JPH0222794B2 - - Google Patents

Info

Publication number
JPH0222794B2
JPH0222794B2 JP16663882A JP16663882A JPH0222794B2 JP H0222794 B2 JPH0222794 B2 JP H0222794B2 JP 16663882 A JP16663882 A JP 16663882A JP 16663882 A JP16663882 A JP 16663882A JP H0222794 B2 JPH0222794 B2 JP H0222794B2
Authority
JP
Japan
Prior art keywords
weight
temperature
carbon material
component
residue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16663882A
Other languages
Japanese (ja)
Other versions
JPS5956486A (en
Inventor
Noryoshi Fukuda
Takeshi Nagasawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP16663882A priority Critical patent/JPS5956486A/en
Publication of JPS5956486A publication Critical patent/JPS5956486A/en
Publication of JPH0222794B2 publication Critical patent/JPH0222794B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素材料原料の製造方法に関する。詳
しくは本発明はBI>95重量%、QI>80重量%、
VM4〜15重量%の特性値を有し、バインダーを
使用することなしに高密度炭素材に成型焼成でき
る炭素材料原料の製造方法に関する。 炭素材料は、電気熱の良導体であること、非酸
化性雰囲気では高温まで安定であり、熱間強度が
大きいこと、酸、アルカリ、その他の薬品に侵さ
れ難いこと、機械加工が容易なこと、自己潤滑性
に優れていること、熱中性子に対する吸収面積が
小さく減速能の優れていること等の優れた特長を
持つているため、製鋼用電極、電気用ブラシ、原
子炉用材料、機械用材料として広い範囲で使用さ
れている。 これら炭素材料は一般に骨材コークスとバイン
ダーを混合して成形、焼成あるいは黒鉛化処理し
て製造される。しかし骨材コークスとバインダー
を混合することは作業工程が複雑であり、作業環
境が悪いばかりでなく、骨材コークス自身が多孔
性であるとともにバインダーに使用するコールタ
ールピツチ、合成樹脂類も焼成に際して多量の気
孔を生成するため製造できる炭素材料の密度は
1.5〜1.7g/cm3程度であり、曲げ強度もせいぜい
500Kg/cm2どまりであり、加えて通常骨材コーク
スの持つ異方性のため製造される炭素材料もその
特性に異方性を持つており高密度・高強度及び等
方的な炭素材料を製造することが難しい欠点があ
つた。 然るに工業の発展とともに炭素材料の品質に対
する要求が高まり、等方性で高密度・高強度の炭
素材料を中心として様々なニーズが急激に増加し
つつある。 このような従来の炭素材料の製造方法及び炭素
材料自身が持つ欠点及び市場での品質に対する要
求を鑑みて、本願発明者等は、鋭意研究を重ねた
結果、従来とは異なりバインダーを使用すること
なくしかも従来認められなかつたような高密度・
高強度等方的な炭素材料を中心として種々の特性
を持つ炭素材を安定して製造出来る新しい炭素材
原料の製造法の開発に成功した。 本発明の炭素材料原料の製造法は、コールタ
ールピツチの熱処理熱処理品の溶剤抽出及び
過溶剤抽出・過残留品のカ焼カ焼品の分級
の4つの主な工程よりなる。このうち熱処理、
溶剤抽出及び過、カ焼の3つの工程は、バ
インダーを使用することなく安定して炭素材料を
得るために不可欠な工程の組合せである。 分級工程はカ焼工程で得られるカ焼品を任意の
割合で微粒子成分と粗粒子成分に分割して炭素材
料原料の品質を向上する役割を果している。 以下工程に従つて更に詳細に説明する。 まずコールタールピツチを350〜500℃で通常の
手段に従つて熱処理する。この時熱処理温度が上
昇するに伴つてピツチ中から高分子成分からなる
キノリン不溶成分(以下QI成分と称する)が生
成する。通常この熱処理により生成するQI成分
は熱処理温度350℃附近から生成が起り、温度が
上昇するにつれてQI成分は増加し600℃でほぼ
100%に達する。該QI成分(通常メソフエーズと
総称される。)は、一部のピツチ中にもともと含
有されるQI成分(通常フリーカーボンと総称さ
れる)とは異なり黒鉛類似の構造を持つており黒
鉛前駆体とも呼ばれるが、それ自体は粘結性や焼
結性を有するものゝその力は弱くバインダーを使
用することなしには安定した大型の炭素材料とは
成り難い。 続く、溶剤抽出及び過工程では、該QI成分
を熱処理ピツチ中のβ成分(ベンゼン不溶でキノ
リン可溶の成分)とともに熱処理ピツチ中から抽
出・分離を行う。 β成分は該QI成分より幾分低分子成分から成
つているが、QI成分とは異なり極めて強い粘結
性を有するもので、炭素材料の製造過程にあつて
はバインダーとしての役割を果す。しかしなが
ら、該β成分は炭素材料を製造する焼成過程で多
量の揮発分を発生するため、そのままでは炭素材
料に焼成・黒鉛化段階で割れや膨れが発生する原
因となる。 一方熱処理ピツチ中のBS成分(ベンゼン可溶
の成分)はβ成分に比較すると粘結性に劣るばか
りでなく、揮発分もβ成分に比較するとはなはだ
多い。 従つてβ成分以上に炭素材料の割れや膨れの原
因となりやすく溶剤抽出工程で極力除去されるこ
とが望ましい。 通常、熱処理ピツチの溶剤抽出・過を行う場
合、BS成分の除去を行うためには、多量かつ数
種類の溶剤を使用する必要がある。又抽出・過
残留物をそのまま、又は250℃未満の常圧、ある
いは真空乾燥により炭素材料原料とする場合に
は、BS成分の除去は可能であるが、β成分は揮
発せず、そのまま残存する。ところが、β成分に
ついても、多量に残存させると、焼成・黒鉛化段
階で成形した炭素材料原料が割れや膨れを発生す
るために、その残存量に限界があつた。 本発明における溶剤抽出及び過工程は、カ焼
工程との組み合せによるため1種類の溶剤のみを
使用し、1次、2次のわずか2回の抽出過操作
という非常に簡単なプロセスで充分である。 又溶剤の使用量も2次抽出で使用した溶剤を再
度1次抽出で使用が可能であるため、必要とする
炭素材料の特性にもよるが、通常熱処理ピツチの
3〜8倍重量部を使用すれば充分である。又QI
成分に同伴させるβ成分の量も大巾に増加させる
ことが可能であるためコールタールピツチに対す
る炭素材料原料の歩留が向上するばかりでなく従
来のようなβの大部分の除去が不要なので、使用
可能な溶剤もタール中油、軽油、トルエン、ベン
ゼン等巾広く選択できる。 本発明の方法に従つて、バインダーを使用する
ことなく、安定して炭素材料を与えることが出来
るような炭素材料原料を製造するためには、溶剤
抽出、過工程においてベンゼン抽出を行つた時
のベンゼン不溶分BI>90重量%、キノリン抽出
を行つた時のキノリン不溶分QI<95重量%なる
特性値をもつ抽出・過残留物を得ることが必要
である。 しかも該抽出・過残留物は既に述べたような
簡単な方法により容易に達成出来るものである。
抽出・過残留物のBI重量%が90重量%より低
い場合には、抽出溶剤の残存量及び熱処理ピツチ
中のBS成分の残存量が多いため過残留物の粘
着性が強くカ焼工程での取扱いが困難となるこ
と、また粘結性に劣るBS成分が多量に残存する
ことになるため、BI>90重量%であることが必
要である。又QIが95重量%以上である場合には、
粘結成分であるβ成分の残存量が少なくなるた
め、バインダーを使用することなく大型の炭素材
料を安定して得ることが難しい。 次の工程においては、該抽出、過残留物に対
して不活性雰囲気下でカ焼処理を行う。該カ焼処
理は250〜500℃で実施する。 このカ焼処理の目的は成形した炭素材料原料の
焼成・黒鉛化での割れや膨れの発生原因となる抽
出、過残留物中の残存溶剤及び微量に残存する
熱処理ピツチ中の低揮発分の除去のほかに、溶剤
抽出・過時に抽出・過残留物に残存させたβ
成分の一部をQI化する熱重合反応を行わしめる
ことである。 カ焼処理での熱重合反応によりβ成分から移行
したQI成分はBI>90重量%の条件下では、ピツ
チを250〜500℃で熱処理した時に発生するQI成
分とは異なりメソフエーズとはならずβの性質を
持つた微小粒子として、熱処理時のQI(メソフエ
ーズ)の囲りを取りまき、しかも適切なカ焼温度
を選定すれば、いぜんとして強い粘結性を有して
おり炭素材料製造時のバインダーの役割を果し得
る。 このようにカ焼処理により、β成分の粘結性を
失うことなく、成形した炭素材料原料の焼成・黒
鉛化での割れや膨れの発生原因となる、低揮発分
の除去が可能となり、、その結果、炭素材料がバ
インダーを使用することなく、安定して得られる
ようになる。 必要なカ焼温度としては、250℃〜500℃の範囲
内で選定される。 これは250℃以下ではβ成分のQI反応が進み難
く、低揮発分の除去が充分に起り難い。一方500
℃以上の温度では、β成分よりQI化した成分の
粘結性が急速に失われ、バインダーを使用するこ
となく、炭素材料を得ることが出来なくなるため
である。 該カ焼品の特性値としては BI>95重量%,QI>80重量%, 15重量%>VM>4重量% なる値が必要であり、溶剤抽出、過残留物の特
性値に応じて250℃〜500℃の範囲内で適当なカ焼
温度を選択し、該特性値のカ焼品を得る。BIが
95重量%を越えない場合は、粘結性に劣るBS成
分による低揮発分が多く成形した炭素材料原料の
焼成、黒鉛化での割れや膨れが発生する。又QI
%が80重量%以下の場合も主として、β成分に起
因する揮発分の影響により、割れや膨れが発生す
る。一方、VM(800℃で7分間加熱した時の揮発
成分)は主にBS成分及びβ成分の両者に起因す
る揮発分を示しており、この値が、15重量%以上
になると、焼成黒鉛化で割れ膨れが発生する。又
VMが4重量%以下の場合には、β成分のQI化反
応が進行しすぎており粘結性が劣化してバインダ
ーを使用することなしには炭素材料を得ることが
できない。 更に我々は、工業的にこのカ焼処理を行うため
には、連続式の外熱式ロータリーキルンが最適で
あることを見い出した。 我々の研究では、ロータリーキルンによれば、
溶剤抽出・過残留物の特性値BI%が、90重量
%を越えていれば、スクリユーフイーダーにより
溶剤抽出・残留物の定量移送とキルンへの投入又
キルンによる加熱が均一行われキルン内の移動も
スムーズに進み、連続的に安定した品質を持つカ
焼品を得ることが可能であつた。 該カ焼品はそのままで、バインダーを使用する
ことなく炭素材料を与えることが出来る。しかも
黒鉛化した炭素材料の特性はカ焼品を製造すると
きの、原料のピツチ類の性状、熱処理温度、溶剤
抽出、過残留物の性状及びカ焼温度等の条件を
選択することにより、密度1.5g/cm3、曲げ強度
300Kg/cm2程度の比較的低密度の炭素材料から、
密度20g/cm3、曲げ強度1000Kg/cm2の従来は認め
られなかつたような高密度、高強度の炭素材料ま
で巾広い特性を有する種々の等方性炭素材料を製
造することが可能である。 又電気比抵抗も900μΩcm〜4000μΩcmの範囲
の任意の値を持つことが出来る。一般に原料ピツ
チ中にもともと含有されるQI成分が増加すると
電気比抵抗の大きな高密度、高強度の炭素材料と
なり易く又熱処理時に発生するQIが増加すると
比較的低密度、低強度で電気比抵抗の小さな炭素
材料となりやすい傾向にある。又溶剤抽出、過
残留物中のβ成分が増加するあるいはカ焼処理温
度を低くしカ焼品のVM(%)、β成分を増加する
と高密度、高強度の炭素材料となりやすいが成形
した炭素材料原料の焼成、黒鉛化段階での割れや
膨れが発生し易くなる。更に炭素材料原料の成形
圧も高くすると、高密度、高強度の炭素材料とな
り易いが逆に焼成黒鉛化段階での割れ膨れの発生
が起りやすくなる。従つて以上の条件を組み合わ
せることにより既述した任意の値を有する炭素材
料を安定して得ることが出来るわけである。しか
も我々は更に検討を重ねた結果該カ焼品を比較的
粗粒を中心とした粗粒側成分と比較的微粉を中心
とする微粉側成分に分級することにより該カ焼品
を更に広範囲の特性をもつ炭素材料を製造しうる
炭素材料原料としうることを見い出した。カ焼品
を持つ特性あるいは分級時の各成分の歩留によつ
て、粗粒側成分と微粉側成分から得られる炭素材
料の特性も異つてくるが一般にカ焼品からの炭素
材料に比較して粗粒側成分から得られる炭素材料
は比較的低密度、低強度、高電気比抵抗の炭素材
料となり、微粉側成分から得られる炭素材料は高
密度・高強度、低電気比抵抗の炭素材料となる。 従つて該分級処理をカ焼品に対して行えば、密
度1.4g/cm3、曲げ強度200Kg/cm2の比較的低密度
の炭素材料から密度2.05g/cm3、曲げ強度1300
