JPH02229298A - Acrylic flame resistant fiber paper and molded article - Google Patents

Acrylic flame resistant fiber paper and molded article

Info

Publication number
JPH02229298A
JPH02229298A JP4872989A JP4872989A JPH02229298A JP H02229298 A JPH02229298 A JP H02229298A JP 4872989 A JP4872989 A JP 4872989A JP 4872989 A JP4872989 A JP 4872989A JP H02229298 A JPH02229298 A JP H02229298A
Authority
JP
Japan
Prior art keywords
paper
flame
fibers
fiber
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4872989A
Other languages
Japanese (ja)
Inventor
Takeo Matsunase
武雄 松名瀬
Takako Fujiyoshi
藤吉 貴子
Takashi Takada
高田 貴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4872989A priority Critical patent/JPH02229298A/en
Publication of JPH02229298A publication Critical patent/JPH02229298A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To obtain the fiber paper and molded article using a specific sulfur- containing aromatic polymer as a binder, being a specific value or above in oxygen index, having excellent flame retartance, heat resistance and flexibility and having dimensional stability even at high temperature (>=300 deg.C). CONSTITUTION:The aimed fiber paper and molded article using a sulfur- containing aromatic polymer (preferably containing poly-P-phenylenesulfide as main constitutional unit) as a binder and having >=28 oxygen index.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、難燃性に優れかつ耐熱性、可撓性に優れたア
クリル(以下PANと略す)系耐炎化繊維紙および成型
物に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to acrylic (hereinafter abbreviated as PAN)-based flame-resistant fiber paper and molded products that have excellent flame retardancy, heat resistance, and flexibility. It is.

[従来の技術] PAN系耐炎化繊維紙および成型物(以下まぎらわしく
ない時は単に紙と略す)は、耐熱性、難燃性、電気絶縁
性、断熱性に優れおり、電気絶縁材、耐熱パッキン、ガ
スケット、耐熱フィルター断熱材、ハニカム、壁紙、航
空部品など工業材料として有用な材料である。
[Prior art] PAN flame-resistant fiber paper and molded products (hereinafter simply referred to as paper to avoid confusion) have excellent heat resistance, flame retardancy, electrical insulation, and heat insulation properties, and can be used as electrical insulation materials and heat-resistant packing. It is a useful industrial material for gaskets, heat-resistant filter insulation, honeycombs, wallpaper, aviation parts, etc.

PAN系耐炎化繊維としては、特公昭37−4405号
公報、特公昭44−21175号公報で空気耐炎化繊維
、特開昭63−50528号公報で硫黄含有PAN繊維
が知られている。この繊維は、酸素指数+(LOI)が
40以上の高難燃性を有し、さらに耐熱性繊維の中では
伸度も5〜20%と高く柔軟性に富んだ繊維である。し
かし、そのPAN系耐炎化繊維をPAN系耐炎化繊維紙
および成型物として利用する場合、そのような高いLO
Iと柔軟性を活かせるバインダーがなく、商品化に問題
があった。
As PAN-based flame-resistant fibers, air flame-resistant fibers are known in Japanese Patent Publication Nos. 37-4405 and 44-21175, and sulfur-containing PAN fibers are known in JP-A-63-50528. This fiber has high flame retardancy with an oxygen index + (LOI) of 40 or more, and is also a highly flexible fiber with a high elongation of 5 to 20% among heat-resistant fibers. However, when using the PAN-based flame-resistant fiber as PAN-based flame-resistant fiber paper and molded products, such high LO
There was a problem with commercialization because there was no binder that could take advantage of I and flexibility.

本発明者らは、F’ A. N系耐炎化繊維紙および成
型物について、実開昭63−7199号公報で提案した
。この中で既存のバインダーとして、各種バインダーを
紹介した。
The inventors have discovered that F'A. N-based flame-retardant fiber paper and molded products were proposed in Japanese Utility Model Application Publication No. 1983-7199. In this paper, various types of binders were introduced as existing binders.

しかし、既存のバインダーにおいて、例えばアラミド系
フィブリルは高価であり、ポリビニールアルコール系、
PAN系、木パルプ系などの有機系バインダーは難燃性
が低く、山皮およびペンナイトなどの無機系バインダー
は柔軟性が悪く、これらはさらに優れた耐熱性や難燃性
を有するPAN系耐炎化繊維紙および成型物を得るには
十分に満足すべきものではなかった。
However, among existing binders, for example, aramid fibrils are expensive, polyvinyl alcohol-based,
Organic binders such as PAN and wood pulp have low flame retardancy, while inorganic binders such as mountain bark and pennite have poor flexibility. The results were not sufficiently satisfactory for obtaining fiber paper and molded products.

[発明が解決しようとする課題] 本発明者らは、PAN耐炎化繊維紙の難燃性、耐熱性、
柔軟性を活かせるバインダーについて鋭意検討を重ねた
結果、含硫黄芳香族繊維をバインダーとして使用するこ
とにより、前記課題を解消し得る見通しを得て本発明に
到達した。
[Problems to be Solved by the Invention] The present inventors have improved the flame retardancy, heat resistance,
As a result of extensive research into binders that can take advantage of flexibility, the present invention was achieved with the prospect of solving the above problems by using sulfur-containing aromatic fibers as a binder.

[課題を解決するための手段] 本発明は、次の構成を有する。[Means to solve the problem] The present invention has the following configuration.

(1)下記一般式で表わされる化学構造を有する含硫黄
芳香族ポリマをバインダーとし、酸素指数が28以上で
あることを特徴とするアクリル系耐炎化繊維紙および成
型物。
(1) An acrylic flame-resistant fiber paper and a molded article, characterized in that the binder is a sulfur-containing aromatic polymer having a chemical structure represented by the following general formula, and the oxygen index is 28 or more.

