JPH02229830A - Production of chitosan-based chelate resin - Google Patents

Production of chitosan-based chelate resin

Info

Publication number
JPH02229830A
JPH02229830A JP5108989A JP5108989A JPH02229830A JP H02229830 A JPH02229830 A JP H02229830A JP 5108989 A JP5108989 A JP 5108989A JP 5108989 A JP5108989 A JP 5108989A JP H02229830 A JPH02229830 A JP H02229830A
Authority
JP
Japan
Prior art keywords
chitosan
polyethyleneimine
molded product
acid
aromatic polycarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5108989A
Other languages
Japanese (ja)
Other versions
JPH075739B2 (en
Inventor
Yoshihide Kawamura
佳秀 川村
Itsuo Kurahashi
倉橋 五男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Spinning Co Ltd
Original Assignee
Fuji Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Spinning Co Ltd filed Critical Fuji Spinning Co Ltd
Priority to JP5108989A priority Critical patent/JPH075739B2/en
Publication of JPH02229830A publication Critical patent/JPH02229830A/en
Publication of JPH075739B2 publication Critical patent/JPH075739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a chelate resin having excellent adsorbing ability of various metals and extremely high utility by effects of metal coordination group of carboxyl group produced by introducing an acid anhydride of aromatic polycarboxylic acid to a molded article of chitosan. CONSTITUTION:A molded article of chitosan is reacted with glycidyl ether of aliphatic polyalcohol, with a polyethyleneimine and then with an acid anhydride of aromatic polycarboxylic acid in a polar solvent. A polyethyleneimine having a high content of primary amine as much as possible is preferable as the polyethyleneimine in terms of efficiently introducing the acid anhydride of aromatic polycarboxylic acid to the molded article of chitosan and a polyethyleneimine having 300-100,000 molecular weight is used as the polyethyleneimine.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、優れた各種金属の吸着能を有するキトサン系
キレート樹脂の製造法に関し、本発明で得られたキトサ
ン系キレート樹脂は、極めて汎用性の高いキレート樹脂
として各種金属の吸着回収を行うのに好適なものである
。 κ従来の技術】 本出願人は、先に特願昭63− 198613号に開示
した如く、物質拡散に優れた多孔質キトサン成形物にポ
リエチレンイミンを導入する事により極めて高いイオン
交換容邑を有する陰イオン交換体の製造方法を発明した
。該成形物は、陰イオン交換能のみでなく金属捕集能に
も優れ、各種金属を極めて高能率に吸着回収できる。更
に該キトサン成形物の特徴としては、金属との錯休を形
成する一級,二級,三級アミンを多数有する事から、形
成されるこの種の錯体の特性として一度吸看した金属が
容易に酸性水溶液中で溶離するため、該キトサン成形物
はpHの調整により金属の分離#!製用樹脂として好適
である。しかし該キトサン成形物の配位基としてのアミ
ンが錯体を形成できる金属イオンには、レアメタルとし
て今後応用が期待されるインジウム,イットリウム等が
含まれておらず、より汎用性のあるキレート樹脂を得る
には不適な場合があった。
The present invention relates to a method for producing a chitosan-based chelate resin that has excellent ability to adsorb various metals, and the chitosan-based chelate resin obtained by the present invention can be used as an extremely versatile chelate resin for adsorbing and recovering various metals. It is suitable for κPrior Art As previously disclosed in Japanese Patent Application No. 198613/1983, the present applicant has developed an extremely high ion exchange capacity by introducing polyethyleneimine into a porous chitosan molded product with excellent material diffusion. Invented a method for producing anion exchangers. The molded product has excellent not only anion exchange ability but also metal collection ability, and can