JPH02230037A - Cold heat environment testing device - Google Patents

Cold heat environment testing device

Info

Publication number
JPH02230037A
JPH02230037A JP4653089A JP4653089A JPH02230037A JP H02230037 A JPH02230037 A JP H02230037A JP 4653089 A JP4653089 A JP 4653089A JP 4653089 A JP4653089 A JP 4653089A JP H02230037 A JPH02230037 A JP H02230037A
Authority
JP
Japan
Prior art keywords
temperature
chamber
heat exchanger
low
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4653089A
Other languages
Japanese (ja)
Inventor
Tatsuo Hayashida
林田 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4653089A priority Critical patent/JPH02230037A/en
Publication of JPH02230037A publication Critical patent/JPH02230037A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To shorten a defrosting time and to shorten a test time by a method wherein hot gas of a high temperature freezing cycle is caused to flow in, and during exposure to a normal temperature and to a high temperature, defrosting is effected and growth of frost is delayed without the stop of a temperature cycle. CONSTITUTION:A vaporizer 12 of a low temperature cycle B, formed with a compressor 29, a cascade heat exchanger 28, and an expansion valve 30, and a heat exchanger 14, in which hot gas of a high temperature cycle A formed with a compressor 25, a condenser 26, an expansion valve 27, and a cascade heat exchanger 28 flows, are integrally disposed in a low temperature chamber 2. Since frost is apt to adhere between the fins of the front of a heat exchanger with which cold air 32 is first collided, a heat exchanger 14 for defrosting is arranged on the windward side of the vaporizer 12, and the vaporizer 12 is arranged. Refrigerant gas having a high temperature (of 70-100 deg.C) flows in through a hot gas inlet 36 and flows out through a hot gas outlet 37 and back to the inlet of the condenser 26. A refrigerant having a low temperature (of approximate -75 deg.C) flows in through a refrigerant inlet 38 for a vaporizer and flows out through a refrigerant outlet 39 for a vaporizer, and back to the compressor 29.

Description

【発明の詳細な説明】 〔産業上の利用分万〕 本発明は被冷却物の冷却、加熱くク返レ試験を行う冷熱
環境試験装置に係り、特に低温案側の蒸発器の着霜量を
減し、除老冨を行ラまでの時間間隔を延ばすことを特徴
とする構造に関する。
[Detailed Description of the Invention] [Industrial Applicability] The present invention relates to a cold environment test device for performing a cooling, heating, and cycling test on a cooled object, and in particular, it relates to a cold environment test device that performs a cooling, heating, and curling test on a cooled object. The present invention relates to a structure characterized in that the time interval between aging and wealth reduction is reduced and the time interval until aging is reduced.

〔従来の技術〕[Conventional technology]

従来の冷熱環境試験装置において、低温室の蒸発器の除
霜を行う方法としては、80〜40時間温度サイクル試
験後低温室内の温度を40゛C程度まで電気加熱器で上
昇させ、除霜を80分程度行い、その後低温室内の温度
を降下させるよりにしていた。その間温度サイクルは、
停止している.これらに関するものには、特開昭.lj
l−173084号、特開昭62−125230号など
がある.凍4 〔発明が解決しようとする禰#≠〕 上記従来技術は、除Jまでの時間間隔が短かい為温度サ
イクル試験中に除謂な行わなければならず温度サイクル
試験に対しては、無駄な時間が多くあった.さらK、長
時間除ネ■レていない為霜が生長し、短時間の除霜では
溶けにくくなウている本発明の目的は、温度サイクル試
験中の除霜までの時間間隔をできるだけ延ばし、さらに
除霜時間を短かくすることができる冷熱環境試験装置を
提供することにある。
In conventional thermal environment test equipment, the method of defrosting the evaporator in the cold room is to raise the temperature inside the cold room to about 40°C using an electric heater after a temperature cycle test for 80 to 40 hours, and then defrost the evaporator. This was carried out for about 80 minutes, and then the temperature in the low-temperature chamber was allowed to drop. Meanwhile, the temperature cycle is
It's stopped. For information on these matters, please refer to JP-A-Sho. lj
Examples include No. 1-173084 and JP-A-62-125230. Freezing 4 [Number #≠ to be solved by the invention] In the above conventional technology, since the time interval until removal J is short, removal must be performed during the temperature cycle test, and it is wasteful for the temperature cycle test. There was a lot of time. The purpose of the present invention is to extend the time interval until defrosting during the temperature cycle test as much as possible, and the frost grows and becomes difficult to melt with short defrosting. Furthermore, it is an object of the present invention to provide a thermal environment testing device that can shorten the defrosting time.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、低温室内り蒸発器,が上側に蒸発器と一体
の除嶺用熱交換器を配aし、高温冷凍サイクルのホット
ガスを流入させ、常温さらし、高温名らし時間中に、除
霜を行い温度丈イクルを停止することなく霜の生長を遅
くすることにより、達成される。
The above purpose is to install a heat exchanger integrated with the evaporator on the upper side of the evaporator in the low-temperature room, allow hot gas from the high-temperature refrigeration cycle to flow in, expose it to room temperature, and remove it during the high-temperature period. This is achieved by slowing the growth of frost without stopping the temperature cycle.