Kg/cm2という、従来にない超高密度・高強度の炭
素材料までより巾広い特性を有する種々の黒鉛化
した等方性の炭素材料を製造することが出来る。
更に電気比抵抗も800μΩcm〜5000μΩcmの範囲
の任意の値を持つことが出来る。該カ焼品の分級
は、工業的には風力遠心型分級機を用いることが
最適である。 該分級機をカ焼品の分級に使用する利点は種々
の粒径を持つカ焼品を種々の比率で工業的に容易
に粗粒子成分と微粒子成分に分級出来ること更に
我々の研究の結果原料ピツチ類あるいは溶剤等に
含有され、製造時にカ焼品に残存してくる灰分
が、分級により粗粒子成分中に濃縮され、結果と
して微粒子成分は極めて灰分の少ない高純度の炭
素材料原料となることを見い出した。 これは風力遠心型分級機が原粒の粒径及び比重
の差によつて分級を行うためであり微細なAl,
Si,Fe等の灰分が炭素に比較してその比重が大
きいため容易に粗粒子側成分に移行するためであ
る。 以上述べたような新しい炭素材料原料の製造法
に加えて我々は更に鋭意研究を重ねた結果、該製
造法で製造されたカ焼品あるいは分級品を空気中
で100℃〜300℃で強制酸化処理を行えばバインダ
ーを使用することなく、極めて電気比抵抗の高い
炭素材料を与え得ることも合せて発明した。 この法に従えば8000μΩ−cmまでの電気比抵抗
を持つ黒鉛化等方性炭素材料をバインダーを使用
することなく製造することが可能となる。 通常カ焼品あるいは分級品は常温では極めて安
定であるが、元来通常の骨材コークスとは異なり
化学的に活性であるため100℃を超えると急速に
空気中の酸素を吸収していく。 この酸化品はバインダーを使用することなく炭
素材料を与えるが、黒鉛化した炭素材料は高い電
気比抵抗をもつている。 一方300℃を超える温度で酸化処理を行つた場
合はカ焼品及び分級品はともに粘結性を失つてバ
インダーを使用することなしに炭素材料を得るこ
とは出来ない。 従つて空気中での酸化処理温度は100℃〜300℃
の温度で実施する必要がある。該酸化処理はカ焼
品又は分級品を加熱攬拌しながら、強制的に空気
を吹き込むことで実現出来る。 以上述べたごとく本発明の炭素材料原料の製造
法は、従来技術にはなかつたように、バインダー
を使用することなしに新しい炭素材料を与え得る
ものであり、しかも製造条件を変化させることに
より、極めて広範囲の特性をもつ炭素材料を工業
的に極めて安定して与え得ることを示しており、
特に、従来技術で得られなかつた超高密度、高強
度の炭素材料を製造し得る。なお本発明は原料と
してコールタールピツチに限らず石油系ピツチあ
るいは、石炭を液化、脱灰処理して得られる瀝青
物に対しても応用が可能である。 以下具体的な実施例でもつて説明する。 <実施例 1> 軟化点(R,B法):80℃、BI:19重量%、
QI:4重量%なるコールタールピツチを加熱処
理槽を使用して、445℃の温度で10分間熱処理し
て、熱処理ピツチを得た。 この熱処理ピツチの特性値はBI:50.6重量%、
QI:28.7重量%であつた。 この熱処理ピツチ100重量部に対して600重量部
のタール中油(沸点範囲140℃〜270℃)を使用し
1次、2次の2回の抽出過操作を行つた。この
時の1次、2次抽出の温度は、120℃、抽出時間
は、1時間とした。又過は加圧過を行つた。
この時の抽出・過残留物の特性値はBI:96.3重
量%、QI:78.2重量%であつた。 該溶剤抽出・残留物を続いてN2雰囲気下で外
熱式ロータリーキルンにより、340℃の温度でカ
焼処理を行つた。得られたカ焼品の特性値は
BI:98.0重量%、QI:89.5重量%、VM:8.5重量
%であつた。 該カ焼品をそのままバインダーを使用すること
なく成形圧力800Kg/cm2、成形大きさ100φ×
100hm/mで成形を行い、通常法に従つて焼成・
黒鉛化を実施した。黒鉛化温度は2700℃とした。 この時の黒鉛化ブロツクの物理特性を表−1に
示した。 又カ焼品は更に風力遠心型分級機にて粗粒子成
分と微粒子成分に分割した。この時の各成分の歩
留は、粗粒子成分:15重量%微粒子成分:85重量
%であつた。該各成分の特性値は表−2に示し
た。この各成分をカ焼品と同一の条件にてバイン
ダーを使用せず成形、焼成、黒鉛化を行いその時
の黒鉛ブロツクの物理特性を表−1に示した。黒
鉛化温度はカ焼品の場合と同じく2700℃とした。
表−1の結果に見られるようにカ焼品及び微粒子
成分はいずれも高密度、高強度の炭素材料を与え
た。又分級により得られた微粒子成分はカ焼品に
比較して更に密度、強度ともに増加した炭素材料
を与えた。一方粗粒子成分から得られる炭素材料
は、カ焼品及び微粒子成分から得られる炭素材料
に比較して低密度、高比抵抗のものとなつた。 表−2に示したように分級により灰分が粗粒子
成分に濃縮されたため微粒子成分は高純度の炭素
材料原料となつた。
The present invention relates to a method for producing a carbon material raw material. Specifically, the present invention has BI > 95% by weight, QI > 80% by weight,
The present invention relates to a method for producing a carbon material raw material that has a characteristic value of VM4 to 15% by weight and can be molded and fired into a high-density carbon material without using a binder. Carbon materials are good conductors of electricity and heat, are stable up to high temperatures in non-oxidizing atmospheres, have high hot strength, are resistant to attack by acids, alkalis, and other chemicals, and are easy to machine. It has excellent features such as excellent self-lubricating properties, a small absorption area for thermal neutrons, and excellent moderation ability, making it suitable for use in steelmaking electrodes, electrical brushes, nuclear reactor materials, and mechanical materials. It is widely used as. These carbon materials are generally produced by mixing aggregate coke and a binder, molding, firing or graphitizing the mixture. However, mixing aggregate coke and binder is a complicated work process, which not only creates a bad working environment, but also the aggregate coke itself is porous, and the coal tar pitch and synthetic resins used for the binder are difficult to calcinate. The density of the carbon material that can be manufactured to generate a large amount of pores is
The bending strength is about 1.5 to 1.7 g/ cm3 , and the bending strength is at most
500Kg/ cm2 , and in addition, due to the anisotropy of the aggregate coke, the carbon materials produced also have anisotropy in their properties, making it possible to create high-density, high-strength, and isotropic carbon materials. The drawback was that it was difficult to manufacture. However, with the development of industry, demands for the quality of carbon materials have increased, and various needs are rapidly increasing, centering on isotropic, high-density, and high-strength carbon materials. In view of the drawbacks of the conventional carbon material manufacturing method, the drawbacks of the carbon material itself, and the demands for quality in the market, the inventors of the present application have conducted intensive research and have developed a method for using a binder, unlike the conventional method. High density and previously unrecognized
We have succeeded in developing a new method for producing raw carbon materials that can stably produce carbon materials with various properties, including high-strength isotropic carbon materials. The method for producing a carbon material raw material of the present invention consists of four main steps: solvent extraction of a thermally treated coal tar pitch product, supersolvent extraction, and calcination of an excess residue product and classification of the calcined product. Of these, heat treatment
The three steps of solvent extraction, percolation, and calcination are a combination of steps that are essential for stably obtaining a carbon material without using a binder. The classification process serves to improve the quality of the carbon material raw material by dividing the calcined product obtained in the calcination process into fine particle components and coarse particle components in arbitrary proportions. The process will be explained in more detail below. First, coal tar pitch is heat treated at 350 to 500°C according to conventional methods. At this time, as the heat treatment temperature increases, a quinoline-insoluble component (hereinafter referred to as QI component) consisting of a polymer component is generated from the pitch. Normally, the QI component generated by this heat treatment starts to be generated at around the heat treatment temperature of 350℃, and as the temperature rises, the QI component increases until about 600℃.
