JPH02228020A - Manufacture of integrated circuit - Google Patents

Manufacture of integrated circuit

Info

Publication number
JPH02228020A
JPH02228020A JP1049137A JP4913789A JPH02228020A JP H02228020 A JPH02228020 A JP H02228020A JP 1049137 A JP1049137 A JP 1049137A JP 4913789 A JP4913789 A JP 4913789A JP H02228020 A JPH02228020 A JP H02228020A
Authority
JP
Japan
Prior art keywords
regions
integrated circuit
resist
exposed
patterning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1049137A
Other languages
Japanese (ja)
Other versions
JP2815602B2 (en
Inventor
Hokuto Kasahara
笠原 北都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP1049137A priority Critical patent/JP2815602B2/en
Publication of JPH02228020A publication Critical patent/JPH02228020A/en
Application granted granted Critical
Publication of JP2815602B2 publication Critical patent/JP2815602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To form a circuit accurately by changing an area to be exposed in an exposing step, and repeating a patterning step. CONSTITUTION:The inside of a silicon wafer 22 is divided into several regions. Some regions 44 among said regions are picked up and selectively exposed. The wafer 22 is etched and machined. At this time, resist which is not exposed remains in the regions 44 which are not selected in the selecting and exposing step. Therefore, a large amount of polymers are formed. Then, for example, when a coarse end dense pattern is present in the selected region, the approximately same amount of polymers from the non-exposed resist are attached to the side wall of a wiring region. Dispersion in wiring widths after machining can be avoided. Thereafter, photoresist is applied in the application step again, and the non-selected regions are newly selected. The dispersion in wiring widths in the selected regions can be avoided by the same way by repeating the patterning step. In this way, the circuit can be formed accurately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はフォトレジストを用いるパターニングプロセス
を経て集積回路を形成する集積回路作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an integrated circuit manufacturing method for forming an integrated circuit through a patterning process using a photoresist.

[従来の技術] 微小な半導体チップに106個以上の素子が形成された
半導体集積回路はコンピュータを始め種々の機器に用い
られており、その集積度の向上とともにいかに精度良く
大量生産するかが大きな課題となっている。
[Prior Art] Semiconductor integrated circuits, in which 106 or more elements are formed on a microscopic semiconductor chip, are used in computers and various other devices, and as their degree of integration improves, how to accurately mass-produce them becomes a major issue. It has become a challenge.

第6図に従来の集積回路作製方法のフローチャート図を
示す。酸化膜形成プロセス10で半導体基板上に酸化膜
を形成し、多結晶シリコン堆積プロセスにて多結晶シリ
コン膜を前記酸化膜の上に形成する。その後、塗布プロ
セス14、露光プロセス16及び加工プロセス18より
なるパターニングプロセスにて回路のバターニングを行
ない、最後に配線プロセス20にてアルミニウムにより
各素子の配線を行なう。
FIG. 6 shows a flowchart of a conventional integrated circuit manufacturing method. An oxide film is formed on a semiconductor substrate in an oxide film formation process 10, and a polycrystalline silicon film is formed on the oxide film in a polycrystalline silicon deposition process. Thereafter, the circuit is patterned in a patterning process consisting of a coating process 14, an exposure process 16, and a processing process 18, and finally, in a wiring process 20, wiring of each element is performed using aluminum.

ここで、前述した一連のプロセスのうちリソグラフィプ
ロセス14.16を第8図を用いてより詳細に説明する
。第8図は、第7図に示すシリコンウェーハ22内の微
小領域24のIX−IX断面を示しており、第8図aは
シリコン基板26上に順次S 102酸化膜28、多結
晶シリコン膜30が形成され、更に塗布プロセス14で
紫外線照射によりアルカリ可溶となるポジ形レジスト3
2がスピンコードされたところを示している。
Here, of the series of processes described above, the lithography process 14.16 will be explained in more detail with reference to FIG. FIG. 8 shows an IX-IX cross section of the micro region 24 in the silicon wafer 22 shown in FIG. 7, and FIG. is formed, and furthermore, in the coating process 14, a positive resist 3 becomes alkali-soluble by irradiation with ultraviolet rays.
2 is spin coded.

次に、露光プロセス16にてフォトマスクを介して前記
ポジ形レジスト膜32に一定時間紫外線を照射し、露光
部分を塩基性水溶液で溶解させたものが第8図すである
Next, in an exposure process 16, the positive resist film 32 is irradiated with ultraviolet rays for a certain period of time through a photomask, and the exposed portions are dissolved in a basic aqueous solution, as shown in FIG.