(C6 H5  SOX)n − x=0〜2 ■ 含硫黄芳香族ポリマが、含硫黄芳香族繊維であるl
に記載のアクリル系耐炎化繊維紙および成型物。
(C6 H5 SOX) n − x = 0 to 2 ■ The sulfur-containing aromatic polymer is a sulfur-containing aromatic fiber.
The acrylic flame-resistant fiber paper and molded product described in .

(3)含硫黄芳香族繊維が、酸化不融化されている2に
記載のアクリル系耐炎化繊維紙および成型物。
(3) The acrylic flame-resistant fiber paper and molded article according to 2, wherein the sulfur-containing aromatic fiber is oxidized and infusible.

以下さらに本発明を詳述する。The present invention will be further described in detail below.

本発明の素材となるPAN系耐炎化繊維は、空気系耐炎
化繊維や硫黄含有PAN耐炎化繊維を含んでいる。空気
耐炎化繊維は、PAN繊維を空気中、200〜400℃
で反応させることによって得られる繊維であり、PAN
と空気中の酸素が反応し化学構造が環化することによっ
て耐熱性や難燃性が向上する。
The PAN-based flame-resistant fiber that is the material of the present invention includes an air-based flame-resistant fiber and a sulfur-containing PAN flame-resistant fiber. Air flame-retardant fibers are made by heating PAN fibers in the air at 200 to 400°C.
It is a fiber obtained by reacting with PAN
The chemical structure reacts with oxygen in the air and cyclizes, improving heat resistance and flame retardancy.

硫黄含有PAN耐炎化繊維は、PAN繊維を硫黄元素含
有ガス雰囲気中、230〜500℃中で反応させること
によって得られる繊維である。PANと硫黄元素含有ガ
ス中の硫黄元素と反応し硫黄元素環化構造や硫黄架橋構
造によって耐熱性や難燃性が向上する。
Sulfur-containing PAN flame-resistant fibers are fibers obtained by reacting PAN fibers in a sulfur element-containing gas atmosphere at 230 to 500°C. PAN reacts with the sulfur element in the sulfur element-containing gas, and the heat resistance and flame retardance are improved due to the sulfur element cyclized structure and sulfur crosslinked structure.

空気系耐炎化繊維および硫黄含有PAN耐炎化繊維も難
燃性はどちらもLOIが40以上と他の有機繊維例えば
ポリーm−フェニレンフタルアミドのLOIが30など
に比較し高いレベルになる。
Both the air-based flame-resistant fiber and the sulfur-containing PAN flame-resistant fiber have an LOI of 40 or more, which is a higher level than that of other organic fibers such as poly-m-phenylene phthalamide, which has an LOI of 30.

特に、硫黄含有PAN耐炎化繊維の方が、空気耐炎化繊
雑に比較して耐熱性や繊維強度、繊維の靭性が優れーC
いるので、本発明のPAN耐炎化繊維には硫黄含有PA
N耐炎化繊維の方が好ましい。
In particular, sulfur-containing PAN flame-resistant fibers have superior heat resistance, fiber strength, and fiber toughness compared to air flame-resistant synthetic fibers.
Therefore, the PAN flame-resistant fiber of the present invention contains sulfur-containing PA.
N flame-resistant fibers are preferred.

本発明の目的とする高度な耐熱性、難燃性を有する紙を
得るには、耐炎化進行度は高い方が良く、PAN系耐炎
化繊雑の比重は、少なくとも1,3さらに1.4以上が
好ましい。
In order to obtain paper with high heat resistance and flame retardancy, which is the objective of the present invention, it is better to have a higher degree of progress in flame resistance, and the specific gravity of the PAN flame-resistant chemical fiber is at least 1.3, and more than 1.4. is preferred.

また、紙の柔軟性を向上するためには、PAN系耐炎化
繊雑の伸度を高くする必要があり、少なくとも5%、さ
らに好ましくは5〜20%である。
Furthermore, in order to improve the flexibility of paper, it is necessary to increase the elongation of the PAN-based flame-resistant chemical fiber, which is at least 5%, more preferably 5 to 20%.

硫黄含有PAN耐炎化繊維は、各種カッターで0.5〜
lOOmm,好ましくは20mmの短繊維にカットでき
る。また、カットした後各種粉砕機によって、乾式及び
湿式の微細化もできる。
Sulfur-containing PAN flame-resistant fiber can be cut with various cutters from 0.5 to
It can be cut into short fibers of lOOmm, preferably 20mm. Furthermore, after cutting, it can be pulverized using various types of pulverizers, either dry or wet.

次に、含硫黄芳香族(以下SPARと称す)ポリマにつ
いて説明する。
Next, a sulfur-containing aromatic (hereinafter referred to as SPAR) polymer will be explained.

SPARの化学構造は下記の化学構造式を有し、代表的
なものとしてはポリフエニレンスルフィドであり、特に
好ましくはポリーp−フ二二レンスルフィド(以下P 
l) Sと称する)が主な構成単位である。
The chemical structure of SPAR has the following chemical formula, and a typical example is polyphenylene sulfide, particularly preferably poly p-phenylene sulfide (hereinafter referred to as P
l) S) is the main structural unit.

(C6H,  SOx)n− x=0−2 具体的には、PPS,ポリーp−フェニレンスルホオキ
シド、ポリーp−フ二二レンスルホン、およびその共重
合体、またはその変成体である。
(C6H, SOx)n- x=0-2 Specifically, they are PPS, poly p-phenylene sulfoxide, poly p-phenylene sulfone, and copolymers thereof, or modified products thereof.