〔作用〕[Effect]

高温冷凍サイクルのホ岬トガスは、70〜100℃程度
である為、低温室内温度−70゛C雰囲気中でも熱交換
用フィン間と熱交供用パイプ間に付いているX′蒜が生
長し目づまりになるのを防止できる. これは、熱交換フィンが蒸発器および除霜用熱交換器と
一体となっている為、除霜用熱交換パイプの熱が7イン
に熱伝導しフィン間の霜を溶すのである。
Hot gas in a high temperature refrigeration cycle is around 70 to 100 degrees Celsius, so even in a low-temperature room temperature of -70 degrees C, the X' cucumbers between the heat exchange fins and the heat exchange pipes will grow and clog. You can prevent this from happening. This is because the heat exchange fins are integrated with the evaporator and the defrosting heat exchanger, so the heat from the defrosting heat exchange pipe is conducted to the 7-in, melting the frost between the fins.

〔実施例〕〔Example〕

以下、本発明の一実施例を第18〜第4図に従って説明
する。第1図は本発明の冷熱環境試験装置の縦vfr面
図、第2図は第1図の低温室および冷凍サイクル系統図
、第8図は蒸発器および除霜用熱交換器の冷媒通路を示
す図、第4図は試験室の温度サイクルパターン図を示し
ている。
An embodiment of the present invention will be described below with reference to FIGS. 18 to 4. Fig. 1 is a longitudinal VFR view of the thermal environment test device of the present invention, Fig. 2 is a diagram of the cold room and refrigeration cycle shown in Fig. 1, and Fig. 8 shows the refrigerant passages of the evaporator and defrosting heat exchanger. The figure shown in FIG. 4 shows a temperature cycle pattern diagram of the test chamber.

第1図において、この冷熱墳境試験室50は、試料を試
験室に収納し、該試験室内を低温環境と高温環境とに交
互に変化させて試料のヒートシ璽ック試験を行うもので
、試験室1と、その試験室1に対してそれぞれ独立する
冷風発生用低温室2および熱風発生用高温室8とを備え
ている。試験室1と低温室2との仕切壁2aには、冷風
を試験室l内に流入させる冷風供給口4および試験室l
内の冷風を排出させる冷風排出口5が設けられている。
In FIG. 1, this thermal tomb test chamber 50 stores a sample in the test chamber, and conducts a heat shock test on the sample by alternating the inside of the test chamber between a low temperature environment and a high temperature environment. It is equipped with a test chamber 1 and a cold air generation cold room 2 and a hot air generation high temperature room 8 which are independent from the test room 1, respectively. A partition wall 2a between the test chamber 1 and the low temperature chamber 2 includes a cold air supply port 4 that allows cold air to flow into the test chamber 1, and a cold air supply port 4 that allows cold air to flow into the test chamber 1.
A cold air outlet 5 is provided to discharge the cold air inside.