Reach 100%. The QI components (generally referred to as mesophases) have a structure similar to graphite, unlike the QI components originally contained in some pitches (generally referred to as free carbon), and are also referred to as graphite precursors. However, although it itself has caking and sintering properties, its strength is weak and it is difficult to create a stable large-sized carbon material without using a binder. In the subsequent solvent extraction and passing steps, the QI component is extracted and separated from the heat-treated pitch together with the β component (benzene-insoluble, quinoline-soluble component) in the heat-treated pitch. The β component is composed of components with a slightly lower molecular weight than the QI component, but unlike the QI component, it has extremely strong caking properties and plays a role as a binder in the process of manufacturing carbon materials. However, since the β component generates a large amount of volatile matter during the firing process for manufacturing the carbon material, if left as it is, it will cause cracks and blisters to occur in the carbon material during the firing and graphitization stages. On the other hand, the BS component (benzene-soluble component) in the heat-treated pitcher not only has inferior caking properties compared to the β component, but also has a much higher volatile content than the β component. Therefore, it is more likely than the β component to cause cracking or blistering of the carbon material, and it is desirable to remove it as much as possible in the solvent extraction process. Normally, when heat-treated pitch is subjected to solvent extraction and filtration, it is necessary to use a large amount and several types of solvents in order to remove BS components. In addition, if the extracted residue is used as a carbon material raw material as it is, or by drying under normal pressure below 250℃ or vacuum, it is possible to remove the BS component, but the β component does not volatilize and remains as it is. . However, if a large amount of the β component remains, the carbon material raw material formed during the firing and graphitization stage will crack or bulge, so there is a limit to its remaining amount. Since the solvent extraction and passing steps in the present invention are combined with the calcination process, only one type of solvent is used, and a very simple process of just two extraction steps, primary and secondary, is sufficient. . Also, since the solvent used in the secondary extraction can be used again in the primary extraction, the amount of solvent used is usually 3 to 8 times the weight of the heat-treated pitch, depending on the characteristics of the required carbon material. It is enough. Also QI
Since it is possible to greatly increase the amount of β component entrained in the component, not only does the yield of carbon material raw material in coal tar pitch improve, but it also eliminates the need to remove most of β as in the conventional method. The solvents that can be used can be selected from a wide range, including oil in tar, light oil, toluene, and benzene. According to the method of the present invention, in order to produce a carbon material raw material that can stably provide a carbon material without using a binder, it is necessary to carry out solvent extraction and benzene extraction in the pass process. It is necessary to obtain an extracted residue having characteristic values such that benzene insoluble content BI > 90% by weight and quinoline insoluble content QI < 95% by weight when quinoline extraction is performed. Furthermore, the extraction/excess residue can be easily achieved by the simple method described above.
If the BI weight% of the extraction/excess residue is lower than 90% by weight, the residual amount of the extraction solvent and the residual amount of BS components in the heat treatment pitch are large, so the excess residue has a strong stickiness and is difficult to handle during the calcination process. It is necessary that BI>90% by weight because handling becomes difficult and a large amount of BS components with poor caking properties remain. Also, if QI is 95% by weight or more,
Since the remaining amount of the β component, which is a viscosity component, is small, it is difficult to stably obtain a large carbon material without using a binder. In the next step, the extracted residue is calcined under an inert atmosphere. The calcination treatment is carried out at 250-500°C. The purpose of this calcination treatment is to extract the cracks and blisters that occur during calcination and graphitization of the formed carbon material raw material, remove residual solvent in the excess residue, and remove trace amounts of low volatile matter in the heat treatment pitch. In addition to solvent extraction and extraction, residual β
This involves performing a thermal polymerization reaction to convert some of the components into QI. The QI component transferred from the β component due to the thermal polymerization reaction during the calcination treatment does not become mesophase under the condition of BI > 90% by weight, unlike the QI component generated when pitch is heat-treated at 250 to 500°C. As microparticles with the properties of It can act as a binder. In this way, the calcination treatment makes it possible to remove the low volatile content that causes cracks and blisters during calcination and graphitization of the shaped carbon material raw material, without losing the caking properties of the β component. As a result, a carbon material can be stably obtained without using a binder. The required calcination temperature is selected within the range of 250°C to 500°C. This is because the QI reaction of the β component is difficult to proceed at temperatures below 250°C, making it difficult to sufficiently remove low volatile components. while 500
