JPH02229935A - Magnetic fluid damper - Google Patents

Magnetic fluid damper

Info

Publication number
JPH02229935A
JPH02229935A JP4890089A JP4890089A JPH02229935A JP H02229935 A JPH02229935 A JP H02229935A JP 4890089 A JP4890089 A JP 4890089A JP 4890089 A JP4890089 A JP 4890089A JP H02229935 A JPH02229935 A JP H02229935A
Authority
JP
Japan
Prior art keywords
magnetic
coil
magnetic fluid
fluid damper
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4890089A
Other languages
Japanese (ja)
Inventor
Toshio Kasahara
敏夫 笠原
Kazuya Shimizu
一弥 清水
Katsuaki Nanba
克明 難波
Keiichi Takayama
高山 桂一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP4890089A priority Critical patent/JPH02229935A/en
Publication of JPH02229935A publication Critical patent/JPH02229935A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate work, reduce leak flux and expedite response speed by forming a magnetic fluid damper with a coil enveloped by a shield magnetic passage, a piston arranged coaxially with the coil and magnetic fluid in a non- magnetic cylinder which envelops the piston and passes through the coil. CONSTITUTION:When electric current passes through a coil 4 and a magnetic field is applied, ferrite particles are oriented by the magnetic field and follow the slipping direction of liquid to cause the change in rotational workload, so apparent viscosity increases to limit the movement of a piston portion 6 and absorb vibratory energy. Since a magnetic fluid damper 1 can control how to apply a magnetic field to the magnetic fluid 2, namely, control damping coefficient by current intensity adjustment and have high response speed, it can take immediate response to the impulsive exciting force and so forth on the surface plate 20 of an active de-vibration device. Moreover, the coil 4 is enveloped and stored by a shield magnetic passage 5 so that flux leak may be limited to the minimum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は磁性流体ダンパーに係り、特に応答速度の速い
能動制動子である磁性流体ダンパーに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic fluid damper, and particularly to a magnetic fluid damper that is an active damper with a fast response speed.

[従来の技術] 電子ビームを応用した電子顕微鏡、ホログラフィー装置
等の精密機器は振動が光路障害となっている。また、ス
テッパー等のLSI製造装置は同じ場所に次々と回路を
重ね描きするが、振動により位置合わせができなかった
り、処理時間が長くかかったりする。このため、従来、
これらの精密機器は除振装置上に搭載して使用されてい
る。除振装置としては、空気ばね、コイルばね、防振ゴ
ム等の振動吸収手段により振動を減衰する受動除振装置
がある。しかし、このような受動除振装置は床からの振
動を減衰できても、精密機器自身の自励や除振装置定盤
の固有振動等に対して有効とは言えない。そのため、定
盤のX軸、Y軸、Z軸方向の各運動成分をそれぞれ検知
して、各方向の運動成分に対応して逆位相に能動制動子
を作動させ、能動的に除振する能動除振装置が使用され
るようになっている。この能動除振装置においては、第
6図に示すように、精密機器9を搭載した定盤20を、
床30に固定された架台40から、受動制動子である空
気ばね50で支持すると共に、定盤20に取り付けられ
たセンサ60により定盤20の振動を検知し、このセン
サ60の信号をブリアンブ70で増幅し制御部80で処
理しパワーアンブ90により増幅したのち、定盤20に
生じた振動の逆位相の振動を加振するよう能動制動子1
0を作動させ、速やかな除振を行なっている。ここでは
一運動成分の除振について図示したが、少なくとも3方
向の除振を行なうものである。
[Prior Art] In precision instruments such as electron microscopes and holography devices that use electron beams, vibrations are an obstacle to the optical path. Furthermore, LSI manufacturing equipment such as a stepper draws circuits one after another in the same location, but vibrations may make it impossible to align the circuits, or the process may take a long time. For this reason, conventionally,
These precision instruments are used mounted on vibration isolators. Examples of vibration isolators include passive vibration isolators that damp vibrations using vibration absorbing means such as air springs, coil springs, and anti-vibration rubber. However, although such a passive vibration isolator can attenuate vibrations from the floor, it cannot be said to be effective against the self-excitation of the precision equipment itself or the natural vibration of the vibration isolator surface plate. Therefore, the active damper detects each motion component of the surface plate in the X-axis, Y-axis, and Z-axis directions, and operates the active damper in the opposite phase corresponding to the motion component in each direction to actively isolate the vibration. Vibration isolators are now being used. In this active vibration isolator, as shown in FIG.
A frame 40 fixed to the floor 30 is supported by an air spring 50 that is a passive brake, and a sensor 60 attached to the surface plate 20 detects the vibration of the surface plate 20, and the signal of this sensor 60 is sent to a brake 70. After being amplified by the controller 80, processed by the control unit 80, and amplified by the power amplifier 90, the active damper 1 is activated so as to excite vibrations in the opposite phase of the vibrations generated in the surface plate 20.
0 is activated to quickly eliminate vibrations. Although vibration isolation of one motion component is illustrated here, vibration isolation is performed in at least three directions.