その冷風供給口傷および排出口5には、これを開閉する
冷風切換ダンパ6および7が設けられている。また試験
室lと高温室3との仕切壁8aには、熱風を試験室内l
内に流入させる熱瓜洪給口8および熱風排出口9が設け
られている。その熱風供給口8および熱風排出口9には
、これを開閉する熱風切換ダンパ10およびl1が設け
られている.前記低温室2P3には、該室内の空気を冷
却する蒸発器12と、冷却された空気を所定温度に調節
して保持する加熱器18が配設されるとともに、調温さ
れた冷却空気(以下、冷風という》を試貌室lに送るた
めの送風機15とが設置され、準備段階にかけて冷風を
循騙させる冷風バイパス通路l6が設けられている.蒸
発器l2の風上側には、熱交換用フィン85間に付いた
霜を溶す除精用熱交換器l4が配設されている.電動機
17は、送風機l5の駆動用である.iた冷風が冷風バ
イパス通路16を通るときには、冷風切換ダンパー6.
7が実線のごとく閉じ、さらに丈プダンパ−28も実線
のごとく閉じる.前記高温室3内には、該室内の空気を
加熱する加熱器18と、加熱器18の熱量を蓄熱可し、
加熱された空気を所定温度に保持する蓄熱器19と、調
温された加熱空気(以下、熱風という)を試験室lに送
るための送風機20とが配置されると共に、準備段階に
お4て熱風をua屓させる熱風バイパス通路21が設け
らルている。電.417機z2は、送風機20の駆動用
である。また準備段階においては、熱風が熱風バイパス
通路21を通るときには、熱風切侯ダンバ10,11は
閉じ、さらにサプヂンバ−24も閉じる。次に低温室2
および冷凍サイクル系統を第2図によって説明する。低
温室2内には、圧縮機29、カスケード熱交換器28、
影張弁30より構成される低温丈イクルBの蒸発器12
および圧縮機25、凝縮器26、膨張弁27、前記カス
ケード熱交換器28より構成される高温サイクル人のホ
ットガスを流入する除繕用熱交換器14とが一体で配設
されている.そしてホブトガス往路系には、電磁弁など
の開閉弁40が設けら11,該開閉弁40は前記凝^、
宿器26の人口に接続され、逆流防止用逆止弁81も同
凝縮器26の入口側に設けらytている。次に蒸発器1
2と除霜用熱交換i514の冷媒通路を第8図によって
説明する.繕は、冷風82の最初に当る熱交換器前面の
フィン間に付着しやすい為除霜用熱交換器l4を蒸発器
l2の風上側配置し、次1c蒸発器12を配置した.さ
らに熱交換用フィノ85は、除軸用熱交換熱交換バイグ
33および蒸発器用熱交換パイグ84を共用したものと
なっており連続している。ホプトガス人口86から高温
(70〜100’o)の冷媒ガスが流入し、ホフトガス
出口87より流出し、凝a器26人口に戻る。また蒸発
器用冷媒人口38より低温(−75℃程度冫の冷媒が流
入し、蒸発器用冷媒出口39より流出し、圧縮機29に
戻る。
The cold air supply opening and outlet 5 are provided with cold air switching dampers 6 and 7 that open and close them. In addition, a partition wall 8a between the test room 1 and the high temperature room 3 is provided with hot air to the test room 1.
A hot melon air inlet 8 and a hot air outlet 9 are provided to allow hot air to flow into the air. The hot air supply port 8 and the hot air discharge port 9 are provided with hot air switching dampers 10 and 11 that open and close them. The cold room 2P3 is provided with an evaporator 12 that cools the air in the room, a heater 18 that adjusts and holds the cooled air at a predetermined temperature, and also provides temperature-controlled cooling air (hereinafter referred to as A blower 15 is installed to send cold air to the viewing room l, and a cold air bypass passage l6 is provided to circulate the cold air during the preparation stage.On the windward side of the evaporator l2, a heat exchanger A heat exchanger 14 is provided to melt the frost formed between the fins 85.The electric motor 17 is used to drive the blower 15.When the cold air passes through the cold air bypass passage 16, the cold air switching is performed. Damper 6.
7 is closed as shown by the solid line, and the length damper 28 is also closed as shown by the solid line. Inside the high temperature room 3, there is a heater 18 that heats the air in the room, and a heater 18 that can store the heat amount of the heater 18.
A heat storage device 19 that maintains heated air at a predetermined temperature and a blower 20 that sends temperature-controlled heated air (hereinafter referred to as hot air) to the test chamber 1 are installed. A hot air bypass passage 21 is provided for discharging hot air. Electricity. 417 machine z2 is for driving the blower 20. Further, in the preparation stage, when the hot air passes through the hot air bypass passage 21, the hot air dampers 10 and 11 are closed, and the subdin bar 24 is also closed. Next, cold room 2
The refrigeration cycle system will be explained with reference to FIG. Inside the cold room 2, there are a compressor 29, a cascade heat exchanger 28,
Evaporator 12 of low-temperature cycle B consisting of shadow valve 30
A heat exchanger 14 for repair into which hot gas from a high-temperature cycle flows, which is composed of a compressor 25, a condenser 26, an expansion valve 27, and the cascade heat exchanger 28, is integrally installed. The hobto gas outward path system is provided with an on-off valve 40 such as a solenoid valve 11, and the on-off valve 40 is used for the condensation,
Connected to the condenser 26, a check valve 81 for preventing backflow is also provided on the inlet side of the condenser 26. Next, evaporator 1
2 and the refrigerant passage of the defrosting heat exchanger i514 will be explained with reference to FIG. The defrosting heat exchanger 14 was placed on the upwind side of the evaporator 12, and the 1c evaporator 12 was placed next because the fins tend to adhere between the fins on the front of the heat exchanger, which is the first area that the cold air 82 hits. Further, the heat exchange fino 85 is continuous and shares the heat exchange heat exchange pipe 33 for shaft removal and the heat exchange pipe 84 for the evaporator. High temperature (70 to 100'o) refrigerant gas flows in from the hoft gas outlet 86, flows out from the hoft gas outlet 87, and returns to the condenser 26. Further, a refrigerant at a lower temperature (about -75° C.) than the evaporator refrigerant population 38 flows in, flows out from the evaporator refrigerant outlet 39, and returns to the compressor 29.