This is because at temperatures above 0.degree. C., the QI component loses its caking properties more rapidly than the beta component, making it impossible to obtain a carbon material without using a binder. The characteristic values of the calcined product are BI > 95% by weight, QI > 80% by weight, 15% by weight > VM > 4% by weight, and 250% by weight depending on the characteristic values of solvent extraction and excess residue. A suitable calcination temperature is selected within the range of 500°C to 500°C to obtain a calcined product having the specified characteristic values. B.I.
If it does not exceed 95% by weight, cracks and blisters will occur during firing and graphitization of the molded carbon material raw material due to the low volatile content due to the BS component having poor caking properties. Also QI
% is less than 80% by weight, cracks and blisters occur mainly due to the influence of volatile matter caused by the β component. On the other hand, VM (volatile components when heated at 800°C for 7 minutes) mainly indicates volatile components caused by both the BS component and the β component, and when this value exceeds 15% by weight, firing graphitization occurs. Cracking and blistering occur. or
When VM is 4% by weight or less, the QI reaction of the β component progresses too much and the caking property deteriorates, making it impossible to obtain a carbon material without using a binder. Furthermore, we have found that a continuous external heating rotary kiln is optimal for carrying out this calcination process industrially. In our study, according to the rotary kiln,
If the characteristic value BI% of solvent extraction/excess residue exceeds 90% by weight, the screw feeder will uniformly transfer the solvent extraction/residue, charge it into the kiln, and heat it in the kiln. The movement of the materials proceeded smoothly, and it was possible to continuously obtain calcined products of stable quality. The calcined product can be provided with carbon material as is without the use of a binder. Moreover, the properties of graphitized carbon materials can be determined by selecting conditions such as the properties of raw material pits, heat treatment temperature, solvent extraction, properties of excess residue, and calcination temperature when producing calcined products. 1.5g/cm 3 , bending strength
From carbon material with relatively low density of about 300Kg/cm2,
It is possible to produce various isotropic carbon materials with a wide range of properties, including carbon materials with a density of 20 g/cm 3 and bending strength of 1000 Kg/cm 2 , which were previously unrecognizable. . Further, the electrical resistivity can also have any value in the range of 900 μΩcm to 4000 μΩcm. In general, when the QI component originally contained in the raw material pitch increases, it tends to become a high-density, high-strength carbon material with a large electrical resistivity.Also, when the QI generated during heat treatment increases, it has a relatively low density, low strength, and a low electrical resistivity. It tends to become a small carbon material. In addition, if the β component in the residual residue increases due to solvent extraction, or if the calcination temperature is lowered to increase the VM (%) and β component of the calcined product, it tends to become a high-density, high-strength carbon material. Cracks and blisters are more likely to occur during the firing and graphitization stages of the raw materials. Furthermore, if the molding pressure of the carbon material raw material is also increased, the carbon material tends to have high density and high strength, but conversely, cracks and blisters are more likely to occur during the fired graphitization stage. Therefore, by combining the above conditions, it is possible to stably obtain a carbon material having any of the above-mentioned values. Moreover, as a result of further studies, we were able to classify the calcined product into a coarse component, which is mainly composed of relatively coarse grains, and a fine component, which is mainly composed of relatively fine particles. It was discovered that this material can be used as a raw material for carbon materials that can be used to produce carbon materials with specific properties. The properties of carbon materials obtained from coarse-grained and fine-grained components differ depending on the characteristics of the calcined product or the yield of each component during classification, but in general, compared to carbon materials from calcined products, The carbon material obtained from the coarse particle side component is a carbon material with relatively low density, low strength, and high electrical resistivity, and the carbon material obtained from the fine powder side component is a carbon material with high density, high strength, and low electrical resistivity. becomes. Therefore, if this classification process is performed on a calcined product, a relatively low density carbon material with a density of 1.4 g/cm 3 and a bending strength of 200 Kg/cm 2 can be converted to a carbon material with a density of 2.05 g/cm 3 and a bending strength of 1300 Kg/cm 2 .
It is possible to produce various graphitized isotropic carbon materials with a wider range of properties, including carbon materials with unprecedented ultra-high density and high strength of Kg/cm 2 .
