%あればそのエツ
チング液に対する耐腐食性は実用上問題がないこ
と。(4)焼付け温度が950℃以上の高融点リチウム
ケイ酸系ガラスの熱膨脹係数は一般に抵抗体より
も大きいが、該ガラスに酸化亜鉛を5〜15モル%
加えたガラスであれば熱膨脹係数が小さくなるこ
とがわかつた。
また、ガラス中のLi2Oは焼付時に焼結体中に
拡散して拡散部を高抵抗化にすると共に、焼結体
とガラスとの密着性を増し、得られる電圧非直線
抵抗体の沿面耐圧を特に大きくするに効果があ
る。更にガラス中のSiO2はガラスの耐湿性、耐
酸性を増し、電圧非直線抵抗体の沿面耐圧を大き
く保つために効果がある。
500〜900℃の温度で熱処理すると抵抗体中の
Bi2O3相が相変化し、非直線係数が低下し、
Bi2O3の融点(830℃)以上では焼成後と同一の
相が形成されて非直線係数が低下しないものと推
定される。
また、酸素中で熱処理すると、酸化亜鉛結晶の
粒子表面に多量の酸素イオンが吸着され非直線係
数が大きくなる。なお、ガラス焼付け温度として
はガラスの軟化温度より100〜200℃程度高い温度
が適当である。
すなわち、ガラス焼付け温度はこれよりも低い
とガラス状にならず、高いと焼付け中にガラスが
流れて均一な厚さのガラス膜を得ることができな
い。
また、本発明の抵抗体においては、ガラスの耐
酸性が優れていることを述べたが、アレスタのよ
うに抵抗体を窒素雰囲気中に封入して使用する際
には、コロナが発生して生成される硝酸によりエ
ツチングされる恐れがなく、特性が安定である。
本発明の電圧非直線抵抗体は主成分の酸化亜鉛
に、各各0.01〜10モル%の酸化ビスマス及び酸化
マンガンを加え、更に望ましくは各各0.002〜5
モル%の酸化アンモチン、酸化コバルト、酸化ク
ロム、酸化ホウ素、酸化ケイ素、酸化アルミニウ
ムなどを加えて1000〜1300℃で焼成し、耐酸性の
リチウムケイ酸亜鉛系ガラス粉を抵抗体の側面に
塗布し、950〜1250℃の温度で熱処理してガラス
を被覆せしめ、抵抗体の両端面を所定の厚さに研
磨した後、好ましくは研磨面を塩酸や硝酸液でエ
ツチングし、その後に電極を形成して得られる。
ここで、ガラスを電極形成後に被覆すると電極が
ガラス焼付時に酸化されて良くない。また、ガラ
ス焼付け温度が1300℃超になるとガラスと焼結体
とが激しく反応してガラス成分が焼結体内部へ多
量に拡散し、抵抗体の特性を損うため好ましくな
い。
本発明に使用するガラスとしては次の点が重要
である。すなわち、第1には抵抗体本来の特性を
劣化させないために、抵抗体に950〜1250℃の高
温でガラスを焼付ける必要があり、高融点ガラス
であること。第2には電極−抵抗体の密着性を良
くするために、抵抗体にガラスを焼付けた後に塩
酸や硝酸などを用いてエツチングできることが望
ましい。窒素雰囲気中に封入した抵抗体の沿面せ
ん絡を防止するために耐酸性ガラスであることが
要求される。また、沿面せん絡を防止するために
はガラス膜の厚さを約30μm以上にする必要があ
り、抵抗体とガラスとの熱膨脹係数が近いことが
望ましい。酸化亜鉛系抵抗体の熱膨脹係数は50〜
70×10-7/℃であるため、ガラスの熱膨張係数は
40〜80×10-7/℃の範囲が特に好ましい。熱膨張
係数に大きな差があると、ガラス焼付け時の冷却
する間に亀裂が生じ、大電流通電時に対する安定
性や沿面せん絡防止に十分な効果をあげることが
できない。これらの亀裂を防止するためには、ガ
ラスが結晶化ガラスであることが特に望ましい。
本発明のリチウムケイ酸亜鉛系ガラスの主な組
成としては酸化リチウムが10〜30モル%、酸化ケ
イ素が50〜70モル%、酸化亜鉛が5〜15モル%、
酸化ホウ素が0〜10モル%、酸化アルミニウム0
〜5モル%の範囲であることが望ましい。酸化亜
鉛はこの範囲より少ないと、ガラスの熱膨脹係数
が80×10-7/℃より大きくなる。また、酸化亜鉛
がこの範囲より多いと熱膨脹係数は40×10-7/℃
より小さくなる。一方、酸化ホウ素はガラスの粘
性を低下させ、抵抗体のぬれ性が良くなる。しか
し、酸化ホウ素の量が多すぎると耐湿性が悪くな
り、特に好ましい組成は3〜10モル%である。酸
化アルミニウムの添加はガラスの分相化を防止す
るために有効である。
本発明のガラスは10〜30モル%の酸化リチウ
ム、50〜70モル%の酸化ケイ素を含有すること
が、ガラスの耐酸性及び機械的強度の向上の上で
特に望ましい。酸化リチウム、酸化ケイ素の含有
されたガラスは焼付け時に結晶化ガラスになつ
て、ガラス層の強度を高め、ガラス層の亀裂が防
止でき電圧非直線抵抗体の耐量が向上する。酸化
リチウム、酸化ケイ素が上記範囲より多くても、
少なくてもこの効果は十分でなくなる。
したがつて、本発明のリチウムケイ酸亜鉛系ガ
ラスの主な組成としては酸化リチウムが10〜20モ
ル%、酸化ケイ素が60〜70モル%、酸化亜鉛が5
〜10モル%、酸化ホウ素が6〜10モル%、酸化ア
ルミニウム2〜4モル%の範囲であることが特に
望ましい。
第3図は、本発明の電圧非直線抵抗体の一例の
構造を示す断面概略図である。第3図において、
符号1〜3は第1図と同義であり、4はセラミツ
クス高抵抗層を意味する。第3図に示すようにガ
ラス層と焼結体との界面にZn7Sb2O12やZn2SiO4
などから成る高抵抗酸化物層を設けて、ガラス層
と焼結体との密着性を更に良くしても良い。更
に、ガラス層は電極の設けられた上下面の一部を
被覆しても良いことは言うまでもない。
〔発明の実施例〕
次に本発明を実施例により更に詳細に説明する
が、本発明はこれに限定されない。
実施例 1
主成分として酸化亜鉛7630gに対し、添加物と
して酸化ビスマス(Bi2O3)325g、酸化コバル
ト(Co2O3)166g、酸化マンガン(MnO)57
g、酸化アンモチン(Sb2O3)292g、酸化クロ
ム(Cr2O3)76g、酸化ニツケル(NiO)75g、
酸化ケイ素(SiO2)90g、酸化ホウ素(B2O3)
30g、硝酸アルミニウム{Al(NO3)2・9H2O}
1.5gを正確に秤量し、ボールミルで12時間湿式
混合する。混合粉は乾燥した後造粒し、20mmφ×
10mmに成形する。成形体は大気中で1250℃、3時
間保持して焼成した。
別に高融点結晶化ガラスで、かつ耐酸性の良い
パイロセラム9606(Li2O−SiO2系ガラス、米国コ
ーニング社製)粉をエチルセルロース・トリクロ
ロエチレン溶液に懸濁しておき、これを焼成した
抵抗体の側面に厚さ50〜300μmになるように筆
塗り又は浸漬方式で塗布した。これを大気中1050
℃で30分間熱処理した。このときの昇・降温速度
は30℃/時である。ガラスを被覆した抵抗体はそ
の両端面をラツプマスタで約0.5mmずつ研磨し、
洗浄した。洗浄した抵抗体はAl溶射電極を形全
した。この発明品と従来品(SiO2−B2O3−PbO
系ガラス、650℃の低温で焼付け品)との非直線
係数を比較すると第1表となる。
[Field of Application of the Invention] The present invention relates to a voltage nonlinear resistor made of a sintered body mainly composed of zinc oxide, which can be used for arresters, surge absorbers, etc., and a method for manufacturing the same. BACKGROUND OF THE INVENTION Zinc oxide-based voltage nonlinear resistors are manufactured using generally well-known ceramic sintering techniques.