次に本実施例の作用について第4図により説明する。試
料のヒートンッック試験を行う場合、先ず低温切換グン
パ6,7および高温切換ダ/パ10.11等を図示して
ないダ/パ駆励手段により閉じ、低温室2は低温室内に
設けられたセンテ(図示せず)により′成源を入れた後
、前記低温丈イクルBにより冷却曲線「口」のようにr
vlJ l1I4lL,冷風を冷風バイパス通路16を
循環させ試験温度曲線「イ」より−15’c位低めの−
70゛c位に冷却運転を行わせる。(予冷運転入)一方
高温室8は高温室内に設けられたセンナ(図示せぜ》に
より、高温サイクルAにより加熱曲線「・・」のように
割岬し温風を熱風バイパス通路21を盾壊させ試験温度
曲線イより+80℃位高めの+180’C位の加熱運転
を行わせる。(予熱運転B) 前記低温度2内を冷却運転する場合の冷媒の流几は弟2
図で示す通り、高温サイクルAの圧縮機25より冷媒ガ
スを吐出させ、+a Md器26で外気または冷却水に
放熱して凝縮する。この凝縮液は膨張弁27で減圧ざル
カスケード熱交換器28に流入し、ここで低温ブイクル
Bとの4八交換により蒸発して圧縮+AZIC戻る。低
温ティクルBの圧縮機29より吐出された冷媒ガスはカ
スケード熱交換器28にて前述の高温サイクルAに放熱
して、冷却され、凝縮する。この凝湘液は膨張弁30に
て減圧された後、蒸発器1zに流入しここで送風機15
による低温循項至気を冷却して蒸発し、圧縮機29に戻
る。
Next, the operation of this embodiment will be explained with reference to FIG. When performing a heat-on-look test on a sample, the low-temperature switching pumps 6 and 7 and the high-temperature switching pumps 10 and 11 are closed by means for driving the pump (not shown), and the cold room 2 is closed by a centrifuge installed in the low-temperature room. (not shown), and then the low-temperature length cycle B causes the cooling curve to become r.
vlJ l1I4lL, the cold air is circulated through the cold air bypass passage 16 and the temperature is -15'c lower than the test temperature curve "A".
Cooling operation is performed to about 70°C. (Pre-cooling operation started) On the other hand, the high temperature chamber 8 uses a senna installed in the high temperature chamber (not shown in the figure) to generate hot air as shown in the heating curve ``...'' by the high temperature cycle A, shielding the hot air bypass passage 21. A heating operation is performed at about +180'C, which is about +80°C higher than the test temperature curve A. (Preheating operation B) When performing a cooling operation in the low temperature 2, the refrigerant flow is similar to that of the younger brother 2.
As shown in the figure, refrigerant gas is discharged from the compressor 25 of the high temperature cycle A, and is condensed by radiating heat to the outside air or cooling water in the +a Md device 26. This condensate flows into the vacuum colander cascade heat exchanger 28 through the expansion valve 27, where it is evaporated by 48 exchange with the cryogenic vehicle B and returned to the compressed + AZIC. The refrigerant gas discharged from the compressor 29 of the low-temperature tickle B radiates heat to the above-mentioned high-temperature cycle A in the cascade heat exchanger 28, where it is cooled and condensed. After this condensate is depressurized by the expansion valve 30, it flows into the evaporator 1z, where it is connected to the blower 15.
The low-temperature circulation air is cooled, evaporated, and returned to the compressor 29.