Furthermore, the electrical resistivity can also have any value in the range of 800 μΩcm to 5000 μΩcm. Industrially, it is optimal to use a wind centrifugal classifier to classify the calcined product. The advantage of using this classifier for classifying calcined products is that it can industrially easily classify calcined products with various particle sizes into coarse particle components and fine particle components in various ratios, and as a result of our research, The ash contained in nuts or solvents and remaining in the calcined product during manufacturing is concentrated into the coarse particle component through classification, and as a result, the fine particle component becomes a high-purity carbon material raw material with extremely low ash content. I found out. This is because the wind centrifugal classifier classifies raw particles based on the difference in particle size and specific gravity, and fine Al,
This is because ash such as Si and Fe has a higher specific gravity than carbon, so it easily migrates to the coarse particle side components. In addition to the above-mentioned method for producing new carbon material raw materials, we have conducted further intensive research and found that the calcined or classified products manufactured using this method are forcedly oxidized in air at 100°C to 300°C. The inventors also discovered that a carbon material with extremely high electrical resistivity can be obtained by processing without using a binder. According to this method, a graphitized isotropic carbon material having an electrical resistivity of up to 8000 μΩ-cm can be produced without using a binder. Normally, calcined or classified products are extremely stable at room temperature, but unlike ordinary aggregate coke, they are chemically active, so they rapidly absorb oxygen from the air when the temperature exceeds 100°C. This oxidized product provides a carbon material without the use of a binder, but the graphitized carbon material has a high electrical resistivity. On the other hand, if the oxidation treatment is carried out at a temperature exceeding 300°C, both the calcined product and the classified product lose their caking properties, making it impossible to obtain a carbon material without using a binder. Therefore, the oxidation treatment temperature in air is 100°C to 300°C.
It is necessary to carry out the test at a temperature of The oxidation treatment can be achieved by forcibly blowing air into the calcined or classified product while heating and stirring it. As described above, the method for producing a carbon material raw material of the present invention can provide a new carbon material without using a binder, which was not possible in the prior art, and by changing the production conditions, It has been shown that carbon materials with an extremely wide range of properties can be industrially produced in an extremely stable manner.
In particular, it is possible to produce carbon materials with ultra-high density and high strength that could not be obtained using conventional techniques. The present invention is not limited to coal tar pitch as a raw material, but can also be applied to petroleum pitch or bitumen obtained by liquefying and deashing coal. Specific examples will be explained below. <Example 1> Softening point (R, B method): 80°C, BI: 19% by weight,
QI: 4% by weight coal tar pitch was heat treated at a temperature of 445° C. for 10 minutes using a heat treatment tank to obtain heat treated pitch. The characteristic values of this heat-treated pitch are BI: 50.6% by weight,
QI: 28.7% by weight. For 100 parts by weight of this heat-treated pitch, 600 parts by weight of oil in tar (boiling point range 140 DEG C. to 270 DEG C.) was used to carry out two overextraction operations, a primary and a secondary extraction. The temperature of the primary and secondary extractions at this time was 120°C, and the extraction time was 1 hour. In addition, pressurization was carried out.
The characteristic values of the extracted residue at this time were BI: 96.3% by weight and QI: 78.2% by weight. The solvent extracted residue was subsequently calcined in an externally heated rotary kiln at a temperature of 340° C. under a N 2 atmosphere. The characteristic values of the obtained calcined product are
BI: 98.0% by weight, QI: 89.5% by weight, and VM: 8.5% by weight. The calcined product was molded without using a binder at a pressure of 800Kg/cm 2 and a molding size of 100φ
Forming is carried out at 100hm/m, followed by firing and firing according to the usual method.
Graphitization was carried out. The graphitization temperature was 2700°C. The physical properties of the graphitized block at this time are shown in Table 1. The calcined product was further divided into coarse particle components and fine particle components using a wind centrifugal classifier. The yield of each component at this time was: coarse particle component: 15% by weight, fine particle component: 85% by weight. The characteristic values of each component are shown in Table-2. These components were molded, fired, and graphitized under the same conditions as for the calcined product without using a binder, and the physical properties of the graphite blocks are shown in Table 1. The graphitization temperature was 2700°C, the same as in the case of calcined products.
As seen in the results in Table 1, both the calcined product and the fine particle component gave carbon materials with high density and high strength. Furthermore, the fine particle component obtained by classification provided a carbon material with increased density and strength compared to the calcined product. On the other hand, the carbon material obtained from the coarse particle component had a lower density and higher specific resistance than the carbon material obtained from the calcined product and the fine particle component. As shown in Table 2, the ash content was concentrated into coarse particle components by classification, and the fine particle components became highly pure carbon material raw materials.