本発明において、SPAR繊維は前記PAN耐炎化繊維
紙のバインダーとして使用するため、繊度は2d以下、
更に好ましくは0.  3以下さらにこのましくは0.
1以下が好ましい。
In the present invention, since the SPAR fiber is used as a binder for the PAN flame-resistant fiber paper, the fineness is 2d or less,
More preferably 0. 3 or less, more preferably 0.
It is preferably 1 or less.

また、各種の繊度のものを混繊することは更に好ましい
Further, it is more preferable to mix fibers of various finenesses.

SPARの難燃性は、形状によって影響され易い。例え
ば、SPARの1つであるPPSついて樹脂状の場合の
難燃性は高(LOIは44〜53程度であるが、本発明
者の実験によれば例えば15μm程度の厚さのフイルム
では、LOIは25と低くなる。また繊維の場合LOI
は24〜30と繊維径、形態(布、フエルト紐など)に
よって難燃性が影響され易いポリマーであり、PAN耐
炎化繊維紙のバインダーとして本発明者の技術思想では
当初適さないと考えられた。
The flame retardancy of SPAR is easily influenced by shape. For example, PPS, which is one of the SPARs, has high flame retardancy (LOI is about 44 to 53) when it is in the form of a resin, but according to the inventor's experiments, for example, a film with a thickness of about 15 μm has a LOI of about 44 to 53. is as low as 25. Also, in the case of fibers, the LOI
is a polymer whose flame retardance is easily affected by the fiber diameter and form (cloth, felt string, etc.) of 24 to 30, and was initially thought to be unsuitable as a binder for PAN flame-resistant fiber paper according to the technical idea of the present inventor. .

このようなS P A. Rの細い短繊維の製造につい
ては、該特開昭63−152499号で知られている。
Such SPA. The production of R-thin staple fibers is known from JP-A-63-152499.

この繊維の繊度が0、3〜2dは通常の溶融紡糸法で作
ることができ、また、0,3d以下のような細い繊度の
繊維を作るには高分子配列体繊維、ポリマーブレンド、
剥離型繊維、メルトブロー、フラッシュ紡糸などのよう
な溶融紡糸法によって紡糸することができる。
This fiber with a fineness of 0.3 to 2 d can be produced by the usual melt spinning method, and in order to make fiber with a fineness of 0.3 d or less, polymer array fibers, polymer blends, etc.
The fibers can be spun by melt spinning methods such as peelable fibers, melt blowing, flash spinning, and the like.

また、高分子配列体繊維、ポリマーブレンドでは、紡糸
後、高分子配列体の鞘成分の除去が好ましい。
Furthermore, in the case of polymer array fibers and polymer blends, it is preferable to remove the sheath component of the polymer array after spinning.

剥離型繊維では、剥離処理が必要である。また、これら
の繊維は、各種カッターで0.5〜100mm好ましく
は0.5〜20mmの短繊維にカットできる。この短繊
維は更にリファイナーやウオータジェットなどでフィブ
リル化することもできる。また、カットした後各種粉砕
機によって、乾式や湿式の微細化もできる。
Peelable fibers require a peeling treatment. Further, these fibers can be cut into short fibers of 0.5 to 100 mm, preferably 0.5 to 20 mm, using various cutters. These short fibers can also be further fibrillated using a refiner, water jet, or the like. In addition, after cutting, it can be pulverized using various types of pulverizers, either dry or wet.

このようにして得られたSPAR繊維は、非常に細くな
っているので表面積が大きく難燃性が悪く、SPAR繊
維100%で作製した紙のLOIは比較例1に示すよう
に24であった。(難燃性を示す値:LOI=28〜3
2) 次に、前記のようにして得られた該PAN系耐炎化繊維
バインダーの難燃性を解決する手段について説明する。
The SPAR fibers obtained in this way are very thin and have a large surface area and poor flame retardancy, and the LOI of paper made from 100% SPAR fibers was 24 as shown in Comparative Example 1. (Value indicating flame retardancy: LOI=28-3
2) Next, means for solving the flame retardancy of the PAN-based flame-resistant fiber binder obtained as described above will be explained.

通常の紙の難燃性において、LOIがX1容積割合がV
Xの高難燃性ポリマー成分とLOIがY、容積割合がV
Yの低難燃性ポリマーからなる新混合紙の難燃性をZと
するとき、次式のような加成性は成立しない。
In the flame retardancy of ordinary paper, the LOI is X1 and the volume ratio is V
Highly flame-retardant polymer component of X, LOI is Y, and volume ratio is V
When the flame retardance of the new mixed paper made of a low flame retardant polymer of Y is denoted by Z, the additivity as shown in the following equation does not hold.

Z=YVY +XVI      (1)式通常の紙の
場合、高難燃性の紙に少量の低難燃性の繊維を添加する
だけで新混合紙のLOIは急激に低下する。例えば、L
OI=54のPAN系耐炎化繊維に、LOI=19のフ
イブリルアクリル繊維をバインダーとした時の混合紙に
ついて比較例2で実験した結果を第1図に示した。
Z=YVY +XVI Formula (1) In the case of ordinary paper, the LOI of the new mixed paper decreases rapidly just by adding a small amount of low flame retardant fiber to the high flame retardant paper. For example, L
FIG. 1 shows the results of an experiment conducted in Comparative Example 2 on a mixed paper in which a PAN flame-resistant fiber with an OI of 54 and a fibrillar acrylic fiber with an LOI of 19 were used as a binder.