このような能動除振装置の能動制動子10としては、油
圧アクチュエー夕、エアアクチュエー夕、電磁アクチュ
エー夕等が用いられるが、特にボイスコイルモー夕等の
りニアモー夕が用いられる。
As the active brake 10 of such an active vibration isolator, a hydraulic actuator, an air actuator, an electromagnetic actuator, etc. are used, and a linear motor such as a voice coil motor is particularly used.

しかしボイスコイルモー夕等のりニアモー夕は漏洩磁束
が大きく、例えば10Nを発生するボイスコイルモー夕
では開口部における漏洩磁束密度は3G程度になる。こ
のためボイスコイルモー夕を厚い鉄板等で蔽って設置す
る方法もあるが、それでも0.3G程度の漏洩磁束が認
められる。またボイスコイルモー夕の構造を低漏洩磁気
回路にし、漏洩磁束密度をIG以下に押えることは可能
であるが、静止状態における漏洩磁束をより確実に遮蔽
するため、リニアモー夕を磁気遮蔽部材で被覆する精密
除振装置が本出願人により提案されている(特願平1−
9452号)。
However, linear motors such as voice coil motors have a large leakage magnetic flux; for example, in a voice coil motor that generates 10N, the leakage magnetic flux density at the opening is about 3G. For this reason, there is a method of installing the voice coil motor by covering it with a thick iron plate, but even then, leakage magnetic flux of about 0.3G is observed. Although it is possible to make the structure of the voice coil motor into a low-leakage magnetic circuit and suppress the leakage magnetic flux density to below IG, in order to more reliably shield leakage magnetic flux in a stationary state, it is necessary to cover the linear motor with a magnetic shielding member. A precision vibration isolator has been proposed by the present applicant (Patent Application No.
No. 9452).

[発明が解決すべき課題] しかし、これら従来の漏洩磁束を制御する方法は、製造
された装置がどうしても大型になり、工作も複雑であっ
た。工作が容易で、かつ、除振装置上に搭載して使用さ
れる精密機器の性能を阻害する漏洩磁束を制御し、応答
速度の速い能動制動子である磁性流体ダンパーが望まれ
ていた。
[Problems to be Solved by the Invention] However, in these conventional methods of controlling leakage magnetic flux, the manufactured devices inevitably become large-sized and the workmanship is complicated. There has been a need for a magnetic fluid damper, which is an active damper that is easy to work with, controls leakage magnetic flux that impairs the performance of precision equipment mounted on a vibration isolator, and has a fast response speed.

[発明の目的] 本発明は上記の点を解決するためになされたもので、工
作が容易で、漏洩磁束が少なく、応答速度の速い能動制
動子である磁性流体ダンパーを提供することを目的とす
る。
[Object of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to provide a magnetic fluid damper which is an active damper that is easy to work, has little leakage magnetic flux, and has a fast response speed. do.