adsorb and recover various metals with extremely high efficiency. Furthermore, the chitosan molded product is characterized by the fact that it has many primary, secondary, and tertiary amines that form complexes with metals. Since the chitosan molded product is eluted in an acidic aqueous solution, the metal can be separated by adjusting the pH. It is suitable as a resin for manufacturing. However, the metal ions with which the amine as a coordination group of the chitosan molding can form a complex do not include indium, yttrium, etc., which are expected to be used in the future as rare metals, and a more versatile chelate resin can be obtained. There were cases where it was inappropriate.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明は、上記の方法で得られた金属吸肴能を有する多
孔質キトサン成形物に較べ格段の効果のあるキトサン系
キレート樹脂の製造法を提供することを目的とする。本
発明では、芳香族ポリカルボン酸の酸無水物を導入した
ことにより生ずる力ルボキシル基の金属配位基の効果に
より、上記の方法における欠点を解決したものである。 K課題を解決するための手段】 本発明は、キトサン成形物に脂肪族ポリアルコールのグ
リシジルエーテルを反応させた後、ポリエチレンイミン
を反応させ、次いで極性溶媒中で芳香族ポリカルボン酸
の酸無水物を反応させることを特徴とするキトサン系キ
レート樹脂の製造法に関する。 本発明においては平均分子量が10,000〜230,
000の低分子示キトサンが用いられ、該低分子最キト
サンを酢酸.ジクOル酢酸.蟻酸の単独又は混合物の水
溶液に溶解させ、キトサン酸性溶液とする。キトサン酸
性溶液中のキトサンの濃度は2〜20%(重量)で、取
り扱い易い範囲で自由に選択してよい。該キトサン酸性
溶液からキトサンを再生してキトサン成形物を得るため
には、例えば、孔径0.1〜0. 2511/IIφの
ノズルより圧力下で塩基性凝固浴中に該キトサン酸性溶
液を一定量づつ落下させることにより多孔質粒状キトサ
ンが得られ、又、キトサン酸性溶液を孔径0.1〜0.
 25m/lφのノズルより定吊ボンブで塩基性凝固浴
中に押出し紡出させて再生させるとキトサン繊維が、又
、塩基性凝固浴中にフィルム状に押出し再生させるとキ
トサンフィルムのキトサン成形物が得られる。 塩基性凝固浴中に加えられる塩基性物質としては、水酸
化ナトリウム,水酸化カリウム,炭酸ナトリウム,炭酸
カリウム,アンモニア,エチレンジアミン等のアルカリ
性物質が用いられ、塩基性溶液とするには水、又はメタ
ノール,エタノール等の極性を有するアルコール類、又
は水,アルコールの混合物を上述の塩基性物質に加えて
使用する。 上記のようにして得られたキトサン成形物は、多数の細
孔を具備する多孔質成形物である。 上記のようにして得られたキトサン成形物にポリエチレ
ンイミンを導入するには、キトサン成形物のアミノ基に
対し、詣肪族ボリアルコールのグリシジルエーテルを反
応させ、次いで該成形物にポリエチレンイミンを反応さ
せる。 脂肪族ポリアルコールのグリシジルエーテルとしては、
ポリエチレングリコールグリシジルエーテル及びアルキ
レングリコールジグリシジルエーテルが用いられる。ポ
リエチレングリコールジグリシジルエーテルとしては、
エチレングリコールジグリシジルエーテル,ジエチレン
グリコールジグリシジルエーテル,トリエチレングリコ
ールジグリシジルエーテル等が、またアルキレングリコ
ールジグリシジルエーテルとしては、トリメチレングリ
コールジグリシジルエーテル,テトラメチレングリコー
ルジグリシジルエーテル,ヘキサメチレングリコールジ
グリシジルエーテル等が挙げられる。ポリエチレンイミ
ンとしては特に制限はないが、次工程で芳香族ポリカル
ボン酸の酸無水物を効率よく導入する上で一級アミンの
含有」ができるだけ多い事が望ましい。また分子量は3
00〜100,000の間のものが用いられるが低分子
量の場合、ポリエチレンイミンの分子鎖が短いために交
換容山があまり向上しない事もあり必要な交換容吊に応
じて適宜選択される。 キトサン成形物と脂肪族ポリアルコールのグリシ.ジル
エーテルとの反応は水溶液中で20〜100℃、好まし
くは25〜90℃で1〜24時間ゆるやかな攪拌下で行
われ、脂肪族ポリアルコールのグリシジルエーテルが水
に対して溶解度が低い時にはメタノール,エタノール,
プロバノール,イソブ0ビルアルコール等の極性溶媒を
添加してもよい。 次いで、ポリエチレンイミンとの反応は、脂肪族ポリア
ルコールのグリシジルエーテルを反応させたキトサン成
形体を充分に水洗した後、水溶液中で5〜90℃、好ま
しくは10〜80℃で1〜48時間ゆるやかに攪拌する
ことにより行われる。ポリエチレンイミンは高分子量で
あるのでキトサン成形物の内部に充分に拡散させないと
反応し難いため、所望される陰イオン交換容量に応じて
ポリエチレンイミンの添加量,温度,時間を選択するこ
とだ重要である。反応終了後、充分水洗を行い、交換容
−に優れた多孔質キトサン成形物を得る。該成形物に含
まれる水分をアルコール,ジメチルホルムアミド,ジメ
チルアセトアミド等の極性溶媒で置換し充分取り除いた
後、該極避溶媒中で芳香族ポリカルボン酸の酸無水物を
反応させる。芳香族ポリカルボン酸の酸無水物としては
、無水ピロメリッ1〜酸,無水トリメリッl一酸が用い
られる。 反応条件としては上記成形物1容に対し極性溶媒1〜5
容を加え、成形物の陰イオン交換容吊に対し、無水ピロ
メリッ1〜酸を用いるときは0.2〜20当量、無水1
・リメリッ1・酸を用いるときは0。1〜10当量を添
加し温度10〜50℃,時間1〜48時間で反応させる
。反応終了後、上記極性溶媒で成形物を洗浄した後、充
分水洗することによりキトサン系キレート樹脂が得られ
る。 κ実 施 例】 以下本允明を実施例によって詳細に説明するが、本発明
は実施例記載の範囲に限定されるものではない。尚、陰
イオン交換容it, VJAイオン交換容量.金属イオ
ンの吸着,比表面積.a孔径は次の方法で測定した。 陰イオン交換容吊 試料約50一をカラムに詰めIN−Na叶1文をSV5
0で通液後、脱イオン水で中性になるまで充分水洗する
。メスシリンダーでタッピング法により正確に30d秤
り、空気中のrAMガスを吸収させないように注意しな
がら脱水後、1/5N−HCI 500af)中に投入
してゆるやかに攪拌しながら24時間放置する。 この上澄液を試鋏液とし10i採取し、フェノールフタ
