JPH02228537A - Measurement of young's modulus - Google Patents

Measurement of young's modulus

Info

Publication number
JPH02228537A
JPH02228537A JP5063889A JP5063889A JPH02228537A JP H02228537 A JPH02228537 A JP H02228537A JP 5063889 A JP5063889 A JP 5063889A JP 5063889 A JP5063889 A JP 5063889A JP H02228537 A JPH02228537 A JP H02228537A
Authority
JP
Japan
Prior art keywords
sample
optical fiber
measurement
modulus
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5063889A
Other languages
Japanese (ja)
Inventor
Fumio Suzuki
文生 鈴木
Yoshio Kikuchi
菊地 佳夫
Toru Arikawa
徹 有川
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP5063889A priority Critical patent/JPH02228537A/en
Publication of JPH02228537A publication Critical patent/JPH02228537A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To enable measurement of a Young modulus even for a sample with a shape other than a linear sample by attaching an optical fiber for measurement to a sample comprising a material that will be distorted with the application of an electric field or a magnetic field. CONSTITUTION:After a sample 8 is wound with an optical fiber 2 for measurement, a laser light is emitted from a light source section 1. The laser light emitted from the light source section 1 is coupled to a branching filter 4 with an optical fiber for transmission through a fiber-shaped polarizer 12. A polarization plane of the laser light emitted is made to match a polarization plane of the optical fiber 11. This fiber 11 is coupled to a detector section 6, which is coupled to an amplifier section 7. Then, in the combining filter 5, a reference light is combined with a measuring light varied in phase being transmitted through the sample 8 to generate an interference wave. This interference wave is detected 6 to be sent to the amplifier section 7 and after amplified, it is outputted to detect an amount of a distortion caused in the sample 8.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、電界あるいは磁界を印加した際に歪を生じる
素材からなる試料のヤング率を測定するだめの測定方法
に関する。これにより得られた値は、機械工学、構造力
°学等の分野に幅広く利用される。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for measuring the Young's modulus of a sample made of a material that causes distortion when an electric or magnetic field is applied. The values obtained are widely used in fields such as mechanical engineering and structural mechanics.

「従来の技術」 従来、周知のように、物体のヤング率Eを測定する方法
としては、第6図に示すように、一端を固定した試料S
に、図中矢印で示す応力Tを与え、その時の試料Sの伸
び量εを測定し、次の式■により求めていた。
``Prior art'' As is well known, the method of measuring the Young's modulus E of an object is to use a sample S with one end fixed, as shown in FIG.
A stress T indicated by an arrow in the figure was applied to the sample S, and the elongation amount ε of the sample S at that time was measured and determined by the following formula (2).

E=T/ε・・・・・式■ 「発明が解決しようとする課題J しかしながら、従来のヤング率測定方法は、線状試料に
おけるヤング率測定には適しているものの、試料形状が
例えば円柱状、リング状、パイプ状の試料等、伸び量の
測定が困難な形状の試料については適用し難い問題があ
った。
E=T/ε...Formula ■ "Problem to be Solved by the Invention J" However, although the conventional Young's modulus measurement method is suitable for measuring Young's modulus on a linear sample, There was a problem that it was difficult to apply this method to samples whose shapes made it difficult to measure elongation, such as columnar, ring-shaped, and pipe-shaped samples.

本発明は、上記事情に鑑みてなされたもので、伸び量の
測定が困難な形状の試料であってもヤング率の測定が可
能な測定方法の提供を目的としている。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a measuring method capable of measuring Young's modulus even in a sample having a shape that makes it difficult to measure the amount of elongation.

「課題を解決するための手段」 本発明は、上記問題を解決するための手段として、光源
から出射されたレーザ光を分波器によって参照光と測定
光に分波し、それぞれ参照用光ファイバおよび測定用光
ファイバに導き、電界あるいは磁界を印加した際に歪を
生じる素材からなる試料に上記測定用光ファイバを添設
するとともに、該試料に電界あるいは磁界を印加し、次
いで合波器によって測定用光ファイバの位相変化された
測定光と参照用光ファイバの参照光とを合波し、合波器
にて発生する干渉波から上記試料に生じた歪量を検出し
て試料のヤング率を求めることを特徴とするヤング率の
測定方法である。
"Means for Solving the Problems" As a means for solving the above problems, the present invention demultiplexes a laser beam emitted from a light source into a reference beam and a measurement beam using a demultiplexer, and connects each to a reference optical fiber. The measurement optical fiber is guided to a measurement optical fiber, and the measurement optical fiber is attached to a sample made of a material that causes distortion when an electric or magnetic field is applied, and an electric or magnetic field is applied to the sample. The phase-changed measurement light of the measurement optical fiber and the reference light of the reference optical fiber are combined, and the amount of strain generated in the sample is detected from the interference wave generated by the multiplexer, and the Young's modulus of the sample is determined. This is a method for measuring Young's modulus, which is characterized by determining the Young's modulus.