The main component is zinc oxide (ZnO) powder, and it also contains bismuth oxide (Bi 2 O 3 ), antimony oxide (Sb 2 O 3 ), cobalt oxide (Co 2 O 3 ), manganese oxide (MnO 2 ), and oxide. Chromium (Cr 2 O 3 ), silicon oxide (SiO 2 ), boron oxide (B 2 O 3 ), aluminum oxide (Al 2 O 3 ), etc. are added and mixed thoroughly, followed by water and a suitable binder such as polyvinyl alcohol. is added, granulated and molded. Firing is performed at a temperature of 1000 to 1300°C using an electric furnace. For the fired resistor, a lead borosilicate glass film with a low melting point is baked on the side surface of the resistor at 400 to 900℃ for the purpose of preventing creeping discharge, and then both end faces, where electrodes will be formed, are polished to a predetermined thickness. The electrodes are formed by thermal spraying or baking to form a voltage nonlinear resistor. Furthermore, an example is known in which lead glass having a softening point of 350 to 650° C. is mixed with a refractory filler as the glass. However, the resistor obtained by this method has the following drawbacks. First, there is a drawback that when the glass is baked at a temperature of 400 to 900°C, the nonlinear coefficient of the resistor becomes smaller than before the glass is baked. Second
Due to the poor moisture resistance of the glass used in these devices, the glass may deteriorate or erode when used in high humidity or during etching treatment before forming electrodes, or may be sealed in nitrogen as in arresters. Then,
The drawback is that the glass is corroded by the nitric acid gas generated by corona discharge, reducing the creeping withstand voltage of the resistor. [Object of the Invention] The present invention has been made in view of the above, and its object is to provide a voltage nonlinear resistor with stable characteristics such as nonlinear coefficient and creepage breakdown voltage, and a method for manufacturing the same. [Summary of the Invention] To summarize the present invention, the first invention of the present invention is an invention of a voltage nonlinear resistor, which comprises a ceramic high-resistance layer on at least the side surface of a sintered body mainly composed of zinc oxide. In a voltage nonlinear resistor in which a glass layer is formed with or without intervening and electrodes are formed on both the upper and lower end surfaces of the sintered body, the glass layer contains the following components: Lithium oxide (Li 2 O): 10 ~30 mol% Silicon oxide ( SiO2 ): 50-70 mol% Zinc oxide (ZnO): 5-15 mol% Boron oxide ( B2O3 ) : 0-10 mol% Aluminum oxide ( Al2O3 ): It is characterized by being a lithium zinc silicate glass containing 0 to 5 mol%. The second invention of the present invention is an invention of a method for manufacturing an example of the voltage nonlinear resistor, which comprises forming a ceramic high resistance layer on the side surface of a sintered body mainly composed of zinc oxide, and Lithium oxide 10-30 mol%, silicon oxide 50-70 mol%, zinc oxide 5-15
A step of applying a paste consisting of a lithium zinc silicate glass component containing mol%, boron oxide 0 to 10 mol%, and aluminum oxide 0 to 5 mol% and a binder, at 950°C in an oxygen-containing gas atmosphere.