レイン溶液を指示薬として1/10−NaOHで中和滴
定を行って次式でイオン交換容fi (CTV)を求め
た。 a;試験液10dを中和するに要した1/10N−Na
Otlfib;試料を入れる前の1/5N−HCI 1
0−を中和するに要した1/ION−Na011ffi
f1− 1/10N−Na叶の力値 陽イオン交換容吊 試料約50一をカラムに詰め1N−HNO31λをSV
50で通液後、脱イオン水で中性になるまで充分水洗す
る。メスシリンダーでタツビング法により正確に30d
秤り、脱水後1/5N−HaO8 500 ml中に投
入してゆるやかに攪拌しながら24時間放置する。この
上澄液を試験液とし、1〇一採取しメチルレツドブロム
クレゾールグリーン混合液を指示薬として1/ION−
 H2So4で中和滴定を行って次式でイオン交換容徂
(CTV)を求めた。 C;試験液10dを中和するに要した 1/10N− H2So4@ d;試料を入れる前の1/5N−NaO8 10dlを
中和するに要した1/ION− H2SO4mf2: 
1/10N− H2SO4の力価金属イオン吸着 I1度1 , OOOppmの原子吸光用金属標準液を
純水で希釈し、0.1Hのビス(2−ヒドロキシエチル
》イミノートリス(ヒドロキシメチル)メタン水溶液を
加え!1度100ppIl, pH 7.0の試験液を
調製した。 該試験液80dに樹@1dを加え25℃で3日間ゆるや
かに攪拌後、プラズマ発光分光光度計〈セイコー電子工
業■SPS−7000)で吸着残液中の金属イオン!1
度を測定した。 胤』L」』 比表面積測定装置を用いてBET法で測定した。 細  孔  径 成形物を凍結乾燥後、走査型電子Ilj@鏡で測定した
。 実施例1, 脱アセチル化度80%.平均分子148,000のキ]
一サン70gを3.5%酢酸水溶液930gに溶解した
。 該水溶液を圧縮空気と共に吐出し、8%NaOH, 2
0%エタノール,72%水よりなる混合溶液中に落下せ
しめキトサンを粒状に凝固再生し中性になるまで充分水
洗して平均粒径0.3闇φの多孔賀粒状キトサン500
d(?!jlill>を得た。得られた多孔賀粒状キト
サン500d(aim>に水500dとエチレングリコ
ールジグリシジルエーテル50gを加えて60℃で1時
間反応させた。反応終了後、充分水洗する。ポリエチレ
ンイミン( SP−200,平均分子吊io.ooo.
日本触媒化学工業■製)  1509を水350タに溶
解し上記のエチレングリコールジグリシジルエーテルを
反応させた多孔質粒状キトサン4009を加え、25℃
で24時間ゆるやかに攪拌後、70℃に昇温した後3時
間攪拌反応させた。反応終了後、充分水洗し未反応のポ
リエチレンイミンを除去した。陰イオン交換容量を測定
したところ1.3Ileq/一の高い交換容量を有する
ポリエチレンイミン導入多孔質キトサン成形物を得た。 該成形物に含まれる水をジメチルホルムアミドで充分置
換し、成形物100−に対し無水トリメリット酸を11
.5g, 23.0g. 46.09,  184。O
gをそれぞれ添加し室温で32時間、ゆるやかに攪拌し
反応させた。未反応の無水トリメリット酸をジメチルホ
ルムアミドで充分除去後、水洗した。この成形物の比表
面積はそれぞれ約80.5m/9,細孔径は0、05〜
0.20μmで、これら成形物の陽イオン交換容吊を測
定し、結果を第1表に示した。第1表に記載のように最
大1.520IIeQ/一の交換容量を有するキトサン
系キレート樹脂が得られた。 第  1 表 実施例2. 実施例1と同様の方法で得られたポリエチレンイミンを
導入した多孔賀粒・状キトサンに対し、含まれる水をメ
タノールで充分置換後、この多孔質粒状キトサン100
dについて無水ビロメリット酸を夫々13.19, 2
6.29. 52.49,  209.6g添加し室温
で32時間ゆるやかに攪拌し反応させた。未反応の無水
ピロメリット酸をメタノールで充分除去後、水洗した。 この成形物の比表面積はそれぞれ約80.0TIl/9
、細孔径は0.05 〜0.22 umで、これら成形
物の陽イオン交換容量を測定し、その結果を第2表に示
した。第2表に記載のように最大0. 702IleQ
/一の交換容最を有するキトサン系キレート樹脂が得ら
れた。 第2表 性を調べた.その結果を第3表に示した.第3表から明
らかなように、本発明による多孔質キトサン粒状体は、
コバルト,マンガン,インジウム,イットリウム,ラン
タン等の金属イオンに対し優れた吸着性を示した。 以下余白 実施例3. 実施例1及び2の中から陽イオン交換容量が最大であっ
た多孔賀粒状キトサン(実施例1の1.520neq/
一のもの.及び実施例2の0. 702meq/一のも
の)について原子吸光分析用の金属イオン標準液のマン
ガン.インジウム.イットリウム,ランタン,コバルト
,ニッケル.亜鉛の金属イオンについて吸着特性を調べ
た。また比較例として無水ビロメリット酸及び照水トリ
メリット酸を導入する以前のポリエチレンイミンのみを
導入した多孔質粒状キトサンについても各金属イオンの
吸着特第  3 表 r発明の効果】 本κ明によるキトサン成形物に脂肪族ポリアルコールの
グリシジルエーテルを介してポリエチレンイミンを導入
した後、芳香族ポリカルボン酸の酸無水物を反応させた
多孔性キトサン成形物は、キレート能力に優れ特にイン
ジウム,イットリウム.ランタン等の稀少金属と呼ばれ
る重要金属を吸着.回収寸る上で極めて有用である,ま
た本発明の成形物の母体である多孔質キトサン成形物は
大きい比表面積と、合成ll4IIIf系キレート樹脂
と比較して遥かに大きな孔径の多孔構造を有する為、イ
オンの拡散.吸着速度が早く目的物賀の分離・精製及び
樹脂の再生に極めて好適な性能を発揮出来る効果がある
。 試料B; 試料C: 孔質キトサン粒状体 Aに対し更に無水ビロメリット酸を反応させた多孔質キ
トサン粒状体 Aに対し更に無水トリメリット酸を反応させた多孔質キ
トサン粒状体 特許出願人  富士紡績株式会社 代理人 弁理士   大 野 克 躬 代理人 弁理士   大 野 令 子
An object of the present invention is to provide a method for producing a chitosan-based chelate resin that is much more effective than the porous chitosan molded product having metal absorption ability obtained by the above method. In the present invention, the drawbacks of the above methods are solved by the effect of the metal coordination group of the carboxylic group produced by introducing the acid anhydride of aromatic polycarboxylic acid. Means for Solving Problem K] The present invention involves reacting a chitosan molded product with a glycidyl ether of an aliphatic polyalcohol, then reacting it with polyethyleneimine, and then reacting it with an acid anhydride of an aromatic polycarboxylic acid in a polar solvent. The present invention relates to a method for producing a chitosan-based chelate resin, which is characterized by reacting the following. In the present invention, the average molecular weight is 10,000 to 230,