「作用 」 電界あるいは磁界を印加した際に歪を生じる素材からな
る試料に、測定用光ファイバを添設し、試料に電界ある
いは磁界を印加して試料に歪を生じさせ、この歪を光フ
ァイバの干渉を利用して検出するので、線状試料以外の
形状の試料であってもヤング率の測定を行うことができ
る。
``Action'' An optical fiber for measurement is attached to a sample made of a material that causes strain when an electric or magnetic field is applied, and an electric or magnetic field is applied to the sample to cause strain in the sample, and this strain is transferred to the optical fiber. Since the detection is performed using interference, Young's modulus can be measured even for samples having shapes other than linear samples.

以下、本発明方法について、第1図を用いて詳しく説明
する。
Hereinafter, the method of the present invention will be explained in detail using FIG. 1.

第1図は、本発明方法の一例を実施するに好適に使用さ
れる測定装置を示す図である。
FIG. 1 is a diagram showing a measuring device suitably used to carry out an example of the method of the present invention.

この測定装置は、レーザ光を出射する光源部1と、出射
されたレーザ光を測定光と参照先に分波してそれぞれ測
定用光ファイバ2と参照用光ファイバ3に導く分波器4
と、測定用光ファイバ2と参照用光ファイバ3を合波結
合させる合波器5と、この合波器5にて発生ずる干渉波
を検出する検出部6と、検出部6からの電気信号を増幅
するアンプ部7とを主な要素として構成されており、全
体としてマツハツエンダ干渉計と同等の構成になってい
る。
This measurement device includes a light source section 1 that emits a laser beam, and a demultiplexer 4 that separates the emitted laser beam into a measurement beam and a reference destination and guides them to a measurement optical fiber 2 and a reference optical fiber 3, respectively.
, a multiplexer 5 that combines the measurement optical fiber 2 and the reference optical fiber 3, a detection unit 6 that detects the interference waves generated by the multiplexer 5, and an electric signal from the detection unit 6. The main element is an amplifier section 7 that amplifies the , and the overall structure is the same as that of the Matsuhatsu Ender interferometer.

この例において使用される試料8は、磁界を印加した際
に歪が生じる素材(以下、磁歪材料という)からなるリ
ング状のものが使用され、この試料8には、外周面に上
記測定用光ファイバ2が数回巻き付けられる。
The sample 8 used in this example is a ring-shaped one made of a material that causes strain when a magnetic field is applied (hereinafter referred to as magnetostrictive material). Fiber 2 is wound several times.

なお、このリング状の試料8は、磁歪材料からなるテー
プを円柱体に多数回巻き付けて固めた後、円柱体を取り
外して作製されたものであるが、試料8としてはこれに
限定されることなく、パイプ状、柱状、棒状などの様々
な形状の試料をも用いることができる。第2図および第
3図は、試料の形状の他の例を示す図である。第2図イ
こ示す試料9は、磁歪材料からなる角柱状材料である。
Note that this ring-shaped sample 8 was produced by wrapping a tape made of magnetostrictive material around a cylindrical body many times and hardening it, and then removing the cylindrical body, but the sample 8 is not limited to this. It is also possible to use samples in various shapes such as pipes, columns, and rods. FIGS. 2 and 3 are diagrams showing other examples of sample shapes. The sample 9 shown in FIG. 2 is a prismatic material made of magnetostrictive material.

このような角柱状の試料9に測定用光ファイバ2を添設
するには、この磁界に示すように試料9の表面に該ファ
イバを接着する方法が好ましい。また第3図に示す試料
lOは円柱状試料で、この試料IOに測定用光ファイバ
2を添設するには、外周面に多数回巻回するのが好まし
い。
In order to attach the measurement optical fiber 2 to such a prismatic sample 9, it is preferable to adhere the fiber to the surface of the sample 9 as shown in this magnetic field. Further, the sample IO shown in FIG. 3 is a cylindrical sample, and in order to attach the measurement optical fiber 2 to this sample IO, it is preferable to wind the optical fiber 2 around the outer circumferential surface a large number of times.