次に低温室内が所定の温度に到達すると低温室内の温度
七ンテの信号により低温切換ダンバ6,7が開き低温さ
らし運転Pが開始される。低温切換ダンパ6,7が開い
た後は試験室lに設けられた温度センサ51によク試験
室l内の試料を冷し込んでいく。そして試験室1が所定
温度に到達すると温度センf′51の信号により加熱器
18が駆動し空気を加熱し調温する.次に所定の低温試
験時間Pに到達すると、゛冷風切換ダンパ6.7を閉じ
、熱風切換ダンバ10,11を開き試験寥1内の試料を
加熱している。<Q)これは、2ゾーンの場合であり、
3ゾーンの場合は常温ダンパ(図示せず)が開き高低温
ダンバ6,7,10.11は閉じ、常温空気にさらされ
る.(X)このとき低温室2内は冷風切換ダ/バ6,7
が閉じると同時に低温室2の温度センサーに切換えられ
低温試4偵温度曲線「イ」より低めの冷却運転Rに入る
。それと同時に高温サイクルAの電磁弁などの開閉弁4
0が開き、除霜用熱交換器l4内にホットガスが流入し
霜を溶す。ホットガスはR時間内のみ流入し、各温度サ
イクルの低温さらしP終了後高温Qまたは常温ざらしY
終了までくり返し流入させるよりにする。
Next, when the temperature inside the low temperature chamber reaches a predetermined temperature, the low temperature switching dampers 6 and 7 are opened by a signal indicating the temperature inside the low temperature chamber and low temperature exposure operation P is started. After the low temperature switching dampers 6 and 7 are opened, the sample in the test chamber 1 is cooled down by the temperature sensor 51 provided in the test chamber 1. When the test chamber 1 reaches a predetermined temperature, the heater 18 is driven by a signal from the temperature sensor f'51 to heat the air and control the temperature. Next, when a predetermined low temperature test time P is reached, the cold air switching damper 6.7 is closed and the hot air switching damper 10, 11 is opened to heat the sample in the test chamber 1. <Q) This is a case of 2 zones,
In the case of 3 zones, the room temperature damper (not shown) is opened and the high and low temperature dampers 6, 7, 10.11 are closed and exposed to room temperature air. (X) At this time, inside the cold room 2, the cold air switching da/ba 6, 7
At the same time as the temperature sensor closes, the temperature sensor is switched to the low temperature chamber 2, and the cooling operation R starts, which is lower than the low temperature test 4 temperature curve "A". At the same time, on-off valve 4 such as a solenoid valve for high temperature cycle A
0 opens, hot gas flows into the defrosting heat exchanger l4 and melts the frost. Hot gas flows only during R time, and after the low temperature exposure P of each temperature cycle is completed, high temperature Q or room temperature exposure Y
Rather than letting it flow repeatedly until the end.