【表】【table】

【表】 <実施例 2> 実施例1における溶剤抽出・過残留物をN2
雰囲気下で連続式ロータリーキルンにより、360
℃でカ焼処理を行つた。得られたカ焼品の特性値
はBI:98.5重量%、QI:90.8重量%、V.M:8.0
重量%であつた。 該カ焼品をそのまゝ、バインダーを使用するこ
となく成形圧力1000Kg/cm2、成形大きさ100φ×
100hm/mで成形を行い、通常の法に従つて焼
成・黒鉛化を行つた。一方カ焼品を風力遠心型分
級機にて粗粒子成分と微粒子成分に分割した。こ
の時の各成分の歩留は、粗粒子成分:13重量%、
微粒子成分:87重量%であつた。この成分をカ焼
品と同様の条件下でバインダーを使用することな
く成形、焼成、黒鉛化を行つた。黒鉛化温度はい
ずれも2700℃であつた。以上カ焼品、粗粒子成
分、微粒子成分から得られた黒鉛ブロツクの物理
特性を表−3に示した。カ焼品及び微粒子成分は
高密度・高強度の炭素材料を与えた。特に微粒子
成分は曲げ強度が1300Kg/cm2と超高強度の炭素材
料となつた。一方粗粒子成分はカ焼品及び微粒子
成分に比較すると幾分低密度・高比抵抗の炭素材
料となつた。
[Table] <Example 2> Solvent extraction and excess residue in Example 1 were treated with N 2
A continuous rotary kiln under atmospheric conditions allows 360
Calcining treatment was carried out at ℃. The characteristic values of the obtained calcined product are BI: 98.5% by weight, QI: 90.8% by weight, VM: 8.0
It was in weight%. The calcined product was molded as is without using a binder at a molding pressure of 1000 kg/cm 2 and a molding size of 100φ×
Molding was carried out at 100 hm/m, followed by firing and graphitization according to the usual method. On the other hand, the calcined product was divided into coarse particle components and fine particle components using a wind centrifugal classifier. The yield of each component at this time is: coarse particle component: 13% by weight;
Fine particle component: 87% by weight. This component was shaped, fired, and graphitized under the same conditions as the calcined product without using a binder. The graphitization temperature was 2700°C in all cases. Table 3 shows the physical properties of the graphite blocks obtained from the calcined product, coarse particle component, and fine particle component. The calcined product and fine particle component provided a carbon material with high density and high strength. In particular, the fine particle component has a bending strength of 1300 kg/cm 2 , making it an ultra-high strength carbon material. On the other hand, the coarse particle component became a carbon material with a somewhat lower density and higher resistivity than the calcined product and the fine particle component.

【表】 <実施例 3> 実施例1と同様の性状をもつコールタールピツ
チをオートクレーブにより460℃の温度で30分間
熱処理して熱処理ピツチを得た。この熱処理ピツ
チの特性値はBI:69.8重量%、QI:51.7重量%で
あつた。該熱処理ピツチを実施例1に従つて溶剤
抽出・過を行つた。この時の溶剤抽出・過残
留物の特性値はBI:95.2重量%、QI:81.1重量%
であつた。 しかる後に該溶剤抽出・過残留物を連続式ロ
ータリーキルンを使用してN2雰囲気中で360℃の
温度でカ焼処理を行つた。カ焼後のカ焼品の特性
値はBI:98.0重量%、QI:89.0重量%、VM7.7重
量%であつた。 該カ焼品を微粉砕後成形圧力800Kg/cm2、成形
大きさ100φ×100hm/mでバインダーを使用す
ることなく、通常の法に従つて焼成、黒鉛化を行
つた。一方カ焼品を風力遠心型分級機にて粗粒子
成分と微粒子成分に分割した。この時の各成分の
歩留は粗粒子成分:26重量%、微粒子成分:74重
量%であつた。この各成分をカ焼品と同様の条件
下でバインダーを使用することなく成形、焼成黒
鉛化を行つた。黒鉛化温度はいずれも2700℃であ
つた。 以上、カ焼品、粗粒子成分、微粒子成分から得
られた黒鉛ブロツクの物理特性を表−4に示し
た。カ焼品及び微粒子成分は高密度・高強度・低
比抵抗の炭素材料となつた。
[Table] <Example 3> Coal tar pitch having the same properties as in Example 1 was heat treated in an autoclave at a temperature of 460° C. for 30 minutes to obtain heat treated pitch. The characteristic values of this heat-treated pitch were BI: 69.8% by weight and QI: 51.7% by weight. The heat-treated pitch was subjected to solvent extraction and filtration according to Example 1. The characteristic values of solvent extraction/excess residue at this time are BI: 95.2% by weight, QI: 81.1% by weight
It was hot. The solvent-extracted residue was then calcined at a temperature of 360° C. in a N 2 atmosphere using a continuous rotary kiln. The characteristic values of the calcined product after calcination were BI: 98.0% by weight, QI: 89.0% by weight, and VM 7.7% by weight. After the calcined product was finely pulverized, it was calcined and graphitized using a conventional method at a molding pressure of 800 Kg/cm 2 and a molding size of 100φ×100 hm/m without using a binder. On the other hand, the calcined product was divided into coarse particle components and fine particle components using a wind centrifugal classifier. The yield of each component at this time was 26% by weight for the coarse particle component and 74% by weight for the fine particle component. Each of these components was shaped and calcined to graphitize under the same conditions as for the calcined product without using a binder. The graphitization temperature was 2700°C in all cases. Table 4 shows the physical properties of the graphite blocks obtained from the calcined product, coarse particle component, and fine particle component. The calcined product and fine particle component became a carbon material with high density, high strength, and low resistivity.