少量のフィブリルアクリル繊維(バインダー)を添加す
ることによって、LOIが急激に低下しアクリル繊維が
7%以上ではLOIは、28以下となる。つまり、可燃
性が増大し、実用性がなくなるという欠点があった。
By adding a small amount of fibrillar acrylic fiber (binder), the LOI decreases rapidly, and when the amount of acrylic fiber is 7% or more, the LOI becomes 28 or less. In other words, there was a drawback that flammability increased and practicality was lost.

フィブリルアクリル繊維の添加率が7%未満では抄造性
が悪くなり、実用的な紙は得られない。
If the addition rate of fibrillar acrylic fibers is less than 7%, papermaking properties will be poor and practical paper will not be obtained.

即ち、フィブリルアクリル繊維をバインダーに使用する
ことは難燃性、抄造性から実用的でないことがわかった
。(LOIを測定する試料を実験的に作製する程度であ
れば、5%のフィブリルアクリル繊維の添加率でも作製
可能であり、比較例105%時のLOIはこのような試
料で測定された)このような傾向は他のポリビニールア
ルコール系や木パルプなどの低難燃性ポリマーのバイン
ダーも同様である。
That is, it has been found that it is not practical to use fibrillar acrylic fibers as a binder due to flame retardancy and papermaking properties. (If a sample for measuring LOI is to be experimentally prepared, it can be prepared even with a fibrillar acrylic fiber addition rate of 5%, and the LOI at 105% in the comparative example was measured with such a sample.) This tendency is similar for other low flame retardant polymer binders such as polyvinyl alcohol and wood pulp.

高難燃性の紙を得るには、(1)式のような加成性が実
現できる様なバインダーをいかに見いだすかにあり、有
機系、無機系、難燃処理天然繊維系、非繊維系(接着剤
、粉末)など各種バインダーについて鋭意検討した。
In order to obtain highly flame-retardant paper, it is necessary to find a binder that can achieve the additivity as shown in formula (1). We conducted extensive research on various binders such as (adhesives and powders).

その結果、驚くべきことに、PAN系耐炎化繊維に難燃
性の低いSPA.R繊維をバインダーとして使用したP
AN系耐炎化繊維紙は、第1図に示すようにSPARバ
インダーの添加率が30%のような高添加率でさえ難燃
性28を示すことを見いだし、実用的なバインダー添加
率8〜20%の場合、LOIが41〜31と非常に高い
難燃性を示すPAN耐炎化繊維紙を得られることが判明
した。
As a result, it was surprisingly found that SPA. P using R fiber as a binder
It was found that AN-based flame-resistant fiber paper exhibits a flame retardancy of 28 even at a high SPAR binder addition rate of 30%, as shown in Figure 1, and a practical binder addition rate of 8 to 20%. %, it has been found that a PAN flame-retardant fiber paper having a very high flame retardance with an LOI of 41 to 31 can be obtained.

第1図は、LOI=54、単糸織度2.8dのPAN系
耐炎化繊維にLOI=24、単糸繊度0.07dのPP
S繊維(SPAR繊維の1種)をバインダーにした場合
のPAN系耐炎化繊維紙のLOIとPPS添加率の関係
を示したものである。
Figure 1 shows PAN flame-resistant fiber with LOI = 54 and single yarn weave of 2.8 d and PP with LOI = 24 and single yarn fineness of 0.07 d.
This figure shows the relationship between the LOI of PAN flame-resistant fiber paper and the PPS addition rate when S fiber (a type of SPAR fiber) is used as a binder.

このようにPAN系耐炎化繊維をSPAR繊維で抄造し
てはじめて高難燃性のPAN系耐炎化繊維紙を得られる
ことが可能となった。
In this way, it has become possible to obtain highly flame-retardant PAN-based flame-resistant fiber paper only by forming the PAN-based flame-resistant fiber with SPAR fiber.

本発明の高性能な難燃性を可能にするには、PAN耐炎
化短繊維とSPAR短繊維の含有率は、SPAR短繊維
の量が全体の3 0 w t%以下、さらには25wt
%以下にすることが好ましい。
In order to enable the high-performance flame retardancy of the present invention, the content of PAN flame-retardant short fibers and SPAR short fibers is such that the amount of SPAR short fibers is 30 wt% or less of the total, and even 25 wt%.
% or less.

つまり、高レベルの難燃性を特徴とするこの紙の難燃性
は、LOIで少な《とも28、好ましくは32以上であ
る。
In other words, the flame retardancy of this paper, which is characterized by a high level of flame retardancy, is at least 28, preferably 32 or higher in LOI.

PAN耐炎化繊維紙にSPAR繊維をバインダーとして
用いることによって、このように高難燃性の紙が得られ
るのは、SPARが極細になって表面積が大きくなるこ
とによって難燃性が急激に低下するが、PAN耐炎化繊
雑にバインダーとして分散されることによって火炎や熱
が分断され、SPAR繊維本来の自己消火性との相乗効
果によるものと考えられる。
By using SPAR fibers as a binder in PAN flame-retardant fiber paper, highly flame-retardant paper can be obtained because the SPARs become extremely fine and their surface area increases, resulting in a rapid decrease in flame retardancy. This is thought to be due to a synergistic effect with the self-extinguishing properties inherent in SPAR fibers, as the flame and heat are separated by being dispersed as a binder in the PAN flame-resistant chemical fiber.

このPAN耐炎化短繊維に細いSPAR短繊維をバイン
ダーとして加えることによって抄紙が非常に容易になる
効果がある。(実施例1)  PAN耐炎化短繊維とS
PAR短繊維を分散させた水中から抄紙する。抄紙する
場合、PAN耐炎化短繊維だけでは、比較例3から分か
るように絡合性がなく抄紙が困難である。。
Adding thin SPAR short fibers as a binder to the PAN flame-resistant short fibers has the effect of making paper making very easy. (Example 1) PAN flame-resistant short fiber and S
Paper is made from water in which PAR staple fibers are dispersed. When making paper, if only PAN flame-resistant short fibers are used, as can be seen from Comparative Example 3, there is no entanglement and it is difficult to make paper. .