とのよラに本実施例によれば、低温槽内の蒸発器に対す
る着霜を最少にし、低温室2内の温度を40℃程度まで
加熱器13で上昇させ除霜させるまでの時間間隔が長く
できる。また着霜量も少なくなるので除霜時間が短かく
なり、温度サイクルを長時間できかつ試験時間の短縮化
される。
According to this embodiment, frost formation on the evaporator in the low temperature chamber is minimized, and the time interval between raising the temperature in the low temperature chamber 2 to about 40° C. with the heater 13 and defrosting is You can make it longer. Furthermore, since the amount of frost formation is reduced, the defrosting time is shortened, the temperature cycle can be extended for a long time, and the test time can be shortened.

第5図は蒸発器1zの7ィン85の中へ棒ヒータ60を
埋込んで、除霜用熱源としたものであり、これによれば
、蒸発器12の全体寸法が小さくすることができる。第
O図は、蒸発器を12A〜12cのように分割し、そi
tぞれにホットガス、低温冷媒を切換えて流す開閉弁4
1〜46を設けて除繕効果を向上させるよラにしたもの
である。
FIG. 5 shows a rod heater 60 embedded in the 7-in 85 of the evaporator 1z to serve as a heat source for defrosting. According to this, the overall size of the evaporator 12 can be reduced. . Figure O shows that the evaporator is divided into 12A to 12c, and
On-off valve 4 that switches hot gas and low-temperature refrigerant to each
1 to 46 are provided to improve the cleaning effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、低温室内の蒸発器の着霜を少なくする
ことができる為、所定時間内の除霜回数が減りまた、除
霜時間が短かくなり、試験時間の短縮化が図れる。
According to the present invention, since frost formation on the evaporator in the low-temperature room can be reduced, the number of times of defrosting within a predetermined period of time is reduced, the defrosting time is shortened, and the test time can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の冷熱壊境試1挾装置を示す縦断面図、
第2図は第1図の低温室および冷凍サイクル系統図、第
8図(a)(b)は蒸発器および除藉用熱交換器の冷媒
通路を示す図、第4図は試験室の温度サイクルパターン
図、第5図は他の実施例の棒ヒータ』込み状態図、第6
図は他の冥施例で蒸発器を8分割した例である。 1・・・試験室  2・・・低温室  3、・・・高温
室4・・・冷風共給口  5・・・冷風排出口  6.
7・・・冷風切換ダンパ  8・・・熱風供給口  9
・・・熱風排出口  10.11・・・熱風切換ダンバ
  1z・・・蒸発器  13・・・7Ij熱器  1
t・・・除趨用熱交換器  l5・・・送風楡  l6
・・・冷風バイパス通路  l7・・・電動機  18
・・・加熱器  19・・・蓄熱器  20・・・送風
機  z1・・・熱風バイパス通路  22・・・″屯
@機  2.3、24・・・サブダンパ  A・・・高
温丈イクル  B・・・低温サイクル25・・・圧縮機
  2t5・・・凝縮器  27・・・膨張弁28・・
・カスケード熱交換器  29・・・圧縮機30・・・
孝張弁  3l・・・逆止弁  82・・・冷風38・
・・除霜用熱交換バイプ  84・・・蒸発器用熱交換
バイプ  35・・・熱交換用フィン  86・・・ホ
ットガス入口  87・・・ホットガス出口88・・・
蒸発器用冷媒人口  39・・・蒸発器用冷媒出口  
40・・・電磁弁。 廖1口 I 恢騎幇 イんi51F ラ る渫ヤ 冫4冫−1イ峡tノ≧“ロ 13.18 六〇榊,港 跨石I11砒ケ逅益 +q %ヤ外 代哩人弁理士 小 川 勝 男 第2口 ↑ 14圓 時■
FIG. 1 is a longitudinal cross-sectional view showing a cold-thermal collapse test device of the present invention;
Figure 2 is a diagram of the cold room and refrigeration cycle shown in Figure 1, Figures 8 (a) and (b) are diagrams showing the refrigerant passages of the evaporator and the heat exchanger for descaling, and Figure 4 is the temperature of the test chamber. Cycle pattern diagram, Figure 5 is a state diagram including the rod heater of another embodiment, Figure 6
The figure shows another example in which the evaporator is divided into eight parts. 1...Testing room 2...Cold room 3....High temperature room 4...Cold air common supply port 5...Cold air outlet 6.
7...Cold air switching damper 8...Hot air supply port 9
...Hot air outlet 10.11...Hot air switching damper 1z...Evaporator 13...7Ij heater 1
t...Heat exchanger for exhaustion l5...Blower elm l6
...Cold air bypass passage l7...Electric motor 18
...Heater 19...Regenerator 20...Blower z1...Hot air bypass passage 22...''ton @ machine 2.3, 24...Sub damper A...High temperature cycle B...・Low temperature cycle 25... Compressor 2t5... Condenser 27... Expansion valve 28...
・Cascade heat exchanger 29... Compressor 30...
Kohari valve 3l...Check valve 82...Cold air 38.
...Heat exchange pipe for defrosting 84...Heat exchange pipe for evaporator 35...Fin for heat exchange 86...Hot gas inlet 87...Hot gas outlet 88...
Evaporator refrigerant population 39... Evaporator refrigerant outlet
40...Solenoid valve. Liao 1 mouth I 恢き幇Inn i51F Ruru Yuya 4 冫-1 い Gorge tノ≧“Ro 13.18 60 Sakaki, port crossing stone I 11 砒 逅 benefit +q % ya foreign agent patent attorney Masaru Ogawa Male 2nd mouth ↑ 14 hours■