[課題を解決するための手段] 上記の目的を達成するために、本発明による磁性流体ダ
ンバーは、遮蔽磁気路に包囲されたコイルと、このコイ
ルと同軸状に設けられたピストン部と、ピストン部を包
囲し、ヨイルの内部を貫通する非磁性シリンダー内に充
填された磁性流体とから成るものである。
[Means for Solving the Problems] In order to achieve the above object, a magnetic fluid damper according to the present invention includes a coil surrounded by a shielded magnetic path, a piston portion provided coaxially with the coil, and a piston. It consists of a magnetic fluid filled in a non-magnetic cylinder that surrounds the yoil and penetrates the inside of the yoil.

[実施例] 以下、本発明による磁性流体ダンパーの好ましい実施例
を図面を用いて詳述する。
[Embodiments] Preferred embodiments of the magnetic fluid damper according to the present invention will be described in detail below with reference to the drawings.

第1図に示すように、本発明による磁性流体ダンバー1
において、コイル4は遮蔽磁気路5に包囲収納されて磁
束の漏れを最小限にしている。このコイル4と同軸状に
設けられたピストン部6は、コイル4の内部を貫通する
非磁性シリンダー3の内部に設けられている。更に、コ
イル4の内部を貫通する非磁性シリンダー3の内部には
磁性流体2が充填されている。ピストン部6の上下それ
ぞれに、ピストンロッド7が固着している。ピストン部
6との固着部分のピストンロッド7は、磁性流体2内に
あり、ピストン部6の上方に固着しているピストンロッ
ド7の先端71は、非磁性シリンダー3の外部に出て定
盤20を制動する。ピストン部6の下方に固着している
ピストンロツド7の先端72は、非磁性シリンダー3の
底部空間8を上下に移動自゛由である。ピストン部6の
上下にあるピストンロッド7の中間部分73は、磁性流
体2内および非磁性シリンダー3間を上下に移動する。
As shown in FIG. 1, a magnetic fluid damper 1 according to the present invention
In this case, the coil 4 is surrounded by a shielded magnetic path 5 to minimize leakage of magnetic flux. A piston portion 6 provided coaxially with this coil 4 is provided inside a non-magnetic cylinder 3 that penetrates inside the coil 4 . Furthermore, the inside of the non-magnetic cylinder 3 that penetrates inside the coil 4 is filled with the magnetic fluid 2. Piston rods 7 are fixed to the upper and lower sides of the piston portion 6, respectively. The piston rod 7 that is fixed to the piston part 6 is inside the magnetic fluid 2, and the tip 71 of the piston rod 7 fixed above the piston part 6 comes out of the non-magnetic cylinder 3 and is attached to the surface plate 20. brake. The tip 72 of the piston rod 7 fixed below the piston part 6 is free to move up and down in the bottom space 8 of the non-magnetic cylinder 3. The intermediate portion 73 of the piston rod 7 above and below the piston part 6 moves up and down within the magnetic fluid 2 and between the non-magnetic cylinder 3.

ここで用いられるピストン部6およびピストンロッド7
は、磁気抵抗の小さい鉄系、さらには純鉄系の材料が好
ましい。
Piston part 6 and piston rod 7 used here
It is preferable to use an iron-based material, or even a pure iron-based material, which has low magnetic resistance.

本発明による磁性流体ダンバー1が、第6図に示す能動
除振装置の能動制動子10として使用される。
A magnetic fluid damper 1 according to the invention is used as an active damper 10 of an active vibration isolator shown in FIG.

[作用] 第2図に示すように、本発明による磁性流体ダンバーを
使用した能動除振装置においては、定盤20に設置され
たセンサ60としての周波数センサあるいは振動計によ
り検出された信号はマルチブレクサーに送出される。床
振動、その他の条件信号もマルチブレクサーに送出され
る。更に、マルチプレクサーからコンピュータに送出さ
れる。
[Function] As shown in FIG. 2, in the active vibration isolator using the magnetic fluid damper according to the present invention, the signal detected by the frequency sensor or vibration meter as the sensor 60 installed on the surface plate 20 is Sent to the breaker. Floor vibration and other condition signals are also sent to the multiplexer. Furthermore, it is sent from the multiplexer to the computer.

