JPH0223002B2 - - Google Patents

Info

Publication number
JPH0223002B2
JPH0223002B2 JP57112280A JP11228082A JPH0223002B2 JP H0223002 B2 JPH0223002 B2 JP H0223002B2 JP 57112280 A JP57112280 A JP 57112280A JP 11228082 A JP11228082 A JP 11228082A JP H0223002 B2 JPH0223002 B2 JP H0223002B2
Authority
JP
Japan
Prior art keywords
particles
temperature
titanate
sintered
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57112280A
Other languages
Japanese (ja)
Other versions
JPS593901A (en
Inventor
Kyoshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP11228082A priority Critical patent/JPS593901A/en
Publication of JPS593901A publication Critical patent/JPS593901A/en
Publication of JPH0223002B2 publication Critical patent/JPH0223002B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、温度変化に応じて抵抗値が変化する
焼結抵抗体に関する。さらに、半導体に金属を均
一分散して形成した焼結抵抗体と、これにパラジ
ウムを用いたものに関する。 従来、セラミツク、例えば、チタン酸系の塩類
の特定の組成物の温度対誘電率の関係について研
究され多くの報告が知られている。代表的なもの
には、チタン酸バリウム、チタン酸カルシウム、
チタン酸鉛などがある。また、チタン酸バリウム
−錫酸バリウム組成物、チタン酸バリウム−ジル
コン酸バリウム組成物についても、同様に温度変
化と誘導率変化の関係が報告されていて公知であ
る。これらの常用されているチタン酸バリウムま
たはこれに類する化合物を、温度に対応する一定
の抵抗値を示し、その対応感度が高いものを得
て、その温度変化に応じる感度が高く、正確で信
頼性の高い抵抗体を、焼結法で複合させて得られ
れば、きわめて有用である。 しかして、チタン塩酸の粒体のみを焼結しても
絶縁体的な特性を示すだけであるため、従来から
様々な物質を添加混合して焼結することによつて
温度抵抗変化特性を付与するようにしている。 本発明は、このような従来のチタン酸塩系の温
度抵抗変化材を改良し、温度変化に対する感度の
優れた新規な温度抵抗変化材を提供することを目
的とするものであつて、粒状のチタン酸塩に粒状
のチタンニツケル合金を10wt%前後加えて混合
し、チタン酸塩の粒体間にチタンニツケル合金粒
を介在させた状態で焼結して成ることを特徴とす
るものである。また、焼結触媒としてパラジウム
などを触媒作用を生ずるように用いて、焼結する
ことで、さらに良好なものが得られるようにす
る。 次に本発明を一実施例について説明する。 実施例 A 3000メツシユBaTiO3粒子89wt% 1100メツシユTiNi(50:50)粒子11wt% これらの混合組成物を、よく混合し均一分散さ
せたものを約1300℃で加圧下で放電焼結をしたも
のは、比抵抗値が、常温で0.06Ωcm、800℃で102
Ωcmであつた。実施例Aの焼結体は、第1図に示
したように、BaTiO3半導体粒1の一部に図示の
ような焼結金属TiNiの部分2を形成しているこ
とが確認された。又、TiNi粒子の添加割合は
10wt%前後が好ましく、6wt%以下の場合は添加
量が少なすぎてTiNi粒子をBaTiO3粒子間に充分
に介在させることができず、14wt%以上の場合
にはBaTiO3粒子間に於てTiNi粒子同志が連結す
る傾向が現われて金属的な特性を示すようになる
ため、何れの場合も良好な温度抵抗変化特性を得
ることができない。 実施例 B 前記の実施例Aの焼成物形成のときに、前記の
2成分のほかに第1表のように、パラジウムの混
合添加量を変え均一分散混和したものを同一の放
電焼結条件下で得られたのは、表中のとおりであ
つた。
The present invention relates to a sintered resistor whose resistance value changes according to temperature changes. Furthermore, the present invention relates to a sintered resistor formed by uniformly dispersing metal in a semiconductor, and a resistor using palladium. Conventionally, many reports have been made on the relationship between temperature and dielectric constant of specific compositions of ceramics, such as titanic acid salts. Typical examples include barium titanate, calcium titanate,
Examples include lead titanate. Furthermore, the relationship between temperature change and dielectric constant change has been similarly reported and known for barium titanate-barium stannate compositions and barium titanate-barium zirconate compositions. These commonly used barium titanate or similar compounds have been made to exhibit a constant resistance value that corresponds to temperature and have high sensitivity, and are highly sensitive, accurate, and reliable in response to temperature changes. It would be extremely useful if a high resistance element could be obtained by combining it with a sintering method. However, even if titanium hydrochloric acid particles are sintered, they will only exhibit insulating properties, so conventionally, various substances have been added and mixed and sintered to impart temperature resistance change properties. I try to do that. The present invention aims to improve such conventional titanate-based temperature resistance change materials and provide a new temperature resistance change material with excellent sensitivity to temperature changes. It is characterized by mixing titanate with approximately 10 wt% of granular titanium-nickel alloy, and sintering the mixture with titanium-nickel alloy grains interposed between the titanate particles. Further, by using palladium or the like as a sintering catalyst so as to produce a catalytic effect, an even better product can be obtained by sintering. Next, one embodiment of the present invention will be described. Example A 3000 mesh BaTiO 3 particles 89wt% 1100 mesh TiNi (50:50) particles 11wt% These mixed compositions were thoroughly mixed and uniformly dispersed, and then discharge sintered under pressure at approximately 1300°C. The specific resistance value is 0.06Ωcm at room temperature and 10 2 at 800℃.
It was Ωcm. In the sintered body of Example A, as shown in FIG. 1, it was confirmed that a portion 2 of sintered metal TiNi as shown in the figure was formed in a part of the BaTiO 3 semiconductor grain 1. Also, the addition ratio of TiNi particles is
The amount is preferably around 10wt%; if it is less than 6wt%, the amount added is too small and the TiNi particles cannot be sufficiently interposed between the BaTiO 3 particles, and if it is more than 14wt%, the amount of TiNi added between the BaTiO 3 particles is Since particles tend to connect with each other and exhibit metallic characteristics, good temperature resistance change characteristics cannot be obtained in either case. Example B When forming the fired product of Example A above, in addition to the above two components, palladium was uniformly dispersed and mixed in varying amounts as shown in Table 1 under the same discharge sintering conditions. The results obtained were as shown in the table.