000 low molecular weight chitosan is used, and the low molecular weight chitosan is treated with acetic acid. Dichloroacetic acid. Chitosan is dissolved in an aqueous solution of formic acid alone or as a mixture to obtain an acidic chitosan solution. The concentration of chitosan in the chitosan acidic solution is 2 to 20% (by weight) and may be freely selected within a range that is easy to handle. In order to regenerate chitosan from the chitosan acidic solution and obtain a chitosan molded article, the pore size is, for example, 0.1 to 0. Porous granular chitosan is obtained by dropping the chitosan acidic solution in a fixed amount at a time into a basic coagulation bath under pressure from a 2511/IIφ nozzle.
Chitosan fibers are produced by extrusion and spinning into a basic coagulation bath using a fixed hanging bomb from a 25 m/lφ nozzle, and chitosan molded products of chitosan film are produced by extruding and regenerating a film into a basic coagulation bath. can get. As the basic substance added to the basic coagulation bath, alkaline substances such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, and ethylenediamine are used.To make a basic solution, water or methanol is used. , polar alcohols such as ethanol, or a mixture of water and alcohol in addition to the above-mentioned basic substance. The chitosan molded product obtained as described above is a porous molded product having a large number of pores. In order to introduce polyethyleneimine into the chitosan molded product obtained as described above, the amino groups of the chitosan molded product are reacted with glycidyl ether of aliphatic polyalcohol, and then the polyethyleneimine is reacted with the molded chitosan product. let As glycidyl ether of aliphatic polyalcohol,
Polyethylene glycol glycidyl ether and alkylene glycol diglycidyl ether are used. As polyethylene glycol diglycidyl ether,
Ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, triethylene glycol diglycidyl ether, etc., and alkylene glycol diglycidyl ether such as trimethylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, hexamethylene glycol diglycidyl ether, etc. can be mentioned. Although there are no particular restrictions on the polyethyleneimine, it is desirable to contain as much primary amine as possible in order to efficiently introduce the acid anhydride of aromatic polycarboxylic acid in the next step. Also, the molecular weight is 3
00 to 100,000, but if the molecular weight is low, the exchange capacity may not improve much because the molecular chain of polyethyleneimine is short, so it is selected appropriately depending on the required exchange capacity. Molded chitosan and aliphatic polyalcohol glycerin. The reaction with the glycidyl ether is carried out in an aqueous solution at 20 to 100°C, preferably 25 to 90°C, with gentle stirring for 1 to 24 hours, and when the glycidyl ether of the aliphatic polyalcohol has low solubility in water, methanol ,ethanol,