The steps of forming a glass layer by baking at a temperature lower than the firing temperature of the sintered body and 100 to 200°C higher than the softening temperature of glass, and forming electrodes on both end surfaces of the sintered body are explained above. It is characterized by including each step. FIG. 1 shows the structure of an example of the voltage nonlinear resistor of the present invention as a schematic cross-sectional view. In FIG. 1, 1 means a sintered body, 2 means a glass layer, and 3 means an electrode. Further, FIG. 2 is a graph showing the relationship between the heat treatment temperature (horizontal axis) (° C.) of the voltage nonlinear resistor and the rate of change of the nonlinear coefficient (vertical axis) (%). In FIG. 2, A is a graph in which heat treatment was performed in the air for 1 hour at each temperature, and B is a graph in which heat treatment was performed in an oxygen atmosphere for 1 hour at each temperature. As a result of various studies conducted by the inventors, (1) As shown in Fig. 2, when the resistor is heat-treated after firing,
In the temperature range of 500 to 900°C, the nonlinear coefficient of the resistor decreases, but at temperatures above 950°C, it becomes almost the same as before heat treatment, or even increases. (2) In order to improve the adhesion between the resistor and the electrode, the surface of the resistor after polishing may be etched with an acid such as hydrochloric acid or nitric acid. For this purpose, it is necessary to use a glass with good acid resistance for side coating. (3) Generally, the acid resistance of lithium silicate glass is due to the SiO 2 in the glass.
and Li 2 O to some extent, Li 2 O・SiO 2 , Li 2 O・
It can be made larger by using glass with 2SiO 2 crystals. If the composition of the glass is 50 to 70 mol% silicon oxide and 10 to 30 mol% lithium oxide, there will be no practical problem in corrosion resistance to the etching solution. (4) The coefficient of thermal expansion of high melting point lithium silicate glass with a baking temperature of 950°C or higher is generally larger than that of the resistor, but zinc oxide is added to the glass by 5 to 15 mol%.
It was found that the coefficient of thermal expansion becomes smaller if the added glass is used. In addition, Li 2 O in the glass diffuses into the sintered body during baking, making the diffusion part high in resistance, increasing the adhesion between the sintered body and the glass, and reducing the creepage of the resulting voltage nonlinear resistor. It is particularly effective in increasing the withstand voltage. Furthermore, SiO 2 in the glass increases the moisture resistance and acid resistance of the glass, and is effective in maintaining a high creepage withstand voltage of the voltage nonlinear resistor. When heat treated at a temperature of 500 to 900℃, the
The Bi 2 O 3 phase undergoes a phase change, the nonlinear coefficient decreases,
It is presumed that at temperatures above the melting point of Bi 2 O 3 (830°C), the same phase as that after firing is formed and the nonlinear coefficient does not decrease. Furthermore, when heat treated in oxygen, a large amount of oxygen ions are adsorbed on the particle surface of the zinc oxide crystal, increasing the nonlinear coefficient. The glass baking temperature is preferably about 100 to 200°C higher than the softening temperature of the glass. That is, if the glass baking temperature is lower than this, it will not become glassy, and if it is higher than this, the glass will flow during baking, making it impossible to obtain a glass film of uniform thickness. In addition, in the resistor of the present invention, it has been mentioned that the glass has excellent acid resistance, but when the resistor is used in a nitrogen atmosphere such as in an arrester, corona is generated and generated. There is no risk of being etched by nitric acid, and the properties are stable. In the voltage nonlinear resistor of the present invention, bismuth oxide and manganese oxide are added in an amount of 0.01 to 10 mol % each to zinc oxide as the main component, and preferably 0.002 to 5 mol % each of each.
After adding mol% of ammothine oxide, cobalt oxide, chromium oxide, boron oxide, silicon oxide, aluminum oxide, etc., it is fired at 1000 to 1300℃, and acid-resistant lithium zinc silicate glass powder is applied to the side of the resistor. After heat-treating at a temperature of 950 to 1250°C to coat the resistor with glass, polishing both end faces of the resistor to a predetermined thickness, preferably etching the polished surfaces with hydrochloric acid or nitric acid, and then forming electrodes. can be obtained.
Here, if the glass is coated after the electrode is formed, the electrode will be oxidized during glass baking, which is not good. Furthermore, if the glass baking temperature exceeds 1300° C., the glass and the sintered body will react violently, and a large amount of glass components will diffuse into the sintered body, which will impair the characteristics of the resistor, which is not preferable. The following points are important regarding the glass used in the present invention. That is, firstly, in order not to deteriorate the original characteristics of the resistor, it is necessary to bake the glass on the resistor at a high temperature of 950 to 1250 degrees Celsius, and it must be a high melting point glass. Secondly, in order to improve the adhesion between the electrode and the resistor, it is desirable that the glass can be etched using hydrochloric acid, nitric acid, etc. after baking the resistor. Acid-resistant glass is required to prevent surface creepage of a resistor sealed in a nitrogen atmosphere. Furthermore, in order to prevent creepage, the thickness of the glass film must be approximately 30 μm or more, and it is desirable that the coefficients of thermal expansion of the resistor and the glass be similar. The thermal expansion coefficient of zinc oxide resistor is 50~
Since it is 70×10 -7 /℃, the coefficient of thermal expansion of glass is
A range of 40 to 80×10 −7 /°C is particularly preferred. If there is a large difference in the coefficient of thermal expansion, cracks will occur during cooling during glass baking, making it impossible to achieve sufficient stability when applying a large current or prevent creepage. In order to prevent these cracks, it is particularly desirable that the glass be crystallized glass. The main composition of the lithium zinc silicate glass of the present invention is 10 to 30 mol% of lithium oxide, 50 to 70 mol% of silicon oxide, 5 to 15 mol% of zinc oxide,
0-10 mol% boron oxide, 0 aluminum oxide
It is desirable that the content be in the range of ~5 mol%. If the amount of zinc oxide is less than this range, the coefficient of thermal expansion of the glass will be greater than 80×10 -7 /°C. Furthermore, if the amount of zinc oxide is higher than this range, the coefficient of thermal expansion will be 40×10 -7 /°C.
become smaller. On the other hand, boron oxide reduces the viscosity of the glass and improves the wettability of the resistor. However, if the amount of boron oxide is too large, the moisture resistance will deteriorate, and a particularly preferable composition is 3 to 10 mol%. Addition of aluminum oxide is effective in preventing phase separation of glass. It is particularly desirable for the glass of the present invention to contain 10 to 30 mol% of lithium oxide and 50 to 70 mol% of silicon oxide in order to improve the acid resistance and mechanical strength of the glass. Glass containing lithium oxide and silicon oxide turns into crystallized glass during baking, increases the strength of the glass layer, prevents cracks in the glass layer, and improves the durability of the voltage nonlinear resistor. Even if lithium oxide and silicon oxide are more than the above range,
At least this effect will not be sufficient. Therefore, the main composition of the lithium zinc silicate glass of the present invention is 10 to 20 mol% of lithium oxide, 60 to 70 mol% of silicon oxide, and 5 to 5 mol% of zinc oxide.