以上のりソグラフィプロセスについで、加工プロセス1
8にて前記露光プロセス16で多結晶シリコン膜30上
に残ったレジストをマスクとしてふっ素あるいは塩素を
含むガス中で反応性イオンエツチング(RI E)を行
ない、多結晶シリコン膜30を加工する。第8図Cは加
工後の状態を示している。
Following the above lamination lithography process, processing process 1
At step 8, reactive ion etching (RIE) is performed in a gas containing fluorine or chlorine using the resist remaining on the polycrystalline silicon film 30 in the exposure process 16 as a mask to process the polycrystalline silicon film 30. FIG. 8C shows the state after processing.

このように、従来においては塗布プロセス14、露光プ
ロセス16及び加工プロセス18のパターニングプロセ
スを微小領域24のみならずシリコンウェーハ22内の
他の領域でもまったく同様に一括して行ない、所望の回
路のパターニングを行なっていた。
As described above, conventionally, the patterning processes of the coating process 14, the exposure process 16, and the processing process 18 are performed all at once not only in the micro region 24 but also in other regions within the silicon wafer 22, thereby patterning a desired circuit. was doing.

[発明が解決しようとする課題] しかしながら、従来の方法においては、加工プロセス1
8にてレジストをマスクとしてイオンエツチングする際
、幾つかの問題が生じていた。即ち、CCl4等のガス
中でレジストをマスクにして反応性イオンエツチングを
行なうと、レジストからC5CJlを含んだ重合体(ポ
リマー)が発生し、エツチングパターン側壁に付着する
のである。
[Problem to be solved by the invention] However, in the conventional method, processing process 1
When performing ion etching using a resist as a mask in No. 8, several problems occurred. That is, when reactive ion etching is performed in a gas such as CCl4 using a resist as a mask, a polymer containing C5CJl is generated from the resist and adheres to the side walls of the etching pattern.

この重合体はイオンエツチングに対してマスクとして作
用するため、例えば、第9図に示すようなゲート領域3
4と配線領域36.38が並列する場合には、配線領域
36の側壁にはゲート領域34上のレジストからの重合
体が配線領域38の側壁よりも多量に付着し、このため
、第10図に示すように加工後の配vA領域37と39
ではその線幅に大きなバラツキが生じてしまい、正確な
回路形成ができないという問題があった。
This polymer acts as a mask for ion etching, so it can be etched, for example, in the gate region 3 as shown in FIG.
4 and the wiring regions 36 and 38 are parallel to each other, a larger amount of polymer from the resist on the gate region 34 adheres to the sidewalls of the wiring region 36 than to the sidewalls of the wiring region 38, and as a result, as shown in FIG. As shown in FIG.
However, there is a problem that large variations occur in the line width, making it impossible to form accurate circuits.

本発明は上記従来の課題に鑑みなされたものであり、そ
の目的は従来のパターニングプロセスを改善して回路の
配線幅のバラツキを低減し、精度良く回路を形成するこ
とが可能な集積回路作製方法を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to improve the conventional patterning process, reduce variations in circuit wiring width, and provide an integrated circuit manufacturing method that can form circuits with high precision. Our goal is to provide the following.

[課題を解決するための手段] 上記目的を達成するために、本発明はパターニングプロ
セスにおいて、第1図に示すように多結晶シリコン膜上
にフォトレジストを塗布する塗布プロセス14と、シリ
コンウェーハを仮想の格子縞で複数の領域に分割して前
記複数の領域のうち互い違いの関係にある領域を抽出し
、抽出された領域上のフォトレジストのみを露光する選
択露光プロセス42と、 前記多結晶シリコン膜をイオンエツチングする加工プロ
セス18と、 を有し、前記露光プロセスにおいて露光すべき領域を変
化させて前記パターニングプロセスを繰り返すことを°
特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a coating process 14 for coating a photoresist on a polycrystalline silicon film and a silicon wafer in a patterning process, as shown in FIG. a selective exposure process 42 of dividing the polycrystalline silicon film into a plurality of regions using virtual lattice stripes, extracting regions in an alternating relationship among the plurality of regions, and exposing only the photoresist on the extracted regions; a processing process 18 for ion etching the patterning process, and repeating the patterning process by changing the area to be exposed in the exposure process.
It is a feature.

[作用] 即ち、シリコンウェーハ内を従来のように一括してパタ
ーニングするのではなく、幾つかの領域に分割し、その
中から一定の関係を有し前記ウェーハ内にほぼ均一に散
在した幾つかの領域を抽出し選択的に露光することによ
り前記シリコンウェーハをリアクティブイオンエツチン
グにて加工する際に前記選択露光プロセスにて選択され
なかった領域には未露光のレジストが残っているため従
来の一括露光の方法よりも多量の重合体が発生する。す
ると、例えば第9図に示されるような粗密パターンが選
択領域に存在するときにも配線領域36および38の側
壁には前記未露光レジストからの重合体がほぼ同量付む
し、加工後の配線幅のバラツキをなくすことができる。
[Operation] That is, the inside of the silicon wafer is not patterned all at once as in the conventional method, but is divided into several areas, and some of them are patterned almost uniformly within the wafer with a certain relationship. When the silicon wafer is processed by reactive ion etching by extracting the area and selectively exposing it to light, unexposed resist remains in the area not selected in the selective exposure process. A larger amount of polymer is generated than in the batch exposure method. Then, even when a dense pattern as shown in FIG. 9 exists in the selected area, approximately the same amount of polymer from the unexposed resist is attached to the side walls of the wiring areas 36 and 38, and the wiring after processing is It is possible to eliminate variations in width.

その後、再び塗布プロセス18にてフォトレジストを塗
布し、未選択の領域を新たに選択して前述のパターニン
グプロセスを繰り返すことにより同様に選択領域での配
線幅のバラツキをなくすことができる。
Thereafter, photoresist is applied again in the coating process 18, an unselected area is newly selected, and the patterning process described above is repeated, thereby making it possible to similarly eliminate variations in wiring width in the selected areas.

なお、パターニングプロセスの繰り返し時に既に加工さ
れた領域は再塗布されたフォトレジストによってマスク
されているために再びエツチングされる恐れはない。
It should be noted that when the patterning process is repeated, the area that has already been processed is masked by the reapplied photoresist, so there is no fear that it will be etched again.

以上のパターニングプロセスを選択すべき領域がなくな
るまで繰り返すことによりシリコンウェーハ全域で配線
幅のバラツキをなくすことができる。
By repeating the above patterning process until there are no more areas to select, it is possible to eliminate variations in wiring width over the entire silicon wafer.

し実施例] 以下図面を用いて本発明に係る集積回路作製方法の好適
な実施例を説明する。
Embodiments] Preferred embodiments of the integrated circuit manufacturing method according to the present invention will be described below with reference to the drawings.

第2図はシリコンウエーノ122に順次SiO2酸化膜
、多結晶シリコン膜およびポジ形レジスト膜が従来と同
様の方法で形成されたところが示されており、本実施例
では前記シリコンウェー/X22を2点鎖線で示す仮想
格子縞で多数の微小領域に分割している。そして、前記
領域のうち図中X印で示される互い違いの関係にある領
域群44を抽出し、前記抽出領域の−の領域の断面が第
3図に示されている。第3図a、  bおよびCは本実
施例のパターニングプロセスにて所望のパターニングが
形成される様子が示されており、選択露光プロセス42
にてフォトマスクを介してポジ形レジスト膜32に一定
時間紫外線を照射し、露光部分を塩基性水溶液で溶解さ
せる(第3図b)。
FIG. 2 shows that a SiO2 oxide film, a polycrystalline silicon film, and a positive resist film are sequentially formed on a silicon wafer 122 in the same manner as in the conventional method. In this example, the silicon wafer/X22 is It is divided into a large number of minute regions using virtual lattice stripes shown by dashed dotted lines. Then, out of the regions, a group of regions 44 having an alternating relationship indicated by X marks in the figure are extracted, and a cross section of the minus region of the extracted regions is shown in FIG. FIGS. 3a, 3b, and 3c show how desired patterning is formed in the patterning process of this embodiment, and the selective exposure process 42
The positive resist film 32 is irradiated with ultraviolet rays for a certain period of time through a photomask, and the exposed portions are dissolved in a basic aqueous solution (FIG. 3b).

そして、加工プロセス18にて前記露光プロセス16で
多結晶シリコン膜30上に残ったレジストをマスクとし
てふっ素あるいは塩素を含むガス中で反応性イオンエツ
チング(RI E)を行ない、多結晶シリコン膜30を
加工する(第3図C)。
Then, in a processing process 18, reactive ion etching (RIE) is performed in a gas containing fluorine or chlorine using the resist remaining on the polycrystalline silicon film 30 in the exposure process 16 as a mask, to remove the polycrystalline silicon film 30. Process (Figure 3C).

この時、前記シリコンウェーハ22内で抽出されなかっ
た領域、即ち図中無印領域は未露光であるためレジスト
が除去されておらず、第3図aの構成が維持される。従
って、第3図Cの加工時に前記無印領域の未露光レジス
トから多量の重合体が発生し、図中X印の選択領域44
のエツチング側壁部に多量に付着するので、第9図に示
す粗密パターンが存在するときにも第4図のように加工
後の配線領域50.51とも同様な配線幅となり、バラ
ツキをなくすことができる。
At this time, the resist is not removed from the unextracted area of the silicon wafer 22, that is, the unmarked area in the figure, since it is not exposed to light, and the configuration shown in FIG. 3a is maintained. Therefore, during the processing shown in FIG. 3C, a large amount of polymer is generated from the unexposed resist in the unmarked area, and
Since a large amount of etching adheres to the sidewalls of the etching, even when there is a dense pattern as shown in FIG. 9, the wiring width becomes the same as that of the wiring area 50 and 51 after processing as shown in FIG. 4, making it difficult to eliminate variations. can.

その後、再び塗布プロセスに移り、今度は第2図の無印
領域を抽出して選択露光し、第3図と同様のプロセスを
行ない所望のパターニングを形成する。このとき、第2
図のX印で示される加工領域は第5図に示すようにその
エツチング部が塗布レジスト32によって保護されてお
り、このレジストから図中無印領域のエツチングパター
ン側壁部に重合体が多量に付着するので前述したように
配線幅のバラツキをなくすと共に加工領域の再エツチン
グを防ぐ作用も行なう。
Thereafter, the coating process is started again, this time the unmarked area in FIG. 2 is extracted and selectively exposed, and the same process as in FIG. 3 is performed to form a desired pattern. At this time, the second
As shown in FIG. 5, the etched area of the processing area indicated by the X mark in the figure is protected by a coating resist 32, and a large amount of polymer adheres from this resist to the side wall of the etching pattern in the unmarked area in the figure. Therefore, as described above, it is possible to eliminate variations in wiring width and also to prevent re-etching of the processed area.

この様に、本発明はシリコンウエーノ1の露光領域を幾
つかに分割し、パターニングプロセスをすべての領域が
加工されるまで繰り返すことにより、加工プロセスにお
いてレジストからの重合体を多量に発生させる事を可能
にしたものであり、従来生じていた配線幅のバラツキを
なくして精度良く回路形成を行なうことができる。
In this way, the present invention divides the exposed area of the silicon wafer 1 into several parts and repeats the patterning process until all areas are processed, thereby generating a large amount of polymer from the resist during the processing process. This makes it possible to eliminate the variations in wiring width that conventionally occur and to form circuits with high precision.

なお、本実施例においてはパターニングブロセ。Note that in this example, patterning is used.

スを2回繰り返すことによりパターニングを行なったが
、必要に応じて2回以上繰り返してパターニングを完成
させることも可能である。
Although patterning was performed by repeating the steps twice, it is also possible to complete the patterning by repeating the steps two or more times, if necessary.

[発明の効果] 以上説明したように、本発明に係る集積回路作製方法に
よれば、配線幅のバラツキをな(して精度良く回路形成
を行うことが可能となる。
[Effects of the Invention] As explained above, according to the method for manufacturing an integrated circuit according to the present invention, it is possible to eliminate variations in wiring width and form a circuit with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る集積回路作製方法のフローチャー
ト図、 第2図はシリコンウェーハの分割説明図、第3図は本発
明に係る集積回路作製方法におけるプロセス説明図、 第4図および第5図は本発明に係る集積回路作製方法の
作用説明図、 第6図は従来の集積回路作製方法のフローチャート図、 第7図はシリコンウェーハ構成図、 第8図は従来の集積回路作製方法のプロセス説明図、 第9図および第10図は従来の集積回路作製方法による
加工を示す説明図である。 10・・・・・・酸化膜形成プロセス 12・・・・・・多結晶シリコン膜堆積プロセス14・
・・・・・塗布プロセス 18・・・・・・加工プロセス 42・・・・・・選択露光プロセス
FIG. 1 is a flowchart of the integrated circuit manufacturing method according to the present invention, FIG. 2 is an explanatory diagram of dividing a silicon wafer, FIG. 3 is a process explanatory diagram of the integrated circuit manufacturing method according to the present invention, and FIGS. 4 and 5 Figure 6 is a flowchart of the conventional integrated circuit manufacturing method, Figure 7 is a silicon wafer configuration diagram, and Figure 8 is the process of the conventional integrated circuit manufacturing method. The explanatory drawings, FIGS. 9 and 10 are explanatory drawings showing processing by a conventional integrated circuit manufacturing method. 10...Oxide film formation process 12...Polycrystalline silicon film deposition process 14.
... Coating process 18 ... Machining process 42 ... Selective exposure process

Claims (1)

【特許請求の範囲】 半導体基板上に順次酸化膜、多結晶シリコン膜を形成し
パターニングプロセスを経て前記半導体基板上に集積回
路を形成する集積回路作製方法において、 前記パターニングプロセスは、 前記多結晶シリコン膜上にフォトレジストを塗布する塗
布プロセスと、 前記半導体基板を仮想の格子縞で複数の領域に分割し、
前記複数の領域のうち互い違いの関係にある領域上の前
記レジストのみを露光する選択露光プロセスと、 前記多結晶シリコン膜をイオンエッチングする加工プロ
セスと、 を有し、前記露光プロセスにおいて露光すべき領域を変
化させて前記パターニングプロセスを繰り返すことによ
り精度良く回路を形成することができることを特徴とし
た集積回路作製方法。
[Scope of Claim] An integrated circuit manufacturing method in which an oxide film and a polycrystalline silicon film are sequentially formed on a semiconductor substrate and an integrated circuit is formed on the semiconductor substrate through a patterning process, wherein the patterning process comprises: a coating process of coating a photoresist on a film; dividing the semiconductor substrate into a plurality of regions with virtual checkered stripes;
a selective exposure process of exposing only the resist on alternating regions among the plurality of regions; and a processing process of ion etching the polycrystalline silicon film, the regions to be exposed in the exposure process. A method for manufacturing an integrated circuit, characterized in that a circuit can be formed with high precision by repeating the patterning process while changing the patterning process.
JP1049137A 1989-02-28 1989-02-28 Integrated circuit manufacturing method Expired - Lifetime JP2815602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1049137A JP2815602B2 (en) 1989-02-28 1989-02-28 Integrated circuit manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1049137A JP2815602B2 (en) 1989-02-28 1989-02-28 Integrated circuit manufacturing method

Publications (2)

Publication Number Publication Date
JPH02228020A true JPH02228020A (en) 1990-09-11
JP2815602B2 JP2815602B2 (en) 1998-10-27

Family

ID=12822686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1049137A Expired - Lifetime JP2815602B2 (en) 1989-02-28 1989-02-28 Integrated circuit manufacturing method

Country Status (1)

Country Link
JP (1) JP2815602B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282429A (en) * 2002-01-28 2003-10-03 Samsung Electronics Co Ltd Patterning method for manufacturing semiconductor device
JP2015046459A (en) * 2013-08-28 2015-03-12 ソニー株式会社 Etching method, method of manufacturing electronic device, and method of manufacturing polarizing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282429A (en) * 2002-01-28 2003-10-03 Samsung Electronics Co Ltd Patterning method for manufacturing semiconductor device
JP2015046459A (en) * 2013-08-28 2015-03-12 ソニー株式会社 Etching method, method of manufacturing electronic device, and method of manufacturing polarizing device

Also Published As

Publication number Publication date
JP2815602B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US7569309B2 (en) Gate critical dimension variation by use of ghost features
US8012675B2 (en) Method of patterning target layer on substrate
EP0601887B1 (en) Method for forming pattern
JP2001230186A5 (en)
CN102157350B (en) Manufacturing method for semiconductor device
EP1472575B1 (en) Radiation patterning tools, and methods of forming radiation patterning tools
US20070161245A1 (en) Use of dual mask processing of different composition such as inorganic/organic to enable a single poly etch using a two-print-two-etch approach
US20150309414A1 (en) Method and tool of lithography
US6451511B1 (en) Method for forming-photoresist mask
KR100796509B1 (en) Method of manufacturing semiconductor device
JPH02228020A (en) Manufacture of integrated circuit
CN111856888B (en) Method for enhancing photoetching resolution of dense graph
US7064075B2 (en) Method for manufacturing semiconductor electronics devices
KR100861169B1 (en) Method for manufacturing semiconductor device
US20120214103A1 (en) Method for fabricating semiconductor devices with fine patterns
KR19980028362A (en) Manufacturing method of fine pattern of semiconductor device
KR100230351B1 (en) Pattern forming method
KR0140485B1 (en) A method manufacturing fine pattern of semiconductor device
JPH02262319A (en) Pattern forming method
US9091923B2 (en) Contrast enhancing exposure system and method for use in semiconductor fabrication
US6309804B1 (en) Reducing contamination induced scumming, for semiconductor device, by acid treatment
KR970008269B1 (en) Micro pattern formation of semiconductor elements
US6372658B1 (en) Reducing contamination induced scumming, for semiconductor device, by ashing
KR100442572B1 (en) Method for fabricating of semiconductor reticle
Radak Department Physics Iran University of Science and Technology, Tehran* Responsible author: m_radak@ physics. iust. ac. ir