Claims (1)

【特許請求の範囲】 1、試験室、低温室、高温室を独立に配設し、ダンパの
切換えにより低温室の冷風または高温室の熱風を試験室
に循環させるよりにして成る冷熱環境試験装置において
、圧縮機、凝縮器、膨張弁、カスケード熱交換器により
構成される高温冷凍サイクルおよび圧縮機、前記カスケ
ード熱交換器、膨張弁、蒸発器により構成される低温冷
凍サイクルとよりなる二元冷凍サイクルと加熱器を備え
、前記低温冷凍サイクルの蒸発器の風上側に前記蒸発器
と一体の除霜用熱交換器を低温室内に配設し、その除霜
用熱交換器に前記高温冷凍サイクルのホットガスを流入
させるよりに構成したことを特徴とする冷熱環境試験装
置。 2、試験室の温度サイクル中の低温さらし終了後、前記
高温冷凍サイクルの圧縮機と凝縮器間に設けられた開閉
弁を開とし、常温さらしおよび高温さらしを行っている
間にホットガスを流すよう構成したことを特徴とする特
許請求の範囲第1項記載の冷熱環境試験装置。 3、試験室、低温室、高温室を独立に配設し、ダンパの
切換えにより低温室の冷風または高温室の熱風を試験室
に循環させるよりにして成る冷熱環境試験装置において
、前記低温室と高温室をそれぞれ並行して予冷、予熱運
転し、所定温度到達後に、前記低温室内の冷風を前記試
験室内に導入して試料の低温さらし運転(P)を行い、
更に所定時間経過後に、常温さらし運転(X)あるいは
高温さらし運転(Q)を行うとともに、前記低温室内の
冷却運転(R)を行い、この間に、前記低温室内の除霜
用熱交換器へホットガスを流し除霜運転を行う、ことを
特徴とする冷熱環境試験装置の運転方法。
[Claims] 1. A cooling and thermal environment testing device in which a test chamber, a low temperature chamber, and a high temperature chamber are arranged independently, and cold air from the low temperature chamber or hot air from the high temperature chamber is circulated through the test chamber by switching dampers. A binary refrigeration system comprising a high-temperature refrigeration cycle composed of a compressor, a condenser, an expansion valve, and a cascade heat exchanger, and a low-temperature refrigeration cycle composed of a compressor, the cascade heat exchanger, an expansion valve, and an evaporator. A defrosting heat exchanger, which is equipped with a cycle and a heater and is integrated with the evaporator on the windward side of the evaporator of the low-temperature refrigeration cycle, is disposed in the low-temperature room, and the defrosting heat exchanger is equipped with the high-temperature refrigeration cycle. A thermal environment test device characterized in that it is configured to allow hot gas to flow in. 2. After the low-temperature exposure during the temperature cycle in the test chamber, open the on-off valve installed between the compressor and condenser of the high-temperature refrigeration cycle, and let hot gas flow during the room-temperature and high-temperature exposures. A thermal environment testing device according to claim 1, characterized in that it is configured as follows. 3. In a thermal environment test device, which is constructed by independently arranging a test chamber, a low temperature chamber, and a high temperature chamber, and circulating cold air from the low temperature chamber or hot air from the high temperature chamber into the test chamber by switching dampers, The high temperature chambers are precooled and preheated in parallel, and after reaching a predetermined temperature, the cold air in the low temperature chamber is introduced into the test chamber to perform a low temperature exposure operation (P) of the sample,
Furthermore, after a predetermined period of time has elapsed, a room temperature exposure operation (X) or a high temperature exposure operation (Q) is performed, and a cooling operation (R) is performed in the low temperature chamber, during which hot air is transferred to the defrosting heat exchanger in the low temperature chamber. A method of operating a thermal environment testing device characterized by performing defrosting operation by flowing gas.
JP4653089A 1989-03-01 1989-03-01 Cold heat environment testing device Pending JPH02230037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4653089A JPH02230037A (en) 1989-03-01 1989-03-01 Cold heat environment testing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4653089A JPH02230037A (en) 1989-03-01 1989-03-01 Cold heat environment testing device