Particularly desirable ranges are from 6 to 10 mol% of boron oxide and 2 to 4 mol% of aluminum oxide. FIG. 3 is a schematic cross-sectional view showing the structure of an example of the voltage nonlinear resistor of the present invention. In Figure 3,
Reference numerals 1 to 3 have the same meanings as in FIG. 1, and 4 means a ceramic high resistance layer. As shown in Figure 3, Zn 7 Sb 2 O 12 and Zn 2 SiO 4 are present at the interface between the glass layer and the sintered body.
A high-resistance oxide layer made of, for example, may be provided to further improve the adhesion between the glass layer and the sintered body. Furthermore, it goes without saying that the glass layer may cover part of the upper and lower surfaces where the electrodes are provided. [Examples of the Invention] Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. Example 1 7630 g of zinc oxide as the main component, 325 g of bismuth oxide (Bi 2 O 3 ), 166 g of cobalt oxide (Co 2 O 3 ), and 57 g of manganese oxide (MnO) as additives.
g, ammothine oxide (Sb 2 O 3 ) 292 g, chromium oxide (Cr 2 O 3 ) 76 g, nickel oxide (NiO) 75 g,
Silicon oxide (SiO 2 ) 90g, boron oxide (B 2 O 3 )
30g, aluminum nitrate {Al(NO 3 ) 2・9H 2 O}
Weigh 1.5g accurately and wet mix in a ball mill for 12 hours. After drying, the mixed powder is granulated into 20mmφ×
Form into 10mm. The molded body was fired at 1250° C. for 3 hours in the atmosphere. Separately, powder of Pyroceram 9606 (Li 2 O-SiO 2 glass, manufactured by Corning, USA), which is a high-melting point crystallized glass and has good acid resistance, was suspended in an ethyl cellulose/trichloroethylene solution, and this was fired. The coating was applied by brush painting or dipping to a thickness of 50 to 300 μm. 1050 in the atmosphere
Heat treated at ℃ for 30 minutes. The rate of temperature rise and fall at this time was 30°C/hour. Both end faces of the glass-coated resistor were polished approximately 0.5 mm each using a Lap Master.
Washed. The cleaned resistor was used to form an Al sprayed electrode. This invention and the conventional product (SiO 2 −B 2 O 3 −PbO
Table 1 shows a comparison of the nonlinear coefficients with that of glass (based on glass, baked at a low temperature of 650°C).
【表】
本発明品は従来品よりも非直線係数が極めて大
きく優れていることがわかる。また、同様な方法
でパイロセラム9606ガラスを酸素雰囲気中で焼付
けた素子の非直線係数は90〜100であつた。
実施例 2
実施例1と同様に酸化亜鉛(ZnO)830g、酸
化ビスマス(Bi2O3)30.5g、酸化コバルト
(Co2O3)16.5g、炭酸マンガン(MnCO3)57g、
酸化クロム(Cr2O3)76g、酸化アンチモン
(Sb2O3)58.3g、酸化ケイ素(SiO2)10g、酸
化ホウ素(B2O3)5g、硝酸アルミニウム{Al
(NO3)3・9H2O}0.06gをボールミルで15時間湿
式で混合する。混合粉は乾燥した後造粒し、20mm
φ×8mmに成形し、大気中で1300℃で2時間焼成
した。焼成した抵抗体は実施例1のパイロセラム
9606ガラスペーストを厚さ100〜200μmに塗布
し、大気中1000℃で1時間熱処理した。ガラス被
覆した抵抗体はその両端面をラツプマスターで約
0.5mmずつ研磨して洗浄する。ここでの一方は研
磨、洗浄後の抵抗体にそのままAl溶射電極を形
成した。他方は研磨、洗浄の低抗体を塩酸:水=
2:5のエツチング液に5分間浸して研磨面をエ
ツチングした後にAl溶射電極を形成する。この
両者を比較すると第2表となる。[Table] It can be seen that the product of the present invention has an extremely large nonlinear coefficient and is superior to the conventional product. Furthermore, the nonlinear coefficient of an element made of Pyroceram 9606 glass baked in an oxygen atmosphere using the same method was 90 to 100. Example 2 As in Example 1, 830 g of zinc oxide (ZnO), 30.5 g of bismuth oxide (Bi 2 O 3 ), 16.5 g of cobalt oxide (Co 2 O 3 ), 57 g of manganese carbonate (MnCO 3 ),
Chromium oxide (Cr 2 O 3 ) 76 g, antimony oxide (Sb 2 O 3 ) 58.3 g, silicon oxide (SiO 2 ) 10 g, boron oxide (B 2 O 3 ) 5 g, aluminum nitrate {Al
(NO 3 ) 3・9H 2 O}0.06 g was wet mixed in a ball mill for 15 hours. After drying, the mixed powder is granulated into 20mm particles.
It was molded into a size of φ x 8 mm and fired at 1300°C for 2 hours in the air. The fired resistor was the Pyroceram of Example 1.
9606 glass paste was applied to a thickness of 100 to 200 μm and heat treated at 1000° C. for 1 hour in the air. Both end faces of the glass-coated resistor were cleaned using a Lapmaster.
Polish and clean in 0.5mm increments. In one case, an Al sprayed electrode was directly formed on the resistor after polishing and cleaning. On the other hand, polish and wash the low antibody with hydrochloric acid: water =
After etching the polished surface by immersing it in a 2:5 etching solution for 5 minutes, an Al sprayed electrode is formed. Table 2 shows a comparison between the two.