良好な抄造性を得るにはS P A. R繊維の含有率
は少なくとも7%であることが好ましい。
To obtain good papermaking properties, SPA. Preferably, the content of R fibers is at least 7%.

また抄紙の分散性が良好なことから難燃性の向上の効果
がある。非常に細いSPAR短繊維は、空気中において
静電気が強く単糸間が付着し分散しにくいにもかかわら
ず、水中においては分散性が非常に良好で、均質な紙を
作製し易いことを見いだした。この性質は、難燃性紙を
作製する上で重要である。前記のように、SPAR繊維
は難燃性が劣るので、分散が悪く紙中に不均一になりど
こかに凝集部分ができると、紙全体の難燃性が低下し本
発明の目的の紙が得られないが、非常に細いSPAR繊
維は水中によく分散する特徴を持ち、難燃性の高いPA
N耐炎化繊維中に均一に分散させることができるので、
紙全体の難燃性向上させることができる効果がある。
In addition, since the dispersibility of paper is good, it has the effect of improving flame retardancy. Although very thin SPAR short fibers have strong static electricity in the air and are difficult to disperse due to the adhesion between single filaments, they have been found to have very good dispersibility in water, making it easy to produce homogeneous paper. . This property is important in making flame retardant paper. As mentioned above, SPAR fibers have poor flame retardancy, so if they are poorly dispersed and become uneven in the paper, and agglomerated areas are formed somewhere, the flame retardance of the paper as a whole will decrease and the paper intended for the purpose of the present invention will not be produced. Although it cannot be obtained, very thin SPAR fibers have the characteristic of dispersing well in water and are highly flame-retardant PA.
Since N can be uniformly dispersed in the flame-resistant fiber,
This has the effect of improving the flame retardancy of the paper as a whole.

抄紙された紙は、乾燥後SPAR短繊維の融点を有する
特徴を活かしSPAR繊維を融点前後の温度で圧着固定
(部分融着)し強度を上げることもできる。また、SP
AR繊維は化学的に安定であり、紙の耐薬品性を向上す
ることができる。
After drying, the strength of the manufactured paper can be increased by taking advantage of the characteristic that the SPAR short fibers have a melting point and fixing the SPAR fibers by pressure (partial fusion) at a temperature around the melting point. Also, SP
AR fibers are chemically stable and can improve the chemical resistance of paper.

本発明の如く、SPAR繊維をバインダーにしたPAN
系耐炎化繊維紙は、このような高レベルの難燃性を有す
るにもかかわらず、他の紙としての特性即ち耐熱性、柔
軟性(可撓性)、電気絶縁性、断熱性、化学安定性、強
度など種々の特性に優れたものである。
PAN using SPAR fiber as a binder as in the present invention
Despite having such a high level of flame retardancy, flame-retardant fiber paper does not have the same properties as other papers, such as heat resistance, flexibility, electrical insulation, heat insulation, and chemical stability. It has excellent properties such as strength and strength.

また、製造工程においてもPAN耐炎化短繊維に細いS
PAR短繊維をバインダーと17で使用することによっ
て均一な抄紙ができ本発明の高性能な紙の実現に到達し
得るものである。 なお、SPAR繊維中の硫黄元素は
、酸化され易く、酸化されることによってボリフエニレ
ンスルホン化、ポリフエニレンスルホキシド化などに変
成するので、SPAR繊維は「不融化」する。
In addition, in the manufacturing process, thin S
By using PAR short fibers as a binder and 17, uniform paper can be made and the high performance paper of the present invention can be achieved. Note that the sulfur element in the SPAR fiber is easily oxidized, and when oxidized, it is transformed into polyphenylene sulfonation, polyphenylene sulfoxide, etc., so that the SPAR fiber becomes "infusible."

本発明の紙を作製する時、不融化したS PAR繊維を
使って紙にする場合とSPAR繊維を使った紙を不融化
する場合、さらにその併用の場合がある。
When producing the paper of the present invention, there are cases where paper is made using infusible SPAR fibers, where paper is made from SPAR fibers, and where both are used in combination.

不融化S P A. R繊維は、未不融化SPAR繊維
に比較し、柔軟性が低下する欠点がある。また抄紙後、
バインダーとしてSPAR繊維を融点以下で軟化させて
固着させるが、不融化SPAR繊維はこの性質を使うこ
とができないので、不融化SP A. R繊帷をバイン
ダーとして使用する場合は、0。3d以下が好ましく、
さらに0.1d以下のように細い繊維を多く含むように
工夫することが望ま【,い。
Infusible SP A. R fibers have the disadvantage of lower flexibility than unfusible SPAR fibers. Also, after paper making,
As a binder, SPAR fibers are softened below their melting point and fixed, but infusible SPAR fibers cannot use this property, so infusible SPAR fibers are used as binders. When using R fiber as a binder, it is preferably 0.3d or less,
Furthermore, it is desirable to devise ways to include many fine fibers such as 0.1 d or less.

更に、不融性付与によって、300°C以Lでも寸法安
定性があり、また化学安定性も良好となるからガスケッ
ト、パッキン、フィルターなどを始めとして種々の用途
にも使用可能である。
Furthermore, by imparting infusibility, it has dimensional stability even at temperatures below 300°C and also has good chemical stability, so it can be used for various purposes such as gaskets, packing, and filters.