上記磁歪材料としては、ニッケル、鉄・ニッケル系合金
、鉄・ニッケル・コバルト系合金、鉄・ケイ素・アルミ
系合金、フェライト等の材料が、測定を行うに好適とな
る。
As the magnetostrictive material, materials such as nickel, iron/nickel alloy, iron/nickel/cobalt alloy, iron/silicon/aluminum alloy, ferrite, etc. are suitable for measurement.

なお、この例では、試料8の材料として磁歪材料を用い
たが、電界を印加した際に歪を生じる素材(以下、電歪
材料という)からなる試料であってもヤング率測定を行
うことができる。この電歪材料を用いてヤング率測定を
行う場合には、測定用光ファイバ2を添設した試料に電
界を印加することによって測定が行なわれる。この電歪
材料としては、水晶、ロッシェル塩、リン酸二水素カリ
ウム(KDP)、ニオブ酸リチウム、チタン酸バリウム
、リン酸二水素アンモニウム(A D P )等の材料
が好適に用いられる。
In this example, a magnetostrictive material was used as the material for sample 8, but Young's modulus measurements can also be performed on samples made of materials that produce strain when an electric field is applied (hereinafter referred to as electrostrictive materials). can. When Young's modulus is measured using this electrostrictive material, the measurement is performed by applying an electric field to the sample to which the measurement optical fiber 2 is attached. As this electrostrictive material, materials such as quartz crystal, Rochelle salt, potassium dihydrogen phosphate (KDP), lithium niobate, barium titanate, ammonium dihydrogen phosphate (A DP ), etc. are preferably used.

そして第1図に示す測定装置を用い、試料8のヤング率
を測定するには、試料8に測定用光ファイバ2を巻き付
けた後、光源部1からレーザ光を出射する。光源部から
出射されたレーザ光は、伝送用光ファイバIIにより、
ファイバ形偏光子12を介して分波器4に結合される。
To measure the Young's modulus of the sample 8 using the measuring apparatus shown in FIG. 1, the optical fiber 2 for measurement is wound around the sample 8, and then a laser beam is emitted from the light source section 1. The laser light emitted from the light source is transmitted through the transmission optical fiber II.
It is coupled to the demultiplexer 4 via a fiber polarizer 12.

出射されたレーザ光は、ファイバ形偏光子12によって
その偏波面を伝送用光ファイバ11の偏波面に一致さけ
られる。
The emitted laser beam has its polarization plane matched with the polarization plane of the transmission optical fiber 11 by the fiber polarizer 12 .

分波器4に送られたレーザ光は、参照光と測定光とに分
波され、それぞれ参照用光ファイバ3と、測定用光ファ
イバ2とIこ導かれる。
The laser beam sent to the demultiplexer 4 is demultiplexed into a reference beam and a measurement beam, which are respectively guided to a reference optical fiber 3 and a measurement optical fiber 2.

測定用光ファイバ2は、上述したように試料8に巻き付
けられ、一方、参照用光ファイバには、温度変化などの
測定環境の変化による位相変化を補償するための位相補
償器12が取り付けられている。
The measurement optical fiber 2 is wound around the sample 8 as described above, while the reference optical fiber is equipped with a phase compensator 12 for compensating for phase changes due to changes in the measurement environment such as temperature changes. There is.

測定用光ファイバ2が巻き付けられた試料8には、発振
器14で発振された交流磁界が印加される。この発振器
14は、アンプ部7に接続されており、アンプ部7から
の発振信号によって所定の周波数および磁力の交流磁界
が発振されるようになっている。そして試料8は、この
交流磁界を印加されて歪を生じ、この試料8に巻回され
た測定用光ファイバ2にも歪が加わることにより、測定
光に位相変化を生じる。
An alternating current magnetic field oscillated by an oscillator 14 is applied to the sample 8 around which the measurement optical fiber 2 is wound. This oscillator 14 is connected to the amplifier section 7, and is adapted to oscillate an alternating current magnetic field of a predetermined frequency and magnetic force in response to an oscillation signal from the amplifier section 7. The sample 8 is strained by the application of this alternating magnetic field, and the measurement optical fiber 2 wound around the sample 8 is also strained, causing a phase change in the measurement light.