Publications (1)

Publication Number Publication Date
JPH02230037A true JPH02230037A (en) 1990-09-12

Family

ID=12749840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4653089A Pending JPH02230037A (en) 1989-03-01 1989-03-01 Cold heat environment testing device

Country Status (1)

Country Link
JP (1) JPH02230037A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085365A (en) * 2008-10-02 2010-04-15 Espec Corp Environmental testing apparatus and coldness storage device
JP2013170956A (en) * 2012-02-22 2013-09-02 Espec Corp Environmental test apparatus
JP2014020733A (en) * 2012-07-23 2014-02-03 Hitachi Appliances Inc Two-cycle refrigerator
JP2018501495A (en) * 2014-12-29 2018-01-18 蘇州蘇試試験儀器股▲ふん▼有限公司 Environmental test chamber evaporator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085365A (en) * 2008-10-02 2010-04-15 Espec Corp Environmental testing apparatus and coldness storage device
JP2013170956A (en) * 2012-02-22 2013-09-02 Espec Corp Environmental test apparatus
JP2014020733A (en) * 2012-07-23 2014-02-03 Hitachi Appliances Inc Two-cycle refrigerator
JP2018501495A (en) * 2014-12-29 2018-01-18 蘇州蘇試試験儀器股▲ふん▼有限公司 Environmental test chamber evaporator

Similar Documents

Publication Publication Date Title
CN105671850B (en) Device for clothing processing with heat pump cycle
KR101192346B1 (en) Heat pump type speed heating apparatus
JP2008533429A (en) Defroster for bottle cooler and method thereof
CN106765673A (en) Heat pump and its defrosting control method
JP2008514895A (en) Reverse Peltier defrost system
JPH02101368A (en) Method of operating low temperature show case
CN110466309A (en) Vehicle cools and heats system
JPH11173711A (en) Dual refrigerator
JP5108384B2 (en) Air refrigerant refrigeration system
JPH02230037A (en) Cold heat environment testing device
KR101124872B1 (en) Heat pump having plural evaporation members
JPH11132582A (en) Air refrigerant type refrigerator
JP2835780B2 (en) Thermal shock test equipment
JPH11148759A (en) Refrigerator equipped with two sets of evaporators
CN112444004B (en) Air conditioning device
JP4248726B2 (en) Hot gas defrosting type refrigerator-freezer
JP2002213832A (en) Cooling device
JPH04332358A (en) Defrosting operating method for heat pump and defrosting device
JPS6015861B2 (en) Cooling system
JP2014066420A (en) Freezer
JPH09318229A (en) Refrigerating device
KR100310535B1 (en) Air Cooled Heat Pump
KR101212686B1 (en) Heat pump type speed heating apparatus
KR100556395B1 (en) defroster of evaporator for refrigerator
KR20100088378A (en) Air conditioner and defrosting driving method of the same