未不融化SPAR繊維は、抄紙において不融化SPAR
繊維のような特別な配慮がいらないので本発明に好まし
い。
Unfusible SPAR fibers are used as infusible SPAR fibers in paper making.
It is preferable for the present invention because it does not require special considerations such as fibers.

未不融化SPAR繊維をバインダーにして得られた紙は
、酸化によってSPAR繊維の部分を不融化することが
できる。酸化剤として次亜塩素酸ソーダ、過酸化酢酸、
過マンガン酸カリ、過酸化水素などの水溶液で処理する
ことができる。
Paper obtained using unfusible SPAR fibers as a binder can be made infusible by oxidation. As an oxidizing agent, sodium hypochlorite, acetic acid peroxide,
It can be treated with aqueous solutions such as potassium permanganate and hydrogen peroxide.

このような不融化の例を実施例2に示した。Example 2 shows an example of such infusibility.

本発明は、紙の他に成型物を含んでいる。なお、成型物
の場合は、前記SPARはポリマの状態で使用してもよ
い。
The present invention includes molded products in addition to paper. In the case of a molded product, the SPAR may be used in the form of a polymer.

本発明の考え方と同じ方法でできる成型物としては、紙
の他に例えば不織布、フエルト、シートなどがある。
In addition to paper, molded products that can be made using the same method as the idea of the present invention include, for example, nonwoven fabric, felt, and sheets.

更に、本発明は、本発明の紙および他の成型物から作ら
れる電気絶縁紙、バッテリー用セパレー夕、フィルター
、摩擦材、ガスケット、パッキン、建築用材料、建築内
装材、航空内装材などの成型物が含まれる。
Furthermore, the present invention provides moldings of electrically insulating paper, battery separators, filters, friction materials, gaskets, packings, building materials, architectural interior materials, aviation interior materials, etc. made from the paper of the present invention and other molded products. Contains things.

なお、今までの電気絶縁紙であれば、電気絶縁性と耐熱
性があればよかったが、最近、高層ビルなどの火災や電
気火災がよく発生しているので、その難燃性が重要にな
ってきた。電気火災のように直接的な場合は難燃性が特
に高いことが良いのが勿論であるが、ビルの場合、火が
電気系統の配管内のポリマー絶縁材の燃焼によって広が
るとも言われている。ビル内の火の広がり防止と電気、
火災時の通信動脈の確保(断線を1分でも延命する)は
重要になる。
In the past, electrical insulating paper only needed to be electrically insulating and heat resistant, but recently fires in high-rise buildings and electrical fires have been occurring frequently, so flame retardancy has become important. It's here. Of course, particularly high flame retardance is a good thing in the case of a direct fire, such as an electrical fire, but in the case of a building, it is also said that the fire spreads through the combustion of polymer insulation in the electrical piping. . Preventing the spread of fire within the building and electricity;
Securing communication arteries in the event of a fire (extending the lifespan of disconnections by even one minute) is important.

一方、ビルはハイテクビルとなり、配線が縦横に走り、
配線の加工性即ち可撓性が要求されている。
Meanwhile, the building has become a high-tech building, with wires running criss-crossed.
Workability, ie, flexibility, of wiring is required.

本発明の紙および成型物は、電気絶縁性、耐熱性、可撓
性だけでなくこのようなビル火災用の難燃性に優れた電
気絶縁材としても期待できる。
The paper and molded product of the present invention can be expected to be used as an electrical insulating material that not only has electrical insulation properties, heat resistance, and flexibility, but also has excellent flame retardancy for building fires.

本発明の紙の難燃性、耐熱性、可撓性、電気絶縁性、化
学安定性、不融性などを活かし、建築用材料、建築内装
材、航空内装材、電気絶縁材料、フィルター、バッテリ
ー用セパレー夕、摩擦材、ガスケットなど多くの用途に
利用できる。
By taking advantage of the flame retardancy, heat resistance, flexibility, electrical insulation, chemical stability, and infusibility of the paper of the present invention, it can be used for construction materials, architectural interior materials, aviation interior materials, electrical insulation materials, filters, and batteries. It can be used for many purposes such as separators, friction materials, and gaskets.

以下、本発明によるPAN系耐炎化繊維紙および成型物
の例を実施例、比較例に基づき具体的に説明する。
Examples of the PAN flame-resistant fiber paper and molded product according to the present invention will be specifically described below based on Examples and Comparative Examples.

[実施例] なお、本発明において限界酸素指数(LOI)は、次の
測定法により測定した値である。
[Example] In the present invention, the limiting oxygen index (LOI) is a value measured by the following measuring method.

限界酸素指数(LOI)  二 JIS−K−7201に規定されている測定法に準じて
測定される値であり、さらに具体的には、次の通りであ
る。
Limiting Oxygen Index (LOI) 2 This is a value measured according to the measurement method specified in JIS-K-7201, and more specifically, it is as follows.

測定試料を幅約15mm(長さ約1.OOmm)にカッ
トし、この試料を乾燥後デシケータに保管する。測定時
に試料をデシケータから取出し、LO■測定器の燃焼筒
内の試料固定具に固定する。
The measurement sample is cut into a width of about 15 mm (length of about 1.00 mm), dried, and then stored in a desiccator. At the time of measurement, the sample is taken out from the desiccator and fixed to the sample fixture in the combustion tube of the LO₂ measuring device.