【表】
エツチング処理品は未処理品よりも非直線係数
が大きく、通電による電圧変化率が小さく、かつ
矩形波耐量も電極端部付近から火花など発生せず
優れていることがわかる。
実施例 3
実施例1及び2と同様に酸化亜鉛(ZnO)100
Kg、酸化ビスマス(Bi2O3)4.23Kg、酸化コバル
ト(Co2O3)2.15Kg、炭酸マンガン(MnCO3)
0.74Kg、酸化アンモチン(Sb2O3)3.78Kg、酸化
クロム(Cr2O3)0.98Kg、酸化ニツケル(NiO2)
0.97Kg、酸化ケイ素(SiO3)0.78Kg、酸化ホウ素
0.056Kg、硝酸アルミニウム{Al(NO3)3・9H2O}
0.009Kgをボールミルで25時間混合する。混合粉
は乾燥した後造粒し、20mmφ×10mmに成形する。
該成形体は次にSiO2−Sb2O3−Bi2O3を含有する
ペーストを塗布した後1250℃で4時間保持して焼
成し、セラミツクス高抵抗層を作製した。焼成し
た抵抗体には第3表に示すリチウムケイ酸亜鉛系
ガラスの成分配合比を変えて得たガラスを用いて
実施例1及び2と同様にペーストを製作し、100
〜200μmの厚さに塗布、1000〜1050℃で1時間
大気中で焼付けした。[Table] It can be seen that the etched product has a larger nonlinear coefficient than the untreated product, has a smaller rate of voltage change due to energization, and has superior rectangular wave resistance with no sparks generated near the electrode end. Example 3 Zinc oxide (ZnO) 100 as in Examples 1 and 2
Kg, Bismuth oxide (Bi 2 O 3 ) 4.23Kg, Cobalt oxide (Co 2 O 3 ) 2.15Kg, Manganese carbonate (MnCO 3 )
0.74Kg, ammothine oxide (Sb 2 O 3 ) 3.78Kg, chromium oxide (Cr 2 O 3 ) 0.98Kg, nickel oxide (NiO 2 )
0.97Kg, silicon oxide (SiO 3 ) 0.78Kg, boron oxide
0.056Kg, aluminum nitrate {Al(NO 3 ) 3・9H 2 O}
Mix 0.009Kg in a ball mill for 25 hours. After drying, the mixed powder is granulated and shaped into a size of 20 mmφ x 10 mm.
The molded body was then coated with a paste containing SiO 2 --Sb 2 O 3 --Bi 2 O 3 and then fired at 1250° C. for 4 hours to produce a ceramic high-resistance layer. For the fired resistor, a paste was prepared in the same manner as in Examples 1 and 2 using glass obtained by changing the composition ratio of the lithium zinc silicate glass shown in Table 3.
It was coated to a thickness of ~200 μm and baked in air at 1000-1050°C for 1 hour.
【表】
ガラス被覆した抵抗体はラツプマスタを用いて
て両端面約0.5mmずつ研磨する。研磨した抵抗体
は塩酸:硝酸:水=1:3:5から成るエツチン
グ液に3分間浸して研磨面をエツチングした後、
Al溶射電極を形成した。このようにして得た電
圧非直線抵抗体は第3図のように、抵抗体の側面
にZn7Sb2O12及びZn2SiO4から成るセラミツクス
高抵抗層、更にガラス膜の形成された抵抗体が得
られる。
まず、リチウムケイ酸亜鉛系ガラスの成分配合
比を種種変えて得たガラスの耐酸性を調べると第
4表となる。[Table] Polish both ends of the glass-coated resistor by approximately 0.5 mm using a Lap Master. The polished resistor was immersed in an etching solution consisting of hydrochloric acid: nitric acid: water = 1:3:5 for 3 minutes to etch the polished surface.
An Al sprayed electrode was formed. As shown in Figure 3, the voltage nonlinear resistor obtained in this way has a ceramic high resistance layer made of Zn 7 Sb 2 O 12 and Zn 2 SiO 4 on the side surface of the resistor, and a resistor with a glass film formed thereon. You get a body. First, Table 4 shows the acid resistance of glasses obtained by varying the composition ratio of lithium zinc silicate glasses.
【表】【table】
【表】
※1:ガラス組成は第3表による。
※2:処理時間5時間
ガラスの耐酸性はガラス組成の酸化リチウム及
び酸化ケイ素の配合比で異なり、本発明の特に望
ましい組成範囲をもつたガラス組成番号3〜5ガ
ラスの酸に対するエツチング速度は他のガラスの
1/2〜1/8である。
次に、矩形波耐量(波形:2mS)を第5表に
示す。[Table] *1: Glass composition is according to Table 3.
*2: Processing time: 5 hours The acid resistance of glass varies depending on the blending ratio of lithium oxide and silicon oxide in the glass composition, and the etching rate with respect to acids for glasses with composition numbers 3 to 5, which have a particularly desirable composition range of the present invention, is different from that of other glasses. It is 1/2 to 1/8 of glass. Next, Table 5 shows the rectangular wave tolerance (waveform: 2 mS).
【表】
※1:ガラス組成は第3表による
。
第5表よりガラス組成番号4が最も優れてお
り、次いで番号3、5、6、7、2、1の順であ
る。すなわち、酸化リチウム10〜30モル%で酸化
ケイ素50〜70モル%以外のガラスではガラスの耐
酸性が悪く、矩形波耐量は本発明ガラスを用いた
場合の約1/2である。
実施例 4
実施例3で得た酸化亜鉛を主成分とした原料粉
で20mmφ×8mmに成形し、1280℃で3時間保持し
て焼成した。焼成した抵抗体には実施例3の第3
表に示した組成のガラスペーストを実施例1、2
及び3と同様に100〜200μmの厚さに塗布し、
1000〜1050℃の温度で1時間大気中で熱処理し
た。この熱処理の昇、降温速度は25℃/時であ
る。ガラス被覆した抵抗体はその両端面を0.5mm
ずつ研磨する。研磨した抵抗体は硝酸:塩酸:水
=1:4:5のエツチング液に5分間浸して研磨
面をエツチングした後、Al溶射電極を形成した。
このようにして得た抵抗体は窒素雰囲気中に封入
してコロナ放電をさせた前後で特性の変化を調べ
た。コロナ放電を1時間行つた前後の特性は第6
表となる。[Table] *1: Glass composition is according to Table 3.