測定用光ファイバ2は、試料8を経て、合波器5にて再
び参照用光ファイバ3と接合し、−本の伝送用光ファイ
バ11となる。この伝送用光ファイバ11は検出部6と
結合し、この検出部6はアンプ部7と結合されている。
The measurement optical fiber 2 passes through the sample 8 and is again joined to the reference optical fiber 3 at the multiplexer 5, thereby becoming -1 transmission optical fiber 11. This transmission optical fiber 11 is coupled to a detection section 6, and this detection section 6 is coupled to an amplifier section 7.

上記合波器5においては、参照光と、試料8を通過して
位相変化された測定光を合波することにより干渉波が生
じる。発生した干渉波は検出部6で検出され、更に電気
変換されてアンプ部7に送られる。アンプ部7では、こ
の電気信号を増幅して出力され、試料8に生じた歪の1
が検出される。
In the multiplexer 5, interference waves are generated by combining the reference light and the measurement light whose phase has been changed after passing through the sample 8. The generated interference wave is detected by the detection section 6, further electrically converted, and sent to the amplifier section 7. The amplifier section 7 amplifies and outputs this electrical signal, and removes 1 of the distortion generated in the sample 8.
is detected.

先の測定装置において、光源IIには、レーザダイオー
ドが用いられ、好適には干渉性の高いDFI3(分布帰
還形)レーザが用いられる。
In the above measuring device, a laser diode is used as the light source II, preferably a DFI3 (distributed feedback) laser with high coherence.

また伝送用光ファイバ11、参照用光ファイバ3、測定
用光ファイバ2に用いられる先ファイバは、通常用いら
れる石英系の単一モード光ファイバでも良いが、好適に
は偏波安定性を向上させた偏波面保持光ファイバ(複屈
折光ファイバ)が用いられる。この偏波面保持光ファイ
バとしては、応力付与型のものが好適であるが、楕円コ
ア型、楕円ブラッド型、矩形コア型等でもよい。これら
伝送用光フアイバ11等には、光ファイバ裸線に熱硬化
シリコン樹脂、UV硬化樹脂等により一次被覆された光
フアイバ索線、もしくはこれにナイロン樹脂等により二
次被覆された光フアイバ心線等が好適に用いられる。
Further, the end fibers used for the transmission optical fiber 11, the reference optical fiber 3, and the measurement optical fiber 2 may be commonly used quartz-based single mode optical fibers, but preferably fibers with improved polarization stability are used. A polarization-maintaining optical fiber (birefringent optical fiber) is used. A stress-applying type optical fiber is suitable as this polarization maintaining optical fiber, but an elliptical core type, an elliptical blood type, a rectangular core type, etc. may also be used. These transmission optical fibers 11 and the like include optical fiber cables in which bare optical fibers are primarily coated with a thermosetting silicone resin, UV curing resin, etc., or optical fiber cables in which the bare optical fibers are coated with a second coating with a nylon resin, etc. etc. are preferably used.

ファイバ形偏光子12には、応力付与型偏波面保持光フ
ァイバをコイル状に巻いたコイル影ファイバ偏光子等が
好適に用いられる。また、分波器4および合波器5には
、偏波面保持光カブラ等が好適に用いられる。
As the fiber-type polarizer 12, a coiled shadow fiber polarizer or the like in which a stress-applied polarization-maintaining optical fiber is wound into a coil shape is preferably used. Furthermore, for the demultiplexer 4 and the multiplexer 5, a polarization maintaining optical coupler or the like is suitably used.

検出部6には、フォトダイオード等が用いられ、アンプ
部7には、ロックインアンプなどが用いられる。
A photodiode or the like is used for the detection section 6, and a lock-in amplifier or the like is used for the amplifier section 7.

この例による測定方法においては、印加磁界の周波数を
変調していき、アンプ部7からの出力(干渉計出力)の
変化を観測し、試料8に特有の共振点を確認し、n次の
共振周波数(「n)を求めることにより、次の弐〇によ
りヤング率(E)が求められる。
In the measurement method according to this example, the frequency of the applied magnetic field is modulated, the change in the output from the amplifier unit 7 (interferometer output) is observed, the resonance point specific to the sample 8 is confirmed, and the n-th resonance By determining the frequency ('n), the Young's modulus (E) can be determined using the following 2〇.