【表】 第1表に示したように、パラジウム添加量が
0.6wt%のときは、無添加のときと、ほぼ同程度
であつたが、常温のときの比抵抗値は、添加量を
さらに0.8から1.0wt%に増加したときに、明確に
減少し、それだけ感度が増加した。 又、800℃に於ける比抵抗値についても、パラ
ジウム添加量を0.8wt%更には1.0wt%としたと
き、比抵抗値が顕著に増大し、感度が向上した。 このように、BaTiO3粒子にTiNi粒子を添加混
合して焼結することにより温度抵抗変化特性の優
れた温度抵抗変化材を得ることができ、又パラジ
ウムの少量添加によつて、温度変化に伴う比抵抗
値の変化の数値範囲がきわめて広くなることが判
然と確認された。この変化を、温度検知、測定ま
たは表示のためセンサに利用できる。勿論温度抵
抗変化体として適当な用途に適用できる。 実施例 C 前記の実施例のBaTiO3に代替して、次記のも
のを用いられることが認められた。 SrTiO3、PbTiO3、BiTiO3・MnO2 さらに、次の酸化物(1)、炭化物(2)、窒化物(3)ま
たは、これらの混合組成物の中から、任意に少な
くとも一つの化合物を選択して、BaTiO3に加え
て用い得られることが認められた。 (1) 酸化物 TiO2、TiO3、Bi2O3、SnO2、Fe2O3
Fe3O4、ZnO (2) 炭化物 SiC、B4C、TiC、CrC、Cr3C2、NbC、
TaC、WC、VC (3) 窒化物 BN、TiN、ZrN、TaN、NbN すでに実施例について説明したように、
BaTiO3等のチタン酸塩粒子にTiNi粒を加え焼結
をしたもの、および、さらにパラジウムの少量を
加えて焼結をしたものは、良好な温度変化に対応
する抵抗体を形成することができる。 これらの特性を利用して、抵抗体としても、温
度検知体としても用いることができ、半導体を良
好な温度抵抗体にすることができる。
[Table] As shown in Table 1, the amount of palladium added is
At 0.6 wt%, it was almost the same as when no additive was added, but the resistivity value at room temperature clearly decreased when the amount added was further increased from 0.8 to 1.0 wt%. The sensitivity increased accordingly. Also, regarding the resistivity value at 800°C, when the amount of palladium added was increased to 0.8wt% and further to 1.0wt%, the resistivity value significantly increased and the sensitivity improved. In this way, by adding TiNi particles to BaTiO 3 particles and sintering the mixture, a temperature resistance change material with excellent temperature resistance change characteristics can be obtained, and by adding a small amount of palladium, It was clearly confirmed that the numerical range of the change in resistivity value was extremely wide. This change can be used in a sensor for temperature sensing, measurement or display. Of course, it can be applied to appropriate uses as a temperature resistance variable body. Example C It was found that the following could be used in place of BaTiO 3 in the above example. SrTiO 3 , PbTiO 3 , BiTiO 3・MnO 2 Furthermore, at least one compound is arbitrarily selected from the following oxides (1), carbides (2), nitrides (3), or a mixed composition thereof. It was found that it could be used in addition to BaTiO 3 . (1) Oxides TiO 2 , TiO 3 , Bi 2 O 3 , SnO 2 , Fe 2 O 3 ,
Fe 3 O 4 , ZnO (2) Carbide SiC, B 4 C, TiC, CrC, Cr 3 C 2 , NbC,
TaC, WC, VC (3) Nitride BN, TiN, ZrN, TaN, NbN As already explained in the examples,
TiNi grains added to titanate particles such as BaTiO 3 and sintered, and those further sintered with a small amount of palladium can form a resistor that responds well to temperature changes. . Utilizing these characteristics, semiconductors can be used both as resistors and temperature sensors, making semiconductors good temperature resistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の焼結体粒子の一
例示図である。 1……BaTiO3粒、2……TiNi部分。
FIG. 1 is an illustration of sintered particles according to an embodiment of the present invention. 1... 3 BaTiO grains, 2...TiNi part.