From Table 5, glass composition number 4 is the best, followed by numbers 3, 5, 6, 7, 2, and 1, in that order. That is, in a glass containing 10 to 30 mol% of lithium oxide and other than 50 to 70 mol% of silicon oxide, the acid resistance of the glass is poor, and the rectangular wave resistance is about 1/2 of that when using the glass of the present invention. Example 4 The raw material powder containing zinc oxide as the main component obtained in Example 3 was molded into a size of 20 mmφ x 8 mm, and was fired at 1280° C. for 3 hours. The fired resistor was prepared using the third method of Example 3.
Examples 1 and 2 of glass paste with the composition shown in the table
And apply it to a thickness of 100 to 200 μm in the same way as in 3.
Heat treatment was performed in the air at a temperature of 1000-1050°C for 1 hour. The rate of temperature rise and fall in this heat treatment is 25°C/hour. Glass-coated resistor has both end faces 0.5mm
Polish one by one. The polished resistor was immersed in an etching solution of nitric acid:hydrochloric acid:water=1:4:5 for 5 minutes to etch the polished surface, and then an Al sprayed electrode was formed.
The resistor thus obtained was sealed in a nitrogen atmosphere and changes in characteristics were examined before and after corona discharge. The characteristics before and after corona discharge for 1 hour are as follows.
It becomes a table.
【表】
※1:ガラス組成は第3表による。
※2:コロナ放電時間は1時間。
本発明のガラス組成である番号3、4及び5の
ガラスを用いた場合はコロナ放電試験後でインパ
ルス耐量(波形:4×10μS)がほぼ変らない。
一方、耐酸性のやや劣る番号1、2、6及び7の
ガラスではコロナ放電前後で、インパルス耐量が
20〜35%低下している。これは、抵抗体を窒素雰
囲気中に封入してコロナ放電させたため、雰囲気
中の微量の水が窒素と反応して硝酸を生成し、こ
の硝酸がガラス膜を変質させて劣化させたものと
考える。
実施例 5
実施例3で得た酸化亜鉛を主成分とした原料粉
を用い、56mmφ×24mmに成形し、1250℃で5時間
保持して焼成した。焼成した抵抗体には第7表に
示した組成のガラスからなるペーストを実施例
1、2、3及び4と同様に100〜200μmの厚さに
塗布し、800〜1350℃の間で1時間大気中で焼付
けた。このときの昇・降温速度は40℃/時であ
る。ガラスを被覆した抵抗体は、その両端面を
0.5mmずつ研磨した。研磨した抵抗体は硝酸:塩
酸:水=1:4:3のエツチング液に5分間浸し
て研磨面をエツチングした後Al溶射電極を形成
した。このようにして得た素子のガラス膜中への
亀裂の有・無、電流10μA〜1mAにおける非直
線係数、初期のインパルス耐量、コロナ放電試験
後のインパルス耐量、煮沸水中に10時間放置後の
インパルス耐量、−40℃150℃の熱サイクル1000
回後のインパルス耐量は第7表のとおりである。[Table] *1: Glass composition is according to Table 3.
*2: Corona discharge time is 1 hour.
When glasses Nos. 3, 4, and 5 having the glass composition of the present invention are used, the impulse withstand capacity (waveform: 4×10 μS) remains almost unchanged after the corona discharge test.
On the other hand, for glasses with numbers 1, 2, 6, and 7, which have slightly lower acid resistance, the impulse withstand capacity is lower before and after corona discharge.
It has decreased by 20-35%. This is thought to be because the resistor was sealed in a nitrogen atmosphere and a corona discharge was caused, so a small amount of water in the atmosphere reacted with the nitrogen to produce nitric acid, and this nitric acid changed the quality of the glass film and caused it to deteriorate. . Example 5 Using the raw material powder containing zinc oxide as the main component obtained in Example 3, it was molded into a size of 56 mmφ x 24 mm, and fired at 1250° C. for 5 hours. A paste made of glass having the composition shown in Table 7 was applied to the fired resistor to a thickness of 100 to 200 μm in the same manner as in Examples 1, 2, 3, and 4, and the paste was heated at 800 to 1350°C for 1 hour. Baked in air. The rate of temperature rise and fall at this time was 40°C/hour. A glass-coated resistor has both end faces
Polished in 0.5mm increments. The polished resistor was immersed in an etching solution of nitric acid:hydrochloric acid:water=1:4:3 for 5 minutes to etch the polished surface, and then an Al sprayed electrode was formed. Presence or absence of cracks in the glass film of the device thus obtained, nonlinear coefficient at current of 10 μA to 1 mA, initial impulse withstand capacity, impulse withstand capacity after corona discharge test, impulse after being left in boiling water for 10 hours. Withstands 1000 thermal cycles of -40°C and 150°C
The impulse withstand capacity after the test is shown in Table 7.