(ただし、Dは試料の平均直径、ρは試料の密度である
。) この例によるヤング率の測定方法では、磁歪材料からな
る試料8に測定用光ファイバ2を添設し、試料8に磁界
を印加して試料に歪を生じさせ、この歪を光ファイバの
干渉を利用して検出するので、線状試料以外の形状の試
料であってもヤング率の測定を行うことができる。
(However, D is the average diameter of the sample, and ρ is the density of the sample.) In the method for measuring Young's modulus in this example, an optical fiber 2 for measurement is attached to the sample 8 made of a magnetostrictive material, and a magnetic field is applied to the sample 8. is applied to cause strain in the sample, and this strain is detected using optical fiber interference, so Young's modulus can be measured even for samples with shapes other than linear samples.

また光ファイバの干渉を利用してヤング率の測定を行う
ので、試料8に応力を与える必要がなく、応力発生器が
不要となる。
Furthermore, since Young's modulus is measured using optical fiber interference, there is no need to apply stress to the sample 8, and no stress generator is required.

また光ファイバの干渉を利用してヤング率の測定を行う
ので、波長オーダの歪を検出することができ、非常に高
精度の計測を行うことができる。
Furthermore, since the Young's modulus is measured using optical fiber interference, it is possible to detect distortions on the order of wavelengths, making it possible to perform measurements with very high precision.

「実施例」 試料として磁性体を用いた。この磁性体には幅251m
、肉厚(1)が25μmの米国アライド社製メタリック
ガラステープ2605COを、第4図に示すようにリン
グ状に巻回して試料として用いた。
"Example" A magnetic material was used as a sample. This magnetic body has a width of 251m.
A metallic glass tape 2605CO manufactured by Allied, Inc. in the United States having a wall thickness (1) of 25 μm was wound into a ring shape as shown in FIG. 4 and used as a sample.

これは、鉄、コバルト、はう素、けい素を溶融状態から
急冷して得られたアモルファス状のメタリックガラステ
ープである。このテープをリング状に巻回して3種類の
試料(A、B、C)を作製した。試料Aは、第4図の図
中符号Diの寸法が107n+e、 D 。
This is an amorphous metallic glass tape obtained by rapidly cooling iron, cobalt, boron, and silicon from a molten state. This tape was wound into a ring shape to produce three types of samples (A, B, and C). Sample A has dimensions of 107n+e and D as indicated by the symbol Di in FIG.

が1171111(平均直径112mm)、BはD i
= 52a+m、Do=82a+m(平均直径57mm
)、CはD i= 25+mSD o= 35mm(平
均直径30■)とした。
is 1171111 (average diameter 112mm), B is D i
= 52a+m, Do=82a+m (average diameter 57mm
), and C was set to D i = 25 + mSD o = 35 mm (average diameter 30 ■).

また測定装置としては第1図に示す構成の測定装置を用
いた。この装置の光源部としては、波長1.3μmのD
FBレーザダイオードを使用し、光の出力が−4,5d
Bmの偏光波を出射させた。この偏波光は、消光比38
dBのファイバ形偏光子によりシングルモードHE 1
1の偏波光とされた。
Further, as a measuring device, a measuring device having the configuration shown in FIG. 1 was used. The light source of this device is D
Uses FB laser diode, light output is -4.5d
A polarized light wave of Bm was emitted. This polarized light has an extinction ratio of 38
Single mode HE 1 with dB fiber polarizer
1 polarized light.

この際、ファイバ形偏光子としては、応力付与型の偏波
面保持光ファイバを直径50mmのコイル上に巻いて製
作したものを使用した。分波器、合波器として、偏波面
保持光カブラを用いて参照光と測定光に分波もしくは合
波をした。
At this time, the fiber-type polarizer used was one manufactured by winding a stress-applied polarization-maintaining optical fiber onto a coil having a diameter of 50 mm. A polarization-maintaining optical coupler was used as a demultiplexer and multiplexer to separate or combine the reference light and measurement light.

伝送用光ファイバ、参照用光ファイバ、測定用光ファイ
バには、応力付与型光ファイバを用い、クラツド径12
5μm、被覆材料は紫外線硬化樹脂、被覆径400μ霞
のものを用いた。また検出部としては、フォトダイオー
ドを用い、アンプ部としでは、ロックインアンプを用い
た。
The transmission optical fiber, reference optical fiber, and measurement optical fiber are stress-applied optical fibers with a cladding diameter of 12
The coating material used was an ultraviolet curing resin and the coating diameter was 400 μm. A photodiode was used as the detection section, and a lock-in amplifier was used as the amplifier section.