その中に酸素と窒素の混合ガスを11、41./min
の流速で約30秒間流した後、試料の下端に点火し、試
料が3分間以上燃焼し続けるかまたは着火した後5Qm
m以上の燃焼長まで燃え続けるに必要な最低酸素量(A
)と、その時の窒素量(B)とを決定する。その混合ガ
スの総流量に対する酸素流量の割合がLOIであり、次
式で示される。
A mixed gas of oxygen and nitrogen is added in it at 11, 41. /min
After flowing for about 30 seconds at a flow rate of
The minimum amount of oxygen (A
) and the nitrogen amount (B) at that time. The ratio of the oxygen flow rate to the total flow rate of the mixed gas is the LOI, which is expressed by the following equation.

LO l =A/ (A+B)  X 1 0 0一般
的に、LOIが27以下の時可燃性、28〜32の時を
難燃性、33以上を準不燃性と区分されている。
LO 1 =A/ (A+B)

実施例1 繊維長5mm繊度2,8d硫黄含有P A. N耐炎化
短繊維に繊維長5mm繊度0.07dのSPAR(特に
PPS)短繊維をバインダーとして5,10.20,3
0▼Ol%加えて抄造したところ、10%以上では抄造
性は良好であった。抄造した紙を乾燥後プレスで270
℃で加熱し、部分圧着して本発明の耐熱性、難燃性紙を
得た。
Example 1 Fiber length 5mm fineness 2.8d sulfur-containing PA A. 5, 10, 20, 3 using SPAR (especially PPS) short fibers with a fiber length of 5 mm and a fineness of 0.07 d as a binder to N flame-resistant short fibers.
When papermaking was carried out by adding 0▼Ol%, the papermaking properties were good at 10% or more. After the paper is dried, it is pressed to 270
The paper was heated at 0.degree. C. and partially pressed to obtain the heat-resistant, flame-retardant paper of the present invention.

該紙の目付は62〜67g/m2で難燃性のLOIは、
第1図に示す如く各々44.38,31,28であった
。この紙の体積電気導電率を測定したところ3.5X1
013Ω/ c mと良好な電気絶縁性を示した。
The paper has a basis weight of 62 to 67 g/m2 and a flame retardant LOI of
As shown in FIG. 1, they were 44.38, 31, and 28, respectively. The volume electrical conductivity of this paper was measured to be 3.5X1
It exhibited good electrical insulation properties of 0.013Ω/cm.

また、バインダー添加率が5%では抄造性が悪く強度も
低く破れ易いものであった。
Further, when the binder addition rate was 5%, the papermaking properties were poor, the strength was low, and the paper was easily torn.

実施例2 実施例1で得られた紙をさらに次亜塩素酸ソーダ溶液で
95℃x6,Qhr処理した結果、350℃以上でも寸
法変化がなく、不融性となって安定性が向上したが、紙
の可撓性はほとんど変化がなかった。また、難燃性のL
OIは35であった。
Example 2 The paper obtained in Example 1 was further treated with a sodium hypochlorite solution at 95°C for 6 Qhrs. As a result, there was no dimensional change even at 350°C or higher, and the paper became infusible and had improved stability. , there was almost no change in the flexibility of the paper. In addition, flame retardant L
OI was 35.

比較例1 繊維長5mm繊度0.07dのSPAR(特にPPS)
短繊維をバインダー単独で抄造した。抄造した紙を乾燥
後プレスで250℃で加熱し圧着しPPSIOO%紙を
得た。該紙の目付は63g/m2で難燃性のLOIは2
4と非常に低かった。
Comparative Example 1 SPAR (especially PPS) with fiber length 5 mm and fineness 0.07 d
Short fibers were made using only a binder. After drying, the produced paper was heated and pressed at 250° C. in a press to obtain PPSIOO% paper. The paper has a basis weight of 63g/m2 and a flame retardant LOI of 2.
It was very low at 4.

比較例2 繊維長5mrn繊度2.8d硫黄含有PAN耐炎化短繊
維に繊維長5mmのフィブリルアクリル繊維をバインダ
ーとして5.  10.  20,  30vol%加
えて抄造したところ、10%以上で良好に抄造すること
ができた。
Comparative Example 2 Fiber length: 5 mrn Fineness: 2.8 d Sulfur-containing PAN flame-retardant short fibers and fibrillated acrylic fibers having a fiber length of 5 mm were used as a binder.5. 10. When paper-making was carried out by adding 20 or 30 vol%, good paper-making was possible with 10% or more.

抄造した紙を乾燥後プレスで150°Cで加熱して圧着
し、アクリル繊維バインダーのPAN耐炎化紙を得た。
After drying, the produced paper was heated and pressed at 150°C in a press to obtain PAN flame-resistant paper with an acrylic fiber binder.

この紙の難燃性を測定下ところ、LOIは、フィブリル
アクリル繊維の上記添加率の各々に対し第1図に示す如
<30.25,22.21となった。また、バインダー
添加率が5%では抄造性が悪く、強度も低く破れ易いも
のであった。
When the flame retardancy of this paper was measured, the LOI was <30.25 and 22.21 as shown in FIG. 1 for each of the above addition rates of fibrillar acrylic fibers. Further, when the binder addition rate was 5%, the paper formability was poor, the strength was low, and the paper was easily torn.

比較例3 繊維長5mm繊度2.8d硫黄含有P A. N耐炎化
短繊維100%をバインダーなしで抄造したところ、抄
造できなかった。
Comparative Example 3 Fiber length: 5 mm, fineness: 2.8 d, sulfur-containing PA When 100% N flame-resistant short fibers were made into paper without a binder, it was not possible to make paper.