A polar solvent such as propanol or isobutyl alcohol may be added. Next, the reaction with polyethyleneimine is carried out slowly in an aqueous solution at 5 to 90°C, preferably 10 to 80°C for 1 to 48 hours, after thoroughly washing the chitosan molded product with which the glycidyl ether of aliphatic polyalcohol has been reacted. This is done by stirring. Since polyethyleneimine has a high molecular weight, it is difficult to react unless it is sufficiently diffused into the chitosan molded product, so it is important to select the amount of polyethyleneimine added, temperature, and time depending on the desired anion exchange capacity. be. After the reaction is completed, the product is thoroughly washed with water to obtain a porous chitosan molded product with excellent exchange capacity. After the moisture contained in the molded product is sufficiently removed by replacing it with a polar solvent such as alcohol, dimethylformamide, dimethylacetamide, etc., the acid anhydride of aromatic polycarboxylic acid is reacted in the polar solvent. As the acid anhydride of the aromatic polycarboxylic acid, pyromellitic anhydride 1-acid and trimellitic anhydride 1-acid are used. As for the reaction conditions, 1 to 5 parts of the polar solvent was added to 1 volume of the above molded product.
When using pyromelli anhydride 1 to acid, 0.2 to 20 equivalents, and anhydrous 1
- When using Limerit 1 acid, add 0.1 to 10 equivalents and react at a temperature of 10 to 50°C for 1 to 48 hours. After the reaction is completed, the molded product is washed with the above polar solvent and then thoroughly washed with water to obtain a chitosan-based chelate resin. κ Examples The present invention will be explained in detail below with reference to examples, but the present invention is not limited to the scope described in the examples. In addition, anion exchange capacity it, VJA ion exchange capacity. Adsorption of metal ions, specific surface area. a The pore diameter was measured by the following method. Fill a column with about 50 samples of anion exchange capacity and add 1 sample of IN-Na to SV5.
After passing through the solution at 0, wash thoroughly with deionized water until it becomes neutral. Accurately weigh 30 d with a measuring cylinder using the tapping method, and after dehydrating while being careful not to absorb rAM gas in the air, put it into 1/5N-HCI 500af) and leave it for 24 hours with gentle stirring. This supernatant liquid was used as a test scissors liquid and sampled for 10 hours, and neutralization titration was performed with 1/10-NaOH using phenolphthalein solution as an indicator to determine the ion exchange volume fi (CTV) using the following formula. a; 1/10N-Na required to neutralize 10d of test solution
Otlfib; 1/5N-HCI 1 before adding sample
1/ION-Na011ffi required to neutralize 0-
f1- 1/10 N-Na leaf force value Cation exchange capacity Approximately 50 suspended samples were packed in a column and 1N-HNO31λ was SV