Claims (1)

【特許請求の範囲】[Claims] 1 粒状のチタン酸塩に粒状のチタンニツケル合
金を10wt%前後加えて混合し、チタン酸塩の粒
体間にチタンニツケル合金粒を介在させた状態で
焼結して成ることを特徴とする温度による抵抗変
化材。
1 A temperature characterized by mixing granular titanium-nickel alloy with approximately 10 wt% of granular titanate and sintering the mixture with titanium-nickel alloy grains interposed between the titanate particles. resistance change material.
JP11228082A 1982-06-29 1982-06-29 Resistance varying material by temperature Granted JPS593901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11228082A JPS593901A (en) 1982-06-29 1982-06-29 Resistance varying material by temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228082A JPS593901A (en) 1982-06-29 1982-06-29 Resistance varying material by temperature

Publications (2)

Publication Number Publication Date
JPS593901A JPS593901A (en) 1984-01-10
JPH0223002B2 true JPH0223002B2 (en) 1990-05-22

Family

ID=14582741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228082A Granted JPS593901A (en) 1982-06-29 1982-06-29 Resistance varying material by temperature

Country Status (1)

Country Link
JP (1) JPS593901A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754761B2 (en) * 1986-03-14 1995-06-07 田中電子工業株式会社 Sensor-material
WO2013065373A1 (en) * 2011-11-01 2013-05-10 株式会社村田製作所 Semiconductor ceramic, and ptc thermistor using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134903A (en) * 1979-04-10 1980-10-21 Tdk Electronics Co Ltd Semiconductor porcelain composition
JPS575309A (en) * 1980-06-12 1982-01-12 Nippon Soken Method of producing positive temperature coefficient porclain semiconductor
JPS5831505A (en) * 1981-08-18 1983-02-24 株式会社明電舎 Method of producing current limiting element
JPS58116702A (en) * 1981-12-29 1983-07-12 セントラル硝子株式会社 Semiconductive barium titanate material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134903A (en) * 1979-04-10 1980-10-21 Tdk Electronics Co Ltd Semiconductor porcelain composition
JPS575309A (en) * 1980-06-12 1982-01-12 Nippon Soken Method of producing positive temperature coefficient porclain semiconductor
JPS5831505A (en) * 1981-08-18 1983-02-24 株式会社明電舎 Method of producing current limiting element
JPS58116702A (en) * 1981-12-29 1983-07-12 セントラル硝子株式会社 Semiconductive barium titanate material

Also Published As

Publication number Publication date
JPS593901A (en) 1984-01-10

Similar Documents

Publication Publication Date Title
US4014822A (en) Semiconductor ceramic composition
JPS6018086B2 (en) Porcelain dielectric for temperature compensation
US4107387A (en) Resistance material
US4320379A (en) Voltage non-linear resistor
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
JPH0223002B2 (en)
JPS6018085B2 (en) dielectric porcelain composition
JPS6054722B2 (en) High dielectric constant porcelain composition
JPH053427B2 (en)
JPS6398904A (en) High permeability ceramic composition
JPS6327841B2 (en)
JP2536679B2 (en) Positive characteristic thermistor material
JPS6054723B2 (en) High dielectric constant porcelain composition
EP0208234A1 (en) High permittivity ceramic composition
JPH0566332B2 (en)
JP2521862B2 (en) Dielectric porcelain composition
JPS62132755A (en) Ceramic composition
JPH0684605A (en) Positive characteristic thermister and production thereof
JPS597664B2 (en) High dielectric constant porcelain composition
JPH1112033A (en) Barium lead titanate-based semiconductor ceramic composition
JPS6328323B2 (en)
JPS62113755A (en) Ceramic composition
JPH0566331B2 (en)
JPS63253601A (en) Ceramic resistor
JPS6252921B2 (en)