コンピュータは、入力データを解析し、外乱を評価し、
演算し、最適レベルの信号を制御出力を発するI/Oポ
ートに送出する。次いで、■/0ボートは、本発明によ
る磁性流体ダンバー1またはその他のサーボに信号を送
出する。この際、パワーアンプ90により増幅し、本発
明による磁性流体ダンパー1のコイル4に制動をかける
。コンピュータによりインパルス振動は短時間で安定化
されるため、周波数、振幅に対応した最適除振効果が得
られる。
The computer analyzes input data, evaluates disturbances,
It calculates and sends the optimal level signal to the I/O port that issues the control output. The /0 boat then sends a signal to the magnetic fluid damper 1 or other servo according to the invention. At this time, the power is amplified by the power amplifier 90, and damping is applied to the coil 4 of the magnetic fluid damper 1 according to the present invention. Since the impulse vibration is stabilized by the computer in a short time, the optimum vibration isolation effect corresponding to the frequency and amplitude can be obtained.

従来の除振装置による制動は第3図の制動波形に示され
るように徐々に行なわれるが、本発明による磁性流体ダ
ンバーを使用した能動除振装置による制動は第4図の制
動波形に示すように短時間行なわれる。ダンピング力も
、従来の除振装置によるもの(第5図参照)とは異なり
、任意の特性を持たせることが可能である(図示せず)
Braking by a conventional vibration isolator is performed gradually as shown in the braking waveform in Figure 3, but braking by an active vibration isolator using a magnetic fluid damper according to the present invention is performed gradually as shown in the damping waveform in Figure 4. It is held for a short time. The damping force can also be given arbitrary characteristics (not shown), unlike that of conventional vibration isolators (see Figure 5).
.

ところで、磁性流体2は、界面活性剤で表面を処理した
微細な磁性粒子(フエライト他)を、高濃度で安定的に
分散させたものであり、それ自身では磁気遮蔽効果はな
い。
By the way, the magnetic fluid 2 is made by stably dispersing fine magnetic particles (ferrite, etc.) whose surfaces have been treated with a surfactant at a high concentration, and does not have a magnetic shielding effect by itself.

コイル4に電流が流れて磁場が印加されると、フエライ
ト粒子が磁場によって配向し、液のすべり方向に従い、
回転する仕事量に変化をきたすため、見かけ粘性が増大
し、ピストン部6の動きを押え振動エネルギーを吸収す
る。
When a current flows through the coil 4 and a magnetic field is applied, the ferrite particles are oriented by the magnetic field and follow the sliding direction of the liquid.
Since the amount of rotational work changes, the apparent viscosity increases, suppressing the movement of the piston part 6 and absorbing vibration energy.

ところで能動除振装置のダンパーとしては、床振動のよ
うな低周波域ではダンピング係数Cを大きく、高周波域
ではダンピング係数Cを小さくすることが望ましい。
By the way, as for the damper of the active vibration isolator, it is desirable to have a large damping coefficient C in a low frequency range such as floor vibration, and a small damping coefficient C in a high frequency range.

ダンピングカFは、F=2πfCA (f :周波数、
A:振幅)である。
The damping force F is F=2πfCA (f: frequency,
A: amplitude).

振動伝達力T,は、第7図に示すように周波数fが高い
とき1/f′に比例して低下するが、一方ダンピング係
数Cが大きいと振動伝達力T,を大きくしてしまう。そ
のため、上記の周波数特性を備え、かつ、大きな振動に
対してはダンピング係数Cを大きくする。即ち、A/f
に比例するようC=αA/f (α:係数)の特性を持
たせることが好ましい。
As shown in FIG. 7, the vibration transmission force T, decreases in proportion to 1/f' when the frequency f is high, but on the other hand, if the damping coefficient C is large, the vibration transmission force T, increases. Therefore, the damping coefficient C is increased for large vibrations while providing the above-mentioned frequency characteristics. That is, A/f
It is preferable to have a characteristic of C=αA/f (α: coefficient) so that it is proportional to .