After passing through the solution at a temperature of 50°C, wash thoroughly with deionized water until it becomes neutral. Accurately measure 30d using the tubbing method with a graduated cylinder.
After weighing and dehydrating, the mixture was poured into 500 ml of 1/5N HaO8 and left for 24 hours with gentle stirring. This supernatant liquid was used as a test liquid, and 101 samples were taken, and 1/ION-
Neutralization titration was performed with H2So4, and the ion exchange capacity (CTV) was determined using the following formula. C: 1/10N-H2So4@d required to neutralize 10d of test solution; 1/ION-H2SO4mf2 required to neutralize 10dl of 1/5N-NaO8 before adding the sample:
1/10N-H2SO4 titer metal ion adsorption I1 degree 1, OOOppm metal standard solution for atomic absorption was diluted with pure water, and 0.1H bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane aqueous solution was added. !A test solution with 100 ppIl and pH 7.0 was prepared. To 80 d of the test solution, Tree@1 d was added, and after gently stirring at 25°C for 3 days, a plasma emission spectrophotometer (Seiko Electronics Co., Ltd. SPS-7000) was used. Metal ions in the adsorbed residual liquid! 1
The degree of Seed 'L''' It was measured by the BET method using a specific surface area measuring device. After freeze-drying the molded product, the pore size was measured using a scanning electronic Ilj@mirror. Example 1, degree of deacetylation 80%. average molecular weight of 148,000]
70 g of one sample was dissolved in 930 g of a 3.5% acetic acid aqueous solution. The aqueous solution was discharged with compressed air, and 8% NaOH, 2
Drop the chitosan into a mixed solution consisting of 0% ethanol and 72% water, solidify and regenerate the chitosan into particles, and wash thoroughly with water until it becomes neutral to obtain Pouka granular chitosan 500 with an average particle size of 0.3 mm.
d(?!jlill> was obtained. 500 d of water and 50 g of ethylene glycol diglycidyl ether were added to the obtained pouka granular chitosan 500 d(aim>) and reacted at 60°C for 1 hour. After the reaction was completed, it was thoroughly washed with water. Polyethyleneimine (SP-200, average molecular weight io.ooo.
Nippon Shokubai Chemical Co., Ltd.) 1509 was dissolved in 350 t of water, porous granular chitosan 4009 made by reacting the above ethylene glycol diglycidyl ether was added, and the mixture was heated at 25°C.
After stirring gently for 24 hours, the mixture was heated to 70° C. and reacted with stirring for 3 hours. After the reaction was completed, unreacted polyethyleneimine was removed by thorough washing with water. When the anion exchange capacity was measured, a polyethyleneimine-introduced porous chitosan molded product having a high exchange capacity of 1.3 Ileq/1 was obtained. The water contained in the molded product was sufficiently replaced with dimethylformamide, and 11% of trimellitic anhydride was added to 100% of the molded product.
.. 5g, 23.0g. 46.09, 184. O
g of each were added, and the mixture was gently stirred and reacted at room temperature for 32 hours. After sufficiently removing unreacted trimellitic anhydride with dimethylformamide, the mixture was washed with water. The specific surface area of these molded products is approximately 80.5m/9, and the pore diameter is 0.05~