この装置を用い、上述の試料A、B、Cに測定用光ファ
イバを巻き付け、2.l]5x to−’o eの交流
磁界を印加し、その周波数を100Hz −100KH
zの範囲で変調させ、干渉計出力変化を測定した。その
結果を第5図に示す。
Using this device, wind the optical fiber for measurement around the above-mentioned samples A, B, and C; 2. l] Apply an alternating magnetic field of 5x to'o e, and set the frequency to 100Hz -100KH.
It was modulated in the z range and the change in interferometer output was measured. The results are shown in FIG.

第5図に示すように、試料A、B、C共に鋭い共振点が
現れ、その共振周波数は、試料AがI 2 K tl 
z 。
As shown in FIG. 5, sharp resonance points appear in samples A, B, and C, and the resonance frequency of sample A is I 2 K tl
z.

Bが23HIz、Cが44KHzであった。また使用し
た試料の密度は7.5.x lO’Kg/i3であった
B was 23 HIz and C was 44 KHz. The density of the sample used was 7.5. x lO'Kg/i3.

以上のデータと前述した式■とがら各試料のヤング率を
求めた。結果は、 試料All 、3 X l O”87m”試料B :1
.3 X I O”N/+*”試料C:1.3X10”
N/a” であった。
The Young's modulus of each sample was determined using the above data and the equation (2) above. The results are: Sample All, 3 X l O"87m" Sample B: 1
.. 3 X I O"N/+*"Sample C: 1.3X10"
It was "N/a".

「発明の効果J 本発明(こよるヤング率の測定方法では、−磁界あるい
は電界を印加した際に歪を生じる素材からなる試料に測
定用光ファイバを添設し、試料゛に磁界あるいは電界を
印加して試料に歪を生じさせ、この歪を光ファイバの干
渉を利用して検出するので、線状試料以外の形状の試料
であってもヤング率の測定を行うことができる。
"Effect of the Invention J In the method of measuring Young's modulus according to the present invention, an optical fiber for measurement is attached to a sample made of a material that causes distortion when a magnetic field or an electric field is applied, and a magnetic field or an electric field is applied to the sample. Since the strain is applied to the sample and this strain is detected using the interference of the optical fiber, Young's modulus can be measured even for samples having shapes other than linear samples.

また光ファイバの干渉を利用してヤング率の測定を行う
ので、試料に応力を与える必要がなく、応力発生器が不
要となる。
Furthermore, since Young's modulus is measured using optical fiber interference, there is no need to apply stress to the sample, and no stress generator is required.

また光ファイバの干渉を利用してヤング率の測定を行う
ので、波長オーダの歪を検出することができ、非常に高
精度の計測を行うことができる。
Furthermore, since the Young's modulus is measured using optical fiber interference, it is possible to detect distortions on the order of wavelengths, making it possible to perform measurements with very high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するに好適な測定装置の例を示す
概略構成図、第2図および第3図は試料形状の他の例を
示す斜視図、第4図は実施例において使用した試料を示
す斜視図、第5図は実施例の周波数特性を示すグラフ、
第6図は、従来のヤング率測定方法を説明するための概
略側面図である。 参照用光ファイバ 4・・・分波器、5・・・合波器、
6・・・検出部、7・・・アンプ部、8,9.10・・
・試料。
Fig. 1 is a schematic configuration diagram showing an example of a measuring device suitable for carrying out the present invention, Figs. 2 and 3 are perspective views showing other examples of sample shapes, and Fig. 4 is a measurement device used in the examples. A perspective view showing the sample, FIG. 5 is a graph showing the frequency characteristics of the example,
FIG. 6 is a schematic side view for explaining a conventional Young's modulus measurement method. Reference optical fiber 4... Demultiplexer, 5... Multiplexer,
6...Detection section, 7...Amplifier section, 8,9.10...
·sample.