本発明による磁性流体ダンパー1は、磁性流体2への磁
場の掛けかた、即ち電流の強弱調整によりダンピング係
数Cが制御可能であり、かつ、応答速度が速いので、能
動除振装置の定盤20上のインパルス的な加振力等に対
し瞬時対応可能である。また、コイル4は遮蔽磁気路5
に包囲収納されているので、磁束の漏れを最小限にして
いる。
In the magnetic fluid damper 1 according to the present invention, the damping coefficient C can be controlled by adjusting the magnetic field applied to the magnetic fluid 2, that is, the strength of the current, and the response speed is fast. It is possible to respond instantaneously to impulse-like excitation forces, etc. above 20. The coil 4 also has a shielding magnetic path 5.
The magnetic flux leakage is minimized because the magnetic flux is enclosed within the magnetic field.

[発明の効果] 以上の実施例からも明らかなように、本発明による磁性
流体ダンバーは、遮蔽磁気路に包囲されたコイルと、こ
のコイルと同軸状に設けられたピストン部と、ピストン
部を包囲し、コイルの内部を貫通する非磁性シリンダー
内に充填された磁性流体とから成るので、工作が容易で
、漏洩磁束が少なく、応答速度の速い能動制動子である
ダンバーとなる。
[Effects of the Invention] As is clear from the above embodiments, the magnetic fluid damper according to the present invention includes a coil surrounded by a shielding magnetic path, a piston portion provided coaxially with the coil, and a piston portion. Since it consists of a magnetic fluid filled in a non-magnetic cylinder that surrounds and penetrates the inside of the coil, it becomes an active brake that is easy to work with, has little leakage magnetic flux, and has a fast response speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁性流体ダンバーの断面図、第2
図は本発明による磁性流体ダンバーを使用した能動除振
装置のブ.ロック図、第3図は従来の除振装置による制
動波形の図、第4図は本発明による磁性流体ダンバーを
使用した能動除振装置による制動波形の図、第5図は第
3図によるダンピング力を示す図、第6図は従来の能動
除振装置の構成図、第7図は周波数と振動伝達力の関係
図である。 1 ........磁性流体ダンパー2 .....
...磁性流体 3 ........非磁性シリンダー4 .....
...コイル 5 ........遮蔽磁気路 6 ........ピストン部 7 ........ピストンロツド 8 ........底部空間 9 ........精密機器 1 0 ......能動制動子 2 0 ......定盤 3 0 ......床 4 0 ......架台 5 0 ......受動制動子 6 0 ......センサ 7 0 ......ブリアンプ 8 0 ......制御部 9 0 ......パワーアンプ
FIG. 1 is a sectional view of a magnetic fluid damper according to the present invention, FIG.
The figure shows a block diagram of an active vibration isolator using a magnetic fluid damper according to the present invention. Fig. 3 is a diagram of damping waveforms by a conventional vibration isolator, Fig. 4 is a diagram of damping waveforms by an active vibration isolator using a magnetic fluid damper according to the present invention, and Fig. 5 is a diagram of damping waveforms according to Fig. 3. FIG. 6 is a diagram showing the configuration of a conventional active vibration isolator, and FIG. 7 is a diagram showing the relationship between frequency and vibration transmission force. 1. .. .. .. .. .. .. .. Magnetic fluid damper 2. .. .. .. ..
.. .. .. Magnetic fluid 3. .. .. .. .. .. .. .. Non-magnetic cylinder 4. .. .. .. ..
.. .. .. Coil 5. .. .. .. .. .. .. .. Shield magnetic path 6. .. .. .. .. .. .. .. Piston part 7. .. .. .. .. .. .. .. Piston rod 8. .. .. .. .. .. .. .. Bottom space 9. .. .. .. .. .. .. .. Precision equipment 1 0. .. .. .. .. .. Active brake 20. .. .. .. .. .. Surface plate 30. .. .. .. .. .. Floor 4 0. .. .. .. .. .. Frame 50. .. .. .. .. .. Passive brake 60. .. .. .. .. .. Sensor 70. .. .. .. .. .. Briamp 80. .. .. .. .. .. Control unit 90. .. .. .. .. .. Power Amplifier