The cation exchange capacity of these molded products was measured at 0.20 μm, and the results are shown in Table 1. As shown in Table 1, a chitosan-based chelate resin having a maximum exchange capacity of 1.520 IIeQ/1 was obtained. Table 1 Example 2. After sufficiently replacing the water contained in the porous granular chitosan into which polyethyleneimine was introduced in the same manner as in Example 1, the porous granular chitosan 100
Biromellitic anhydride for d is 13.19 and 2, respectively.
6.29. 52.49, 209.6g was added, and the mixture was gently stirred and reacted at room temperature for 32 hours. After sufficiently removing unreacted pyromellitic anhydride with methanol, the mixture was washed with water. The specific surface area of each molded product is approximately 80.0TIl/9
The pore diameter was 0.05 to 0.22 um, and the cation exchange capacity of these molded products was measured, and the results are shown in Table 2. As shown in Table 2, the maximum is 0. 702IleQ
A chitosan-based chelate resin having an exchange capacity of /1 was obtained. The second tabularity was investigated. The results are shown in Table 3. As is clear from Table 3, the porous chitosan granules according to the present invention are
It showed excellent adsorption properties for metal ions such as cobalt, manganese, indium, yttrium, and lanthanum. Margin Example 3 below. Among Examples 1 and 2, pouka granular chitosan had the highest cation exchange capacity (1.520 neq/in Example 1).
One thing. and 0. of Example 2. Manganese, a metal ion standard solution for atomic absorption spectrometry. indium. Yttrium, lanthanum, cobalt, nickel. The adsorption properties of zinc metal ions were investigated. In addition, as a comparative example, porous granular chitosan into which only polyethyleneimine was introduced before biromellitic anhydride and aqueous trimellitic acid was introduced also showed adsorption characteristics of various metal ions. A porous chitosan molded product obtained by introducing polyethyleneimine into the molded product via the glycidyl ether of an aliphatic polyalcohol and then reacting it with an acid anhydride of an aromatic polycarboxylic acid has excellent chelating ability, especially for indium and yttrium. Adsorbs important metals called rare metals such as lanthanum. The porous chitosan molded product, which is extremely useful for recovery purposes, and which is the base material of the molded product of the present invention, has a large specific surface area and a porous structure with a much larger pore diameter than the synthetic 114IIIf-based chelate resin. , diffusion of ions. The adsorption speed is fast, and it has the effect of exhibiting extremely suitable performance for separation and purification of target materials and regeneration of resin. Sample B; Sample C: Porous chitosan granules A made by reacting porous chitosan granules A with biromellitic anhydride. Porous chitosan granules A made by reacting trimellitic anhydride. Patent applicant Fujibo Co., Ltd. Agent, Patent Attorney Masaru Ohno Agent, Patent Attorney Reiko Ohno