[発明の効果] 本発明に係るP A. N耐炎化繊維は、SPAR繊維
をバインダーと混抄することによってはじめて難燃性が
準不燃性の33以上もあるPAN耐炎化繊維紙および成
型物を得ることができた。このことはSPAR繊維単独
では、LOIが24以下という低い難燃性からは想像し
得ない効果である。
[Effect of the invention] PA according to the present invention. By mixing SPAR fibers with a binder, it was possible to obtain PAN flame-resistant fiber paper and molded products with a flame retardancy of 33 or higher, which is quasi-nonflammable. This is an effect that cannot be imagined from the low flame retardance of SPAR fiber alone, which has an LOI of 24 or less.

また、バインダーもフレキシブルであり、紙および成型
物の可撓性にも優れている。
In addition, the binder is also flexible and has excellent flexibility in paper and molded products.

更に、不融性付与によって、300℃以上でも寸法安定
性があり、かつ化学安定性にも良好となるので用途は著
しく汎用性に優れる。
Furthermore, by imparting infusibility, it has dimensional stability even at temperatures above 300°C and has good chemical stability, making it extremely versatile.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、バインダー繊維の添加率(v01%)と難燃
性:極限酸素指数(LOI)の関係を示すグラフで実施
例1および比較例2のデータをプロットしたものである
。 バインダーヰ雑添加卒( VO1%) 第1図
FIG. 1 is a graph showing the relationship between binder fiber addition rate (v01%) and flame retardance: ultimate oxygen index (LOI), in which the data of Example 1 and Comparative Example 2 are plotted. Binder additive addition (VO1%) Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)下記一般式で表わされる化学構造を有する含硫黄
芳香族ポリマをバインダーとし、酸素指数が28以上で
あることを特徴とするアクリル系耐炎化繊維紙および成
型物。 −(C_6H_5−SOx)_n− x=0〜2
(1) An acrylic flame-resistant fiber paper and a molded article, characterized in that the binder is a sulfur-containing aromatic polymer having a chemical structure represented by the following general formula, and the oxygen index is 28 or more. -(C_6H_5-SOx)_n- x=0~2
(2)含硫黄芳香族ポリマが、含硫黄芳香族繊維である
請求項1に記載のアクリル系耐炎化繊維紙および成型物
(2) The acrylic flame-resistant fiber paper and molded article according to claim 1, wherein the sulfur-containing aromatic polymer is a sulfur-containing aromatic fiber.
(3)含硫黄芳香族繊維が、酸化不融化されている請求
項2に記載のアクリル系耐炎化繊維紙および成型物。
(3) The acrylic flame-resistant fiber paper and molded article according to claim 2, wherein the sulfur-containing aromatic fiber is oxidized and infusible.
JP4872989A 1989-02-28 1989-02-28 Acrylic flame resistant fiber paper and molded article Pending JPH02229298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4872989A JPH02229298A (en) 1989-02-28 1989-02-28 Acrylic flame resistant fiber paper and molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4872989A JPH02229298A (en) 1989-02-28 1989-02-28 Acrylic flame resistant fiber paper and molded article

Publications (1)

Publication Number Publication Date
JPH02229298A true JPH02229298A (en) 1990-09-12

Family

ID=12811380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4872989A Pending JPH02229298A (en) 1989-02-28 1989-02-28 Acrylic flame resistant fiber paper and molded article

Country Status (1)

Country Link
JP (1) JPH02229298A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072519A (en) * 2010-09-29 2012-04-12 Mitsubishi Rayon Co Ltd Acrylic fiber paper and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072519A (en) * 2010-09-29 2012-04-12 Mitsubishi Rayon Co Ltd Acrylic fiber paper and method for producing the same

Similar Documents

Publication Publication Date Title
JP3029872B2 (en) Flexible two-region fibers that are difficult to burn, products made from the two-region fibers, and methods of making
EP2412850B1 (en) Amorphous polyetherimide fiber and heat-resistant fabric
US3235323A (en) Heat-resistant black fibers and fabrics derived from rayon
WO2021111706A1 (en) Polyphenylene ether melt-spun fibers and method for manufacturing same, paper, and textile
US5188896A (en) Batting thermal insulation with fire resistant properties
US5858530A (en) Flexible ignition resistant biregional fiber, articles made from biregional fibers, and method of manufacture
JP7107465B2 (en) Infusible polyphenylene ether fiber, infusible polyphenylene ether molded article, carbon fiber, activated carbon fiber, carbon fiber molded article, activated carbon fiber molded article, and method for producing the same
US5275875A (en) Batting thermal insulation with fire resistant properties
WO2015152082A1 (en) Polyester binder fibers
JP2023171380A (en) Polyphenylene ether melt extrusion molded body and method for producing polyphenylene ether melt extrusion molded body
JPH02229298A (en) Acrylic flame resistant fiber paper and molded article
EP0040833A1 (en) Papery product
JP4160404B2 (en) Two-region fiber with high internal surface area and method for producing the same
JP3669798B2 (en) Flame retardant volume reducing high performance air filter medium and method for producing the same
CN1540047A (en) Method for producing Nano fire resistant and fire retardant fiber
JPS58120818A (en) Production of porous carbon fiber
JP2004285536A (en) Heat-resistant wet nonwoven fabric
WO2023054495A1 (en) Flame-resistant polyphenylene ether molded body, flame-resistant polyphenylene ether fiber molded body, carbon molded body, activated carbon molded body, and manufacturing methods therefor
CN113882032B (en) Double-network organic/inorganic composite aerogel fiber with warm keeping and flame retarding functions and preparation method thereof
JPH01272899A (en) Polyphenylene sulfide fiber paper
JPS58208498A (en) Sheet-like article
El-Naggar et al. Functionalized nanofibers as fire-retardant fabrics
JP2006348439A (en) Conductive acrylic fiber
JPH0454240Y2 (en)
JP2024051375A (en) Polyarylene sulfide fiber and nonwoven fabric made thereof