Claims (1)

【特許請求の範囲】[Claims] 光源から出射されたレーザ光を分波器によって参照光と
測定光に分波し、それぞれ参照用光ファイバおよび測定
用光ファイバに導き、電界あるいは磁界を印加した際に
歪を生じる素材からなる試料に上記測定用光ファイバを
添設するとともに、該試料に電界あるいは磁界を印加し
、次いで合波器によって測定用光ファイバの位相変化さ
れた測定光と参照用光ファイバの参照光とを合波し、合
波器にて発生する干渉波から上記試料に生じた歪量を検
出して試料のヤング率を求めることを特徴とするヤング
率測定方法。
A sample made of a material that causes distortion when an electric or magnetic field is applied to the laser beam emitted from the light source, which is split into a reference beam and a measurement beam by a demultiplexer and guided to a reference optical fiber and a measurement optical fiber, respectively. The measurement optical fiber is attached to the sample, and an electric or magnetic field is applied to the sample. Then, a multiplexer combines the phase-changed measurement light of the measurement optical fiber and the reference light of the reference optical fiber. A method for measuring Young's modulus, characterized in that the Young's modulus of the sample is determined by detecting the amount of strain generated in the sample from the interference waves generated by a multiplexer.
JP5063889A 1989-03-02 1989-03-02 Measurement of young's modulus Pending JPH02228537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5063889A JPH02228537A (en) 1989-03-02 1989-03-02 Measurement of young's modulus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5063889A JPH02228537A (en) 1989-03-02 1989-03-02 Measurement of young's modulus

Publications (1)

Publication Number Publication Date
JPH02228537A true JPH02228537A (en) 1990-09-11

Family

ID=12864501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5063889A Pending JPH02228537A (en) 1989-03-02 1989-03-02 Measurement of young's modulus

Country Status (1)

Country Link
JP (1) JPH02228537A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535667A (en) * 1999-01-29 2002-10-22 ドイッチェ テレコム アーゲー Sensor and method for detecting a change in distance
JP2009270859A (en) * 2008-05-01 2009-11-19 Yazaki Corp Distortion measuring device of optical waveguide means

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535667A (en) * 1999-01-29 2002-10-22 ドイッチェ テレコム アーゲー Sensor and method for detecting a change in distance
JP2009270859A (en) * 2008-05-01 2009-11-19 Yazaki Corp Distortion measuring device of optical waveguide means

Similar Documents

Publication Publication Date Title
EP0104943B1 (en) Stabilized fiber optic sensor
US4442350A (en) Fiber optic sensor with enhanced immunity to random environmental perturbations
CN103616570B (en) A kind of self-correcting photoelectric integration electric-field sensor system
CN110470240A (en) A kind of optical fiber curvature measurement sensor and preparation method thereof, measuring system
Westerveld et al. Characterization of integrated optical strain sensors based on silicon waveguides
DE3311809A1 (en) Interferometric calibratable Fabry-Perot sensor system with birefringent monomode optical fibre
CN110850144B (en) Voltage sensing measurement device and method based on multi-longitudinal-mode self-mixing effect
Nascimento et al. Vibration and magnetic field sensing using a long-period grating
JPH02228537A (en) Measurement of young's modulus
Li et al. A highly sensitive curvature sensor based on omega-shaped long-period fiber grating
JP2001503140A (en) Sensor device having polarization maintaining fiber
Ky et al. Optical performance of miniature all-fiber phase modulators with ZnO coating
Rao et al. Comparison between optically excited vibrations of silicon cantilever and bridge microresonators
Liu et al. A temperature-insensitive multipoint displacement sensing system based on fiber macro-bending loss
Wang et al. Temperature-insensitive, wide-range optical fiber vibration sensor based on dispersion-compensated fiber
Kist et al. The Fiber Fabry-Perot And Its Applications As A Fiber-Optic Sensor Element.
JPH11352158A (en) Optical fiber measuring instrument
Murphy et al. Elliptical-core, dual-mode, optical fiber strain and vibration sensors for composite material laminates
Khlybov et al. Measurement of Coil Deformation in Pulsed High Magnetic Field Using a Fiber Optic Interferometer
Sinha et al. Acoustically scanned low-coherence interrogated simultaneous measurement of absolute strain and temperature using highly birefringent fibers
Mao et al. Fiber up-taper assisted Mach-Zehnder interferometer for high sensitive temperature sensing
CN109506788A (en) Optical wavelength measurement system based on Fourier's mode-locked laser
Zhao et al. Study on the performance of in-line closed-loop polarization maintaining fiber temperature sensor
JPS6270777A (en) Optical fiber magnetic field sensor
Oh et al. Miniaturized fiber optic magnetic field sensors