【表】【table】
【表】
アレスタ用素子のインパルス耐量としては
288KV系以下までは80KA以上、420KV系統以上
では100KA以上が必要である。第7表に見られ
るように、本発明の特に望ましい組成範囲内にあ
るガラスを被覆した番号3、4、5及び13の試料
は被覆したガラス膜に亀裂がなく、非直線係数が
大きく、インパルス耐量がコロナ放電試験後、煮
沸試験後、熱サイクル試験後いずれも100KA以
上で、420KV系統以上のアレスタ素子として利
用可能である。なお、第7表から明らかなよう
に、酸化亜鉛量が5モル%未満(番号8、9)及
び15モル%超の試料(番号10、11)になると、熱
膨脹係数が被覆する抵抗体の熱膨脹係数50〜70×
10-7より差が生じ、被覆したガラス膜に微小の亀
裂が生じる。また、酸化ホウ素量が10モル%超の
試料(番号14、15)ではガラスの耐水性及び耐酸
化性が悪くなり、煮沸試験後のインパルス耐量及
びコロナ放電試験後のインパルス耐量は他の試料
(番号3、4、5、13)に比べて劣化が大きい。
更に、酸化ホウ素量が少なすぎる試料(番号
12)ではガラスの軟化温度が高くなり、それに伴
いガラス焼付温度が1350℃となつて非直線係数が
悪くなる傾向にある。
比較例 1
実施例5と同様に、実施例3で得た酸化亜鉛を
主成分とした原料粉を用い、56mmφ×24mmに成形
し、1250℃で5時間保持して焼成した。焼成した
抵抗体には、Li2Oのみのペースト、及びSiO2を
添加しない組成30モル%Li2O-25モル%Al2O3 -30
モル%ZnO-15モル%B2O3系ガラスを用いたペー
ストを作成し、各別に100〜200μmの厚さに塗布
し、大気中1050℃、1時間保持して焼付けた。こ
のときの昇・降温速度は40℃/時である。ガラス
を被覆した抵抗体は、その両端面を0.5mmずつ研
磨した。研磨した抵抗体は硝酸:塩酸:水=1:
4:3のエツチング液に5分間浸して研磨面をエ
ツチングした後Al溶射電極を形成した。このよ
うにして得た素子のガラス膜の亀裂発性の有・
無、電流10μA〜1mAにおける非直線係数、初期
のインパルス耐量、コロナ放電試験後のインパル
ス耐量、煮沸水中の10時間放置後のインパルス耐
量、−40℃150℃の熱サイクル1000回後のインパ
ルス耐量は第8表のとおりである。なお、ZnOを
添加しないLi2O−SiO2−B2O3−Al2O3系のガラ
ス化を試みたがガラス状にならなかつた。[Table] Impulse withstand capacity of arrester elements
80KA or more is required for up to 288KV system, and 100KA or more is required for 420KV system or above. As seen in Table 7, samples numbered 3, 4, 5, and 13 coated with glass within the particularly desirable composition range of the present invention had no cracks in the coated glass film, had a large nonlinear coefficient, and had a high impulse response. It has a withstand capacity of 100KA or more after corona discharge tests, boiling tests, and thermal cycle tests, and can be used as an arrester element for 420KV systems or above. As is clear from Table 7, when the zinc oxide content is less than 5 mol% (numbers 8 and 9) and the samples containing more than 15 mol% (numbers 10 and 11), the coefficient of thermal expansion is the same as that of the resistor coated. Coefficient 50~70×
10 -7 , a difference occurs and minute cracks occur in the coated glass film. In addition, the water resistance and oxidation resistance of the glass deteriorated in samples containing more than 10 mol% of boron oxide (numbers 14 and 15), and the impulse resistance after the boiling test and the impulse resistance after the corona discharge test were lower than those of other samples (numbers 14 and 15). The deterioration is large compared to numbers 3, 4, 5, and 13). In addition, samples with too little boron oxide (no.
12), the softening temperature of the glass increases, and the glass baking temperature accordingly increases to 1350°C, which tends to worsen the nonlinear coefficient. Comparative Example 1 In the same manner as in Example 5, the raw material powder containing zinc oxide as the main component obtained in Example 3 was molded into a size of 56 mmφ x 24 mm, and fired at 1250° C. for 5 hours. The fired resistor contains a paste containing only Li 2 O and a composition of 30 mol % Li 2 O - 25 mol % Al 2 O 3 - 30 without adding SiO 2 .
A paste was prepared using mol % ZnO - 15 mol % B 2 O 3 glass, and each paste was applied to a thickness of 100 to 200 μm and baked at 1050° C. in the atmosphere for 1 hour. The rate of temperature rise and fall at this time was 40°C/hour. Both end faces of the glass-coated resistor were polished by 0.5 mm. The polished resistor was prepared using nitric acid:hydrochloric acid:water=1:
After etching the polished surface by immersing it in a 4:3 etching solution for 5 minutes, an Al sprayed electrode was formed. Whether or not the glass film of the device obtained in this way is prone to cracking.
None, nonlinear coefficient at current 10 μA to 1 mA, initial impulse withstand capacity, impulse withstand capacity after corona discharge test, impulse withstand capacity after being left in boiling water for 10 hours, impulse withstand capacity after 1000 thermal cycles at -40°C and 150°C. As shown in Table 8. In addition, an attempt was made to vitrify a Li2O - SiO2 - B2O3 - Al2O3 system without adding ZnO, but it did not become glassy.
【表】【table】
本発明の電圧非直線抵抗体は、非直線係数が極
めて大きく、通電による電圧変化率が小さく、矩
形波耐量も優れ、耐酸性が良い等極めて顕著な効
果を奏するものである。
The voltage nonlinear resistor of the present invention has extremely significant effects such as an extremely large nonlinear coefficient, a small rate of change in voltage due to energization, excellent rectangular wave resistance, and good acid resistance.
第1図及び第3図は本発明の電圧非直線抵抗体
の一例の構造を示す断面概略図であり、第2図は
電圧非直線抵抗体の熱処理温度と非直線係数の変
化率との関係を示すグラフである。
1:焼結体、2:ガラス層、3:電極、4:セ
ラミツクス高抵抗層。
1 and 3 are schematic cross-sectional views showing the structure of an example of the voltage nonlinear resistor of the present invention, and FIG. 2 shows the relationship between the heat treatment temperature and the rate of change of the nonlinear coefficient of the voltage nonlinear resistor. This is a graph showing. 1: Sintered body, 2: Glass layer, 3: Electrode, 4: Ceramic high resistance layer.