【表】 <実施例 4> SP(R&B法):80℃、BI:34.0重量%、QI:
18.1重量%なるコールタールピツチをオートクレ
ーブにより440℃の温度で10分間熱処理して熱処
理ピツチを得た。この熱処理ピツチの特性値は
BI:48.5重量%、QI:26.4重量%であつた。この
熱処理ピツチを実施例1の方法に従つて溶剤抽
出・過を行つた。該溶剤抽出・過残留物の特
性値はBI:94.2重量%、QI:76.5重量%であつ
た。しかる後に該溶剤抽出・過残留物を連続式
ロータリーキルンによりN2雰囲気中で400℃の温
度でカ焼処理を行つた。カ焼後のカ焼品の特性値
はBI:99.0重量%、QI:97.5重量%、VM:6.2重
量%であつた。該カ焼品を成形圧力600Kg/cm2
成形大きさ100φ×150hm/mでバインダーを使
用することなく成形を行い、通常の法に従つて焼
成・黒鉛化を行つた。一方カ焼品を風力遠心型分
級機にて粗粒子成分と微粒子成分に分割した。こ
の時の各成分の歩留は粗粒子成分19重量%、微粒
子成分81重量%であつた。この各成分をカ焼品と
同様の条件下でバインダーを使用することなく、
成形、焼成黒鉛化を行つ。黒鉛化温度は2700℃と
した。 以上、カ焼品、粗粒子成分、微粒子成分から得
られた黒鉛ブロツクの物理特性を表−5に示し
た。各黒鉛ブロツクはいずれも低密度・低強度・
高比抵抗の炭素材料となつた。
[Table] <Example 4> SP (R&B method): 80°C, BI: 34.0% by weight, QI:
Coal tar pitch of 18.1% by weight was heat treated in an autoclave at a temperature of 440°C for 10 minutes to obtain heat treated pitch. The characteristic values of this heat treated pitch are
BI: 48.5% by weight, QI: 26.4% by weight. This heat-treated pitch was subjected to solvent extraction and filtration according to the method of Example 1. The characteristic values of the solvent-extracted residue were BI: 94.2% by weight and QI: 76.5% by weight. Thereafter, the solvent-extracted residue was calcined in a continuous rotary kiln at a temperature of 400° C. in an N 2 atmosphere. The characteristic values of the calcined product after calcination were BI: 99.0% by weight, QI: 97.5% by weight, and VM: 6.2% by weight. The calcined product was molded at a pressure of 600Kg/cm 2 ,
Molding was performed without using a binder with a molding size of 100 φ x 150 hm/m, and firing and graphitization were performed according to a conventional method. On the other hand, the calcined product was divided into coarse particle components and fine particle components using a wind centrifugal classifier. The yield of each component at this time was 19% by weight for the coarse particle component and 81% by weight for the fine particle component. Each of these components is mixed under the same conditions as for calcined products without using a binder.
Shaping and firing graphitization are performed. The graphitization temperature was 2700°C. Table 5 shows the physical properties of the graphite blocks obtained from the calcined product, coarse particle component, and fine particle component. Each graphite block has low density, low strength,
It has become a carbon material with high resistivity.

【表】 <実施例 5> 実施例1におけるカ焼品をニーダー中で攬拌し
ながら、強制的に空気を吹き込み、それぞれ100
℃、200℃、300℃に加熱を行い、3種類の酸化処
理カ焼品を製造した。それぞれの温度で処理した
カ焼品の酸素含有量を測定してみると、処理温度
が上昇するに従つて酸素含有量は増加しており、
酸化が進んでいた。(第1図) 該酸化処理カ焼品をバインダーを使用すること
なく成形圧力800Kg/cm2、成形大きさ100φ×
100hm/mで成形を行い、通常の法により焼成・
黒鉛化を行い、黒鉛ブロツクを得た。黒鉛化温度
は2700℃とした。 表−6に各酸化処理カ焼品から得た黒鉛ブロツ
クの物理特性を未酸化処理カ焼品の黒鉛ブロツク
と比較して示した。酸化処理温度が高くなるにつ
れて、炭素材料の比抵抗は高くなり、特に300℃
で酸化処理したものは10000μΩ−cmの高い比抵
抗をもつ炭素材料となつた。 なお酸化処理温度が300℃を越した場合には、
カ焼品の粘結性が失れ、バインダーを使用するこ
となく黒鉛ブロツクを得ることは出来なかつた。
[Table] <Example 5> While stirring the calcined product in Example 1 in a kneader, air was forcibly blown into the calcined product in a kneader to give 100%
℃, 200℃, and 300℃ to produce three types of oxidized and calcined products. When we measured the oxygen content of calcined products treated at each temperature, we found that as the treatment temperature rose, the oxygen content increased.
Oxidation was progressing. (Figure 1) The oxidized and calcined product was molded at a pressure of 800 kg/cm 2 and a molded size of 100φ× without using a binder.
Forming is carried out at 100hm/m, then fired and fired using the usual method.
Graphitization was performed to obtain a graphite block. The graphitization temperature was 2700°C. Table 6 shows the physical properties of the graphite blocks obtained from each oxidized and calcined product in comparison with those of the non-oxidized and calcined product. As the oxidation treatment temperature increases, the specific resistance of carbon materials increases, especially at 300℃.
The oxidized carbon material had a high resistivity of 10,000μΩ-cm. In addition, if the oxidation treatment temperature exceeds 300℃,
The calcined product lost its caking properties and it was not possible to obtain a graphite block without using a binder.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例5におけるカ焼品の酸化処理温
度と酸素含有量との関係を示すグラフである。横
軸は酸化処理温度(℃)を、縦軸は酸素含有量
(%)を示す。
FIG. 1 is a graph showing the relationship between the oxidation treatment temperature and oxygen content of the calcined product in Example 5. The horizontal axis shows the oxidation treatment temperature (°C), and the vertical axis shows the oxygen content (%).