Claims (1)

【特許請求の範囲】[Claims] 1、キトサン成形物に脂肪族ポリアルコールのグリシジ
ルエーテルを反応させた後、ポリエチレンイミンを反応
させ、次いで極性溶媒中で芳香族ポリカルボン酸の酸無
水物を反応させることを特徴とするキトサン系キレート
樹脂の製造法。
1. A chitosan-based chelate characterized by reacting a glycidyl ether of an aliphatic polyalcohol with a chitosan molded product, reacting it with polyethyleneimine, and then reacting it with an acid anhydride of an aromatic polycarboxylic acid in a polar solvent. Method of manufacturing resin.
JP5108989A 1989-03-03 1989-03-03 Manufacturing method of chitosan chelate resin Expired - Lifetime JPH075739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108989A JPH075739B2 (en) 1989-03-03 1989-03-03 Manufacturing method of chitosan chelate resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5108989A JPH075739B2 (en) 1989-03-03 1989-03-03 Manufacturing method of chitosan chelate resin

Publications (2)

Publication Number Publication Date
JPH02229830A true JPH02229830A (en) 1990-09-12
JPH075739B2 JPH075739B2 (en) 1995-01-25

Family

ID=12877090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108989A Expired - Lifetime JPH075739B2 (en) 1989-03-03 1989-03-03 Manufacturing method of chitosan chelate resin

Country Status (1)

Country Link
JP (1) JPH075739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368911A (en) * 2019-07-30 2019-10-25 海南师范大学 A kind of preparation method of pyridine functional chitosan absorbent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368911A (en) * 2019-07-30 2019-10-25 海南师范大学 A kind of preparation method of pyridine functional chitosan absorbent

Also Published As

Publication number Publication date
JPH075739B2 (en) 1995-01-25

Similar Documents

Publication Publication Date Title
Yu et al. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals
Zhou et al. Adsorption behavior of Cd2+, Pb2+, and Ni2+ from aqueous solutions on cellulose-based hydrogels
US8110289B2 (en) Sintered body, resin particles and method for producing the same
Phetphaisit et al. Polyacrylamido-2-methyl-1-propane sulfonic acid-grafted-natural rubber as bio-adsorbent for heavy metal removal from aqueous standard solution and industrial wastewater
Xiong et al. Selective recovery of Ag (I) coordination anion from simulate nickel electrolyte using corn stalk based adsorbent modified by ammonia–thiosemicarbazide
He et al. Carboxymethyl chitosan-kaolinite composite hydrogel for efficient copper ions trapping
Gao et al. Development of column-pretreatment chelating resins for matrix elimination/multi-element determination by inductively coupled plasma-mass spectrometry
WO2010122954A1 (en) Metal adsorbent containing chelating polymer
KR101206826B1 (en) Improved preparation of metal ion imprinted microporous polymer particles
CN110801815B (en) Modified cyclodextrin/mesoporous silicon for adsorbing Pb and Cd and application thereof
Siddiqui et al. Synthesis, characterization and ion exchange properties of zirconium (IV) tungstoiodophosphate, a new cation exchanger
JP2003112060A (en) Ion adsorbing resin and ion adsorbing porous material
CN113244895A (en) Preparation method of lithium ion imprinted cross-linked chitosan porous microspheres
Sun et al. A novel modified carboxymethyl cellulose hydrogel adsorbent for efficient removal of poisonous metals from wastewater: Performance and mechanism
Ince et al. Solid tethered imino-bis-propanediol and quaternary amine functional copolymer brushes for rapid extraction of trace boron
Yan et al. Synthesis of microporous cationic hydrogel of hydroxypropyl cellulose (HPC) and its application on anionic dye removal
JP3706842B2 (en) Adsorption method of lithium ion from aqueous solution containing lithium by adsorbent
Zeng et al. Hydrolytically stable foamed HKUST-1@ CMC composites realize high-efficient separation of U (VI)
JPH02229830A (en) Production of chitosan-based chelate resin
US3728103A (en) Method of removing metal values from solution
Nishad et al. Enhancing the metal ion binding characteristics and reversal of selectivity of crosslinked chitosan sorbents through functionalisation for targeted applications
JPH03136A (en) Production of chitosan chelate forming molded body
US20220259075A1 (en) N-alkyl-d-glucamine based macroporous polymeric cryogel for sequestering and/or removing toxic contaminants
CN114367267A (en) Mesoporous composite material and preparation method and application thereof
Qu et al. Preparation and coordination with Hg (II) of sulfur‐and 2‐amino‐pyridine‐containing chelating resin