Claims (1)
側面にセラミツクス高抵抗層を介し、又は介する
ことなく、ガラス層が形成され、かつ焼結体上下
両端面に電極が形成された電圧非直線抵抗体にお
いて、上記ガラス層が以下の成分: 酸化リチウム(Li2O):10〜30モル% 酸化ケイ素(SiO2):50〜70モル% 酸化亜鉛(ZnO):5〜15モル% 酸化ホウ素(B2O3):0〜10モル% 酸化アルミニウム(Al2O3):0〜5モル% を含むリチウムケイ酸亜鉛系ガラスであることを
特徴とする電圧非直線抵抗体。 2 該ガラス層が結晶化ガラスから成る特許請求
の範囲第1項に記載の電圧非直線抵抗体。 3 該ガラスが950℃から該焼結体の焼成温度の
間の焼付け温度を持つ高融点ガラスである特許請
求の範囲第1項又は第2項に記載の電圧非直線抵
抗体。 4 酸化亜鉛を主成分とする焼結体の側面にセラ
ミツクス高抵抗層を形成し、かつその上に酸化リ
チウム10〜30モル%、酸化ケイ素50〜70モル%、
酸化亜鉛5〜15モル%、酸化ホウ素0〜10モル
%、酸化アルミニウム0〜5モル%を含有するリ
チウムケイ酸亜鉛系ガラス成分と結合剤とから成
るペーストを塗布する工程、酸素含有ガス雰囲気
中において950℃以上で前記焼結体の焼成温度よ
りも低く、かつガラスの軟化温度より100〜200℃
高い温度で焼付けてガラス層を形成する工程、及
び前記焼結体の両端面に電極を形成する工程の各
工程を包含することを特徴とする電圧非直線抵抗
体の製法。 5 該電極を形成する工程が、前記焼結体の両端
面を酸でエツチングした後、電極を形成するもの
である特許請求の範囲第4項に記載の電圧非直線
抵抗体の製法。[Claims] 1. A glass layer is formed on at least the side surface of a sintered body containing zinc oxide as a main component, with or without a ceramic high-resistance layer, and electrodes are formed on both the upper and lower end surfaces of the sintered body. In the voltage nonlinear resistor, the glass layer has the following components: Lithium oxide ( Li2O ): 10 to 30 mol% Silicon oxide ( SiO2 ): 50 to 70 mol% Zinc oxide (ZnO): 5 to 15 A voltage nonlinear resistor characterized by being a lithium zinc silicate glass containing mol% boron oxide (B 2 O 3 ): 0 to 10 mol% and aluminum oxide (Al 2 O 3 ): 0 to 5 mol%. . 2. The voltage nonlinear resistor according to claim 1, wherein the glass layer is made of crystallized glass. 3. The voltage nonlinear resistor according to claim 1 or 2, wherein the glass is a high melting point glass having a firing temperature between 950°C and the firing temperature of the sintered body. 4 A ceramic high-resistance layer is formed on the side surface of a sintered body containing zinc oxide as a main component, and 10 to 30 mol% of lithium oxide, 50 to 70 mol% of silicon oxide,
Step of applying a paste consisting of a lithium zinc silicate glass component containing 5 to 15 mol% of zinc oxide, 0 to 10 mol% of boron oxide, and 0 to 5 mol% of aluminum oxide and a binder, in an oxygen-containing gas atmosphere at 950°C or higher, lower than the firing temperature of the sintered body, and 100 to 200°C lower than the softening temperature of glass.
A method for manufacturing a voltage nonlinear resistor, comprising the steps of forming a glass layer by baking at a high temperature, and forming electrodes on both end faces of the sintered body. 5. The method of manufacturing a voltage non-linear resistor according to claim 4, wherein the step of forming the electrodes includes etching both end surfaces of the sintered body with acid, and then forming the electrodes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58139406A JPS6031207A (en) | 1983-08-01 | 1983-08-01 | Voltage nonlinear resistor and method of producing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58139406A JPS6031207A (en) | 1983-08-01 | 1983-08-01 | Voltage nonlinear resistor and method of producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6031207A JPS6031207A (en) | 1985-02-18 |
JPH0223007B2 true JPH0223007B2 (en) | 1990-05-22 |
Family
ID=15244510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58139406A Granted JPS6031207A (en) | 1983-08-01 | 1983-08-01 | Voltage nonlinear resistor and method of producing same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6031207A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3175500B2 (en) * | 1994-10-28 | 2001-06-11 | 株式会社日立製作所 | Voltage nonlinear resistor and method of manufacturing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5146267A (en) * | 1974-10-15 | 1976-04-20 | Toshifumi Sako | Tomorokoshino shinzai oryoshite kakushukanshoyobutsutai oseizosuru hoho |
JPS5221714A (en) * | 1975-08-12 | 1977-02-18 | Nippon Telegr & Teleph Corp <Ntt> | Solid stage scanning photo-electronic conversion |
-
1983
- 1983-08-01 JP JP58139406A patent/JPS6031207A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5146267A (en) * | 1974-10-15 | 1976-04-20 | Toshifumi Sako | Tomorokoshino shinzai oryoshite kakushukanshoyobutsutai oseizosuru hoho |
JPS5221714A (en) * | 1975-08-12 | 1977-02-18 | Nippon Telegr & Teleph Corp <Ntt> | Solid stage scanning photo-electronic conversion |
Also Published As
Publication number | Publication date |
---|---|
JPS6031207A (en) | 1985-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4319215A (en) | Non-linear resistor and process for producing same | |
JPH08253342A (en) | Thick film paste composition containing no cadmium and lead | |
JPS6314841B2 (en) | ||
JPS648441B2 (en) | ||
EP0452511B1 (en) | Zinc oxide varistor, manufacture thereof, and crystallized glass composition for coating | |
US4397915A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US4322477A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US4326187A (en) | Voltage non-linear resistor | |
JP3175500B2 (en) | Voltage nonlinear resistor and method of manufacturing the same | |
JP2002151307A (en) | Voltage nonlinear resistor | |
US4378409A (en) | Electrical resistor material, resistor made therefrom and method of making the same | |
US4420737A (en) | Potentially non-linear resistor and process for producing the same | |
JPH0223007B2 (en) | ||
JPH0225241B2 (en) | ||
JP3003374B2 (en) | Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating | |
JPS6033282B2 (en) | Voltage nonlinear resistor | |
JPS6221241B2 (en) | ||
JPH0483302A (en) | Manufacture of non-linear resistor | |
JP2560851B2 (en) | Voltage nonlinear resistor | |
JP3036202B2 (en) | Zinc oxide varistor, method for producing the same, and crystallized glass composition for coating | |
JPH0389501A (en) | Voltage non-linear resistor and manufacture thereof | |
JP3103188B2 (en) | Polishing method for voltage non-linear resistor | |
JPH01125801A (en) | Oxide resistor | |
JPS6055969B2 (en) | Voltage nonlinear resistor and its manufacturing method | |
JPH0252403B2 (en) |