Claims (1)

【特許請求の範囲】[Claims] 遮蔽磁気路に包囲されたコイルと、前記コイルと同軸状
に設けられたピストン部と、前記ピストン部を包囲し、
前記コイルの内部を貫通する非磁性シリンダー内に充填
された磁性流体とから成ることを特徴とする磁性流体ダ
ンパー。
a coil surrounded by a shielding magnetic path, a piston part provided coaxially with the coil, and surrounding the piston part,
A magnetic fluid damper comprising: a magnetic fluid filled in a non-magnetic cylinder penetrating the inside of the coil.
JP4890089A 1989-03-01 1989-03-01 Magnetic fluid damper Pending JPH02229935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4890089A JPH02229935A (en) 1989-03-01 1989-03-01 Magnetic fluid damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4890089A JPH02229935A (en) 1989-03-01 1989-03-01 Magnetic fluid damper

Publications (1)

Publication Number Publication Date
JPH02229935A true JPH02229935A (en) 1990-09-12

Family

ID=12816142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4890089A Pending JPH02229935A (en) 1989-03-01 1989-03-01 Magnetic fluid damper

Country Status (1)

Country Link
JP (1) JPH02229935A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320005B3 (en) * 2003-05-06 2004-10-21 Zf Sachs Ag Vibration damper with adjustable damping force comprises a field force-producing element having a part connected to an electricity supply and arranged outside a cylinder for transmitting the field force through the closed cylinder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241539A (en) * 1984-05-12 1985-11-30 Tohoku Metal Ind Ltd Magnetic fluid damper

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60241539A (en) * 1984-05-12 1985-11-30 Tohoku Metal Ind Ltd Magnetic fluid damper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10320005B3 (en) * 2003-05-06 2004-10-21 Zf Sachs Ag Vibration damper with adjustable damping force comprises a field force-producing element having a part connected to an electricity supply and arranged outside a cylinder for transmitting the field force through the closed cylinder

Similar Documents

Publication Publication Date Title
Benassi et al. Active vibration isolation using an inertial actuator with local displacement feedback control
Paulitsch et al. Active vibration control using an inertial actuator with internal damping
US6808051B2 (en) System and method for active vibration isolation and active vibration cancellation
JPS63306183A (en) Vibration control equipment
EP3467339B1 (en) Magnetic systems and tuned dampers for the use of inductance(s) in the insulation of a skyhook magnetic damper
JP2978162B1 (en) Active vibration isolation device
JPH0821482A (en) Vibration insulating device
JPH02229935A (en) Magnetic fluid damper
JP2006177547A (en) Dynamic vibration absorber structure of vibration control device for vehicle
Zhao et al. Design and control of a dual-stage actuation active vibration isolation system
Mikhailov et al. Active vibration isolation of high-vacuum nanotechnology equipment
Sapiński Magnetorheological dampers in vibration control of mechanical structures
JPS63259235A (en) Magnetic fluid damper apparatus
JPH09112628A (en) Magnetic levitation vibration resistant device
Chen Vibration suppression with electromagnetic hybrid vibration isolators
JPH0366952A (en) Vibration control suspension device
Tanaka et al. A study of active vibration isolation
KR100347554B1 (en) Reactive Active Mount with MR Fluids
JPS63152744A (en) Precision vibration removing bed
JPH02190640A (en) Precise vibration-proofing device
JP3292505B2 (en) Active vibration isolator
Zhang et al. Research on magnetic suspended vibration isolation system based on stiffness control under base motion
JP2005121135A (en) Magnetic fluid damper device
JPH05302640A (en) Active vibration isolator
Huang et al. Research on Control System of Magnetic Levitation Compound Vibration Isolation Based on Tracking Differentiator