Claims (1)

【特許請求の範囲】 1 コールタールピツチを350〜600℃の温度で熱
処理し、得られた熱処理物を溶剤で抽出過して
BI(ベンゼン不溶分)>90重量%、QI(キノリン不
溶分)<95重量%の抽出過残留物を得、該残留
物を不活性雰囲気中で250〜500℃の温度でカ焼し
てBI>95重量%、QI>80重量%、VM(揮発分)
4〜15重量%のカ焼品を得ることから成る炭素材
料原料の製造法。 2 コールタールピツチを350〜600℃の温度で熱
処理し、得られた熱処理物を溶剤で抽出過して
BI>90重量%、QI<95重量%の抽出過残留物
を得、該残留物を不活性雰囲気中で250〜500℃の
温度でカ焼してBI>95重量%、QI>80重量%、
VM4〜15重量%のカ焼品を得、該カ焼品を所望
の粒径に分級することから成る炭素材料原料の製
造法。 3 コールタールピツチを350〜600℃の温度で熱
処理し、得られた熱処理物を溶剤で抽出過して
BI>90重量%、QI<95重量%の抽出過残留物
を得、該残留物を不活性雰囲気中で250〜500℃の
温度でカ焼してBI>95重量%、QI>80重量%、
VM4〜15重量%のカ焼品を得、該カ焼品、ある
いは該力焼品を分級処理した分級品を空気中で
100〜300℃の温度において酸化処理することから
成る炭素材料原料の製造法。 4 コールタールピツチを350〜600℃の温度で熱
処理し、得られた熱処理物を溶剤で抽出過して
BI>90重量%、QI<95重量%の抽出過残留物
を得、該残留物を不活性雰囲気中で250〜500℃の
温度でカ焼してBI>95重量%、QI>80重量%、
VM4〜15重量%のカ焼品を得、これを粗粒に富
んだ粗粒側成分と微粒に富んだ微粒側成分とに分
級し、得られた分級品を、そのままあるいは空気
中で100〜300℃の温度において酸化処理した後、
成形、焼成あるいは黒鉛化することから成る炭素
材の製造方法。
[Claims] 1 Coal tar pitch is heat-treated at a temperature of 350 to 600°C, and the resulting heat-treated product is extracted with a solvent.
An overextracted residue with BI (benzene insolubles) > 90% by weight and QI (quinoline insolubles) < 95% by weight was obtained, and the residue was calcined in an inert atmosphere at a temperature of 250-500 °C to produce BI. >95% by weight, QI >80% by weight, VM (volatile content)
A method for producing a carbon material raw material comprising obtaining a calcined product of 4 to 15% by weight. 2 Heat-treat coal tar pitch at a temperature of 350 to 600°C, extract the resulting heat-treated product with a solvent, and
Obtain an overextraction residue with BI>90% by weight and QI<95% by weight, and calcin the residue at a temperature of 250-500°C in an inert atmosphere to produce BI>95% by weight and QI>80% by weight. ,
A method for producing a carbon material raw material, which comprises obtaining a calcined product having a VM of 4 to 15% by weight, and classifying the calcined product to a desired particle size. 3 Heat-treat coal tar pitch at a temperature of 350 to 600℃, extract the resulting heat-treated product with a solvent, and
Obtain an overextraction residue with BI>90% by weight and QI<95% by weight, and calcin the residue at a temperature of 250-500°C in an inert atmosphere to produce BI>95% by weight and QI>80% by weight. ,
A calcined product with a VM of 4 to 15% by weight is obtained, and the calcined product or a classified product obtained by classifying the power-calcined product is heated in air.
A method for producing a carbon material raw material comprising oxidation treatment at a temperature of 100 to 300°C. 4 Heat-treat coal tar pitch at a temperature of 350 to 600°C, extract the resulting heat-treated product with a solvent, and
Obtain an overextraction residue with BI>90% by weight and QI<95% by weight, and calcin the residue at a temperature of 250-500°C in an inert atmosphere to produce BI>95% by weight and QI>80% by weight. ,
A calcined product with a VM of 4 to 15% by weight is obtained, and this is classified into a coarse grain component rich in coarse grains and a fine grain component rich in fine grains. After oxidation treatment at a temperature of 300℃,
A method of producing carbon material comprising forming, firing or graphitizing.
JP16663882A 1982-09-27 1982-09-27 Preparation of carbonaceous material Granted JPS5956486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16663882A JPS5956486A (en) 1982-09-27 1982-09-27 Preparation of carbonaceous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16663882A JPS5956486A (en) 1982-09-27 1982-09-27 Preparation of carbonaceous material

Publications (2)

Publication Number Publication Date
JPS5956486A JPS5956486A (en) 1984-03-31
JPH0222794B2 true JPH0222794B2 (en) 1990-05-21

Family

ID=15834986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16663882A Granted JPS5956486A (en) 1982-09-27 1982-09-27 Preparation of carbonaceous material

Country Status (1)

Country Link
JP (1) JPS5956486A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138172A (en) * 1987-11-24 1989-05-31 Toyo Tanso Kk Sintered material of graphite and mesocarbon microbead
JP2574686B2 (en) * 1988-03-24 1997-01-22 大阪瓦斯株式会社 Method for producing mesocarbon microbeads

Also Published As

Publication number Publication date
JPS5956486A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
CN112299849B (en) Method for preparing battery carbon rod by using regenerated graphite
US4637906A (en) Method of producing carbon materials
US3565980A (en) Slip casting aqueous slurries of high melting point pitch and carbonizing to form carbon articles
JP3765840B2 (en) Carbon material manufacturing method
JPH0222794B2 (en)
US3567808A (en) Production of low density-high strength carbon
EP0157586A2 (en) A method for producing sintered silicon carbide articles
EP0156051B1 (en) Method for producing carbon powders
JP6193191B2 (en) Carbon material manufacturing method
JP2910002B2 (en) Special carbon material kneading method
JP2700798B2 (en) Manufacturing method of carbon and graphite materials
JPS5978914A (en) Manufacture of special carbonaceous material
JP2989295B2 (en) Method for producing coke for isotropic high-density carbon material
JP3278190B2 (en) Method for producing isotropic high-density graphite material
JPS6213284B2 (en)
CN108675292A (en) The method that combination method prepares isotropic graphite material
JPH04228412A (en) Composition for specific carbon material
JPH0158125B2 (en)
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPS59207822A (en) Production of carbon material
JP2808807B2 (en) Production method of raw material powder for carbon material
CA2920605C (en) Carbon material production method and carbon material
KR100829230B1 (en) Preparing method of carbon particle
SU243587A1 (en) The method of preparation of the &#34;green&#34; mass of carbon and graphite materials
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact