JPH02227075A - New polypeptide - Google Patents

New polypeptide

Info

Publication number
JPH02227075A
JPH02227075A JP1253097A JP25309789A JPH02227075A JP H02227075 A JPH02227075 A JP H02227075A JP 1253097 A JP1253097 A JP 1253097A JP 25309789 A JP25309789 A JP 25309789A JP H02227075 A JPH02227075 A JP H02227075A
Authority
JP
Japan
Prior art keywords
dna
polypeptide
added
approximately
units
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1253097A
Other languages
Japanese (ja)
Other versions
JP2928287B2 (en
Inventor
Katsutoshi Sasaki
克敏 佐々木
Tatsuya Nishi
達也 西
Shigeyoshi Yasumura
安村 茂良
Moriyuki Sato
盛幸 佐藤
Seiga Itou
伊藤 菁莪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Hakko Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co Ltd filed Critical Kyowa Hakko Kogyo Co Ltd
Priority to JP1253097A priority Critical patent/JP2928287B2/en
Publication of JPH02227075A publication Critical patent/JPH02227075A/en
Application granted granted Critical
Publication of JP2928287B2 publication Critical patent/JP2928287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PURPOSE:To efficiently produce polypeptide by culturing host cell transformed with plasmid including DNA coding polypeptide having amino acid sequence capable of adding at least one saccharides. CONSTITUTION:Plasmid having amino acid sequence capable of adding at least one new saccharides and containing DNA coding polypeptide capable of adding saccharides by amino acid-substitution, amino acid-omitting or amino acid- inserting to polypeptide is prepared. Host cell is transformed using said plasmid and the transformant is cultured in medium to accumulate polypeptide or glycosylated polypeptide in the cultured matter. Next, polypeptide or glycosylated polypeptide is collected from the cultured matter.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新たなI!鎖の付加が可能なアミノ酸配列を
有する新規ポリペプチドおよびそのグリコシル化ポリペ
プチド、該ポリペプチドまたは該グリコシル化ポリペプ
チドをコードするデオキシリボ核酸(DNA)、該DN
Aを含有する組換え体プラスミド、繊組換え体プラスミ
ドで形質転換した宿主細胞および形質転換細胞を用いる
該ポリペプチドまたは該グリコシル化ポリペプチドの製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a new I! A novel polypeptide having an amino acid sequence to which a chain can be added, a glycosylated polypeptide thereof, a deoxyribonucleic acid (DNA) encoding the polypeptide or the glycosylated polypeptide, the DN
The present invention relates to a method for producing the polypeptide or the glycosylated polypeptide using a recombinant plasmid containing A, a host cell transformed with the recombinant plasmid, and a transformed cell.

本発明はすべてのポリペプチドに当てはめることが可能
である。本発明によって提供される新たな糖鎖が付加し
たポリペプチドは、糖鎖の多様な機能が付加されたもの
であり、天然の蛋白質に比較して物性や活性が優れてい
る。したがって本発明によって提供される糖鎖付加ポリ
ペプチドは、幅広い分野において有用であると期待され
る。
The invention is applicable to all polypeptides. The polypeptide provided by the present invention to which a new sugar chain has been added has various functions added to the sugar chain, and has superior physical properties and activities compared to natural proteins. Therefore, the glycosylated polypeptide provided by the present invention is expected to be useful in a wide range of fields.

例えば、本発明のポリペプチドまたはグリコシル化ポリ
ペプチドがヒト顆粒球コロニー刺激因子(hG−C5F
)である場合、適当な部位に新たな糖鎖が付加したhG
−CSFは、プロテアーゼに対する抵抗性が増加する。
For example, the polypeptides or glycosylated polypeptides of the invention may be human granulocyte colony stimulating factor (hG-C5F).
), hG with a new sugar chain added at an appropriate site
- CSF has increased resistance to proteases.

この新規hG−CSFは、血中におけるクリアランス(
除去)が遅くなっていることも十分期待され、医薬品と
しての利用が期待される。
This novel hG-CSF has been shown to be effective for clearance in the blood (
It is also fully expected that the removal rate (removal) is slow, and its use as a medicine is expected.

また、本発明のグリコシル化ポリペプチドがウロキナー
ゼ(UK)である場合も同様に、新たな糖鎖が適当な部
位に付加したUKは、付加しないものより優れた血栓溶
解作用を有しており脳血栓、心筋梗塞などの治療薬とし
ての利用が期待される。
Similarly, when the glycosylated polypeptide of the present invention is urokinase (UK), UK with a new sugar chain added to an appropriate site has a thrombolytic effect superior to that without the addition, and has a thrombolytic effect on cerebral thrombosis. It is expected to be used as a therapeutic agent for myocardial infarction.

従来の技術 大腸菌などの原核生物によって生産される蛋白質が糖鎖
を有していないのに対し、酵母、カビ、植物細胞または
動物細胞等の真核生物によって生産される蛋白質には糖
鎖が結合している場合が多い。
Conventional technology Proteins produced by prokaryotes such as Escherichia coli do not have sugar chains, whereas proteins produced by eukaryotes such as yeast, molds, plant cells, or animal cells have sugar chains attached. in many cases.

付加する糖鎖は、主として2つの群に大別できる。一つ
は、蛋白質中のアスパラギン(Asn)残基に結合する
N−グリコシド結合型糖鎖で、もう一つは、蛋白質中の
セリン(Ser)またはスレオニン(Thr)残基に結
合するO−グリコシド結合型糖鎖である。
The sugar chains to be added can be roughly divided into two groups. One is an N-glycoside-linked sugar chain that binds to asparagine (Asn) residues in proteins, and the other is O-glycoside chains that bind to serine (Ser) or threonine (Thr) residues in proteins. It is a linked sugar chain.

N−グリコシド結合型糖鎖はN−アセチルグルコサミン
2個とマンノース3個の五徳よりなるコア構造を共通の
基本構造としており、その糖鎖構造から高マンノース型
、複合型、そしてハイブリッド型の3つに分類されてい
る(第1図)。これらのアスパラギン結合型糖鎖は、1
8〜2(18)イソプレンユニットからなるポリイソプ
レノイドアルコールであるドリコールにピロリン酸をは
さんでN−アセチルグルコサミン2個、マンノース9個
、そしてグルコース3個が結合したリピド中間体(Gl
csMan、GIcNAca−PP−00り(第2図)
を前駆体としている。
N-glycoside-linked sugar chains have a common core structure consisting of two N-acetylglucosamines and three mannose trivets, and based on their sugar chain structure, there are three types: high-mannose type, complex type, and hybrid type. They are classified as follows (Figure 1). These asparagine-linked sugar chains are 1
A lipid intermediate (Gl
csMan, GIcNAca-PP-00 (Figure 2)
is used as a precursor.

リピド中間体が形成される反応経路は“ドリコールリン
酸サイクル°としてよく知られている(第3図)。
The reaction pathway by which lipid intermediates are formed is well known as the "dolichol phosphate cycle" (Figure 3).

そして粗面小胞体(rER)内腔において生成中のポリ
ペプチド鎖中のAsn−X−3er/Thrといったア
ミノ酸配列(N−グリコシル化部位)中のAsn残基に
、このリビド中間体の糖鎖部分がひとまとめに転移され
、N−グリコシド結合を形成する。この場合Xはプロリ
ン(P r o)以外のどんなアミノ酸でもよく、また
この反応は、膜酵素の1種である“オリゴ糖転移酵素(
旧1go−5accharyl transferas
e)”によって触媒されることが知られている。この後
、rERおよびゴルジ体を通過する過程で糖鎖はトリミ
ングとプロセシングを受け、高マンノース型、ハイブリ
ッド型あるいは複合型として完成される(第4図)。ト
リミングとプロセッシングの過程においては多くのグリ
コシダーゼとグリコシルトランスフェラーゼが関与して
いることが知られている。
The sugar chain of this libido intermediate is then attached to the Asn residue in the amino acid sequence (N-glycosylation site) such as Asn-X-3er/Thr in the polypeptide chain being generated in the lumen of the rough endoplasmic reticulum (rER). The moieties are transferred together to form an N-glycosidic bond. In this case, X may be any amino acid other than proline (P r o), and this reaction is carried out by oligosaccharyltransferase (oligosaccharyltransferase), a type of membrane enzyme.
Old 1go-5accharyl transferas
After this, the sugar chain undergoes trimming and processing during the process of passing through the rER and Golgi apparatus, and is completed as a high-mannose type, hybrid type, or complex type (e). (Figure 4).It is known that many glycosidases and glycosyltransferases are involved in the trimming and processing process.

高マンノース型は、動植物起源および酵母、カビの糖蛋
白質においてしばしば見られるのに対し、複合型糖鎖は
動物起源に限定されていると推定されている。
High-mannose types are often found in glycoproteins of animal and plant origin, as well as yeast and mold, whereas complex-type sugar chains are presumed to be limited to those of animal origin.

N−グリコシド結合型糖鎖は上述したようにポリペプチ
ド中のAsn−X−3e r/Th r (XはPro
以外のアミノ酸)中のAsn残基に結合する′が多くの
蛋白質中には非糖鎖結合のAsn−X−3er/Thr
配列が存在しており、この配列が存在すれば必ずa鎮が
付加するというものではない。事実ウィリアム・ジエイ
・レナルッ(William J、 Lennarz)
らは、蛋白質の立体構造がwinの結合を促す上で重要
であることを示唆している。それは、Asn−X−5e
 r/Th rの配列を持った単純なトリペプチドや、
天然の蛋白質のように複雑に折りたたまれた空間構造を
もたない変性蛋白質がインビトロ(in vitro)
で酵素的に、比較的容易に糖鎖を結合させるという知見
に基づいている。
As mentioned above, the N-glycoside-linked sugar chain is Asn-X-3e r/Th r (X is Pro
In many proteins, the Asn-X-3er/Thr
There is a sequence, and if this sequence exists, it does not necessarily mean that the a-string will be added. Facts William J. Lennarz
suggest that the three-dimensional structure of the protein is important in promoting win binding. It is Asn-X-5e
A simple tripeptide with the sequence r/Th r,
In vitro, denatured proteins that do not have the intricately folded spatial structure of natural proteins
This is based on the knowledge that it is relatively easy to bind sugar chains enzymatically.

一方、0−グリコシド結合型aiIlにおいては、ポリ
ペプチド中のSerまたはThr残基にN−アセチルガ
ラクトサミンを介して結合し、それにガラクトース、シ
アル酸、フコース、末端N−アセチルガラクトサミンが
結合しているのが普通である〔鈴木 旺ら:蛋白質、核
酸、酵素、30゜513 (1985))。また上述の
N−グリコシド結合型糖鎖の場合と異なり、その合成に
rERは関与せず、すべてゴルジ体で行われると考えら
れているしジョンソン(Johnsgn)ら:セル(C
e11)、32.987(1983)]。また、]N−
グリコシド結合の場合とは異なりI!鎮付加におけるア
ミノ酸配列上の規則性も存在していない。しかしながら
Pro−Thr/Ser 。
On the other hand, in O-glycoside-bound aIl, it is bound to the Ser or Thr residue in the polypeptide via N-acetylgalactosamine, and galactose, sialic acid, fucose, and terminal N-acetylgalactosamine are bound to it. is common [Osuzuki Suzuki et al.: Proteins, Nucleic Acids, Enzymes, 30°513 (1985)]. Furthermore, unlike the case of N-glycoside-linked sugar chains mentioned above, rER is not involved in their synthesis, and it is thought that all of the synthesis takes place in the Golgi apparatus.Johnsgn et al.
e11), 32.987 (1983)]. Also, ]N-
Unlike the case of glycosidic bonds, I! There is also no regularity in the amino acid sequence in addition. However, Pro-Thr/Ser.

Thr/5er−Pro 、 Thr/5et−X+N
5−ProなどのようにProが近くに存在した場合に
w1鎖が付加しやすい傾向にあることが知られている。
Thr/5er-Pro, Thr/5et-X+N
It is known that when Pro exists nearby, such as in 5-Pro, the w1 chain tends to be added.

この場合、Xはどんなアミノ酸でもよい〔高橋ら:プロ
シーディング・オン・ザ・ナショナル・アカデミ−・オ
ン・サイエンス(Proc、Natl、Acad、Sc
i、)、USA、 81゜2021 (1984) ]
In this case, X may be any amino acid [Takahashi et al.: Proceedings on the National Academy of Sciences (Proc, Natl., Acad, Sc.
i,), USA, 81°2021 (1984)]
.

糖蛋白質の糖鎖の本質的な生物学的機能については、未
知の部分も多いが、多くの糖蛋白質に関する研究により
、現在までに糖鎖の多様な機能が明らかにされてきてい
る。
Although much remains unknown regarding the essential biological functions of sugar chains of glycoproteins, various functions of sugar chains have been clarified to date through research on many glycoproteins.

まず、I!鎖は蛋白質を安定化することが知られている
。血中におけるクリアランスの遅延もその1例である。
First, I! Chains are known to stabilize proteins. One example is delayed clearance in the blood.

大腸菌に遺伝子移入してつくられたヒトエリスロポイエ
チン(アスパラギン結合型糖鎖を欠<)、あるいは、l
鎖を酵素処理で除去したヒトエリスロポイエチン(凝集
する)は、1nvitroでは活性を示すが、インビボ
(in vivo)では急速にクリアランスされ、活性
が低いことが知られている〔ドーダル(口ordal)
ら:エンドクリノロジー(Endocrinologf
f)、 116.2293(1985)およびブローネ
(Browne)ら:コールド・スプリング・ハーバ−
・シンポジア・オン・りオンティテエイティブ・バイオ
ロジー(Cold Spr、Harb、 Symp、 
Quant。
Human erythropoietin (lacking asparagine-linked sugar chains) or l
Human erythropoietin (which aggregates) whose chains have been removed by enzymatic treatment exhibits activity in vitro, but is rapidly cleared in vivo and is known to have low activity [Dodal et al.
et al.: Endocrinology
f), 116.2293 (1985) and Browne et al.: Cold Spring Harbor.
・Symposia on Reontative Biology (Cold Spr, Harb, Symp,
Quant.

Biol、)、 51.693(1986) ] 。ま
たヒト顆粒球・マクロファージコロニー刺激因子(h 
GM−CS F)は、天然ではN−グリコシド結合型糖
鎖を2本持っているが、糖鎖の本数を減らすとそれに比
例してラット血漿からのクリアランス速度が速まること
が知られている〔ドナヒユー(口onahue)ら:コ
ールド・スプリング・ハーバ−・シンポジア・オン・ク
オンティテエイティブ・バイオロジー(ColdSpr
、Harb、Symp、Quant、Riot、)、 
51.685(1986) ]。
Biol, ), 51.693 (1986)]. Also, human granulocyte/macrophage colony stimulating factor (h
GM-CSF) naturally has two N-glycoside-linked sugar chains, but it is known that reducing the number of sugar chains increases the clearance rate from rat plasma in proportion [ Donahue et al.: Cold Spring Harbor Symposia on Quantitative Biology (ColdSpr.
, Harb, Symp, Quant, Riot, ),
51.685 (1986)].

クリアランスの速度およびクリアランスされる部位は糖
鎖の構造によっても変化し、シアル酸がついたh GM
−CS Fは腎臓でクリアランスされるのに対し、シア
ル酸を除去したh GM−CS Fはクリアランス速度
が速まり、肝臓でクリアランスされことが知られている
。また、ラット肝初代培養の系で各種のアスパラギン結
合型糖鎖生合成阻害剤存在下に生合成された、糖鎖構造
の異なるa 、−acid glycoprotein
について、ラットの血漿からのクリアランス速度および
ラット潅流液からのクリアランス速度を調べたところ、
どちらの場合も、高マンノース型〉糖鎖欠損型〉ハイブ
リッド型〉複合型(天然型)の順であったCグロス(G
ross) ラ: ヨーロピアン・ジャーナル・オン・
バイオケミストリー(Our、J、Biochem、)
 、16283(1987))。安定化の別の例として
、糖鎖がプロテアーゼ抵抗性を付与していることが知ら
れている。例えば、フィブロネクチン(fibrone
ctin)の糖鎖形成をツニカマイシンで阻害すると、
得られた糖鎖欠損フィブロネクチンの細胞内蛋白質の分
解の速度が増進する〔オルデン(Olden)ら:セル
(Cell)、 13 、461(1987)] 、糖
鎮の付加により、熱安定性や抗凍結性が増大することも
知られている。また、エリスロポイエチンやβ−インタ
ーフェロンなどにふいては、蛋白質の溶解性の増大に糖
鎖が寄与していることが知られている。
The rate of clearance and the site to be cleared also vary depending on the structure of the sugar chain;
It is known that -CSF is cleared in the kidney, whereas hGM-CSF from which sialic acid has been removed has a faster clearance rate and is cleared in the liver. In addition, a, -acid glycoproteins with different sugar chain structures were biosynthesized in the presence of various asparagine-linked sugar chain biosynthesis inhibitors in a rat liver primary culture system.
The clearance rate from rat plasma and rat perfusate was investigated.
In both cases, the C gloss (G
ross) LA: European Journal on
Biochemistry (Our, J, Biochem,)
, 16283 (1987)). Another example of stabilization is that sugar chains are known to confer protease resistance. For example, fibronectin (fibronectin)
When the formation of sugar chains of ctin is inhibited by tunicamycin,
The rate of intracellular protein degradation of the obtained sugar chain-deficient fibronectin is increased [Olden et al.: Cell, 13, 461 (1987)], and the addition of carbohydrates improves thermostability and anti-freezing properties. It is also known to increase sex. Furthermore, it is known that sugar chains contribute to increasing the solubility of proteins such as erythropoietin and β-interferon.

糖鎖は、蛋白質が正しい立体構造を保持するのにも役立
っている。水泡性口内炎ウィルスの膿結合糖蛋白質の天
然に存在する2本のN−グリコシド結合型aw4を除去
すると、蛋白質の細胞表面への輸送が阻害されるが、そ
の蛋白質に新たなI!鎮が付加されるとそれが回復する
ことが知られている。この場合、糖鎖の除去により、ジ
スルフィド結合による蛋白質分子間の会合が誘起され、
その結果蛋白質輸送が阻害されることが明らかとなった
。また新しく付加した糖鎖は、この会合を阻害すること
により蛋白質の正しい立体構造を保持することができ再
び蛋白質輸送が可能になったと考えられている。また、
その際新たな糖鎖を付加する位置については、かなりの
融通性があることが示されている。またその反面、導入
する位置によっては天然の糖鎖を有する蛋白質の輸送を
も完全に阻害する場合があることも明らかとなった〔ロ
ーズ(Rose)ら:ジャーナル・オン・バイオロジカ
ル−ケミストリー(J、Biol、Chen+、)、 
263 .5948および5955 (1988) :
l。
Glycans also help proteins maintain their correct three-dimensional structure. Removal of the two naturally occurring N-glycoside-linked aw4 chains of the pus-binding glycoprotein of vesicular stomatitis virus inhibits the transport of the protein to the cell surface, but a new I! It is known that it will be restored when a chin is added. In this case, removal of sugar chains induces association between protein molecules through disulfide bonds,
As a result, it was revealed that protein transport was inhibited. Furthermore, the newly added sugar chain is thought to be able to maintain the correct three-dimensional structure of the protein by inhibiting this association, making protein transport possible again. Also,
It has been shown that there is considerable flexibility in the position at which new sugar chains are added. On the other hand, it has also become clear that depending on the position of introduction, the transport of proteins with natural sugar chains may be completely inhibited [Rose et al.: Journal on Biological Chemistry (J ,Biol,Chen+,),
263. 5948 and 5955 (1988):
l.

I!鎖がポリペプチド上の抗原部位をマスクしている例
も知られている。h GM−CS F、プロラクチン、
インターフェロン−γ、ラウシャ−(Rauscher
)白血病ウィルスgp70およびインフルエンザへマグ
ルチニンにおいて、ポリクローナル抗体またはペプチド
上の特定の領域に対する単クローン抗体を用いた実験か
ら、これら蛋白質の糖鎖が、抗体との反応を阻害してい
るという結論が引き出された。しかし、この反面、ある
種の蛋白質においては逆に免疫反応を誘発する場合も知
られており、糖鎖が二重の役割を演することが示唆され
ている。
I! Examples are also known in which chains mask antigenic sites on polypeptides. h GM-CSF, prolactin,
Interferon-γ, Rauscher
) Experiments using polyclonal antibodies or monoclonal antibodies against specific regions on leukemia virus gp70 and influenza hemagglutinin peptides have led to the conclusion that the sugar chains of these proteins inhibit the reaction with antibodies. Ta. However, on the other hand, it is also known that certain proteins induce immune reactions, suggesting that sugar chains play a dual role.

糖鎖自身が糖蛋白質の活性発現に直接係わっている場合
もあることが知られている。例えば、黄体形成ホルモン
、濾胞刺激ホルモン、絨毛性性腺刺激ホルモンのような
糖蛋白質ホルモンがそれである。
It is known that sugar chains themselves are sometimes directly involved in the expression of glycoprotein activity. Examples include glycoprotein hormones such as luteinizing hormone, follicle-stimulating hormone, and chorionic gonadotropin.

最後に、糖鎖の重要な機能として、認識現象への関与と
いうことが上げられる。糖鎖が、細胞間、蛋白質問ある
いは細胞と蛋白質間の認識現象に関与していると考えら
れる多くの例が知られており、糖鎖の構造の違いにより
生体内クリアランスの場所が異なることもその1例であ
る。
Finally, an important function of sugar chains is their involvement in cognitive phenomena. There are many known examples in which sugar chains are thought to be involved in recognition phenomena between cells, protein interrogation, or cells and proteins, and the location of in vivo clearance may differ depending on the structure of the sugar chain. This is one example.

以上糖蛋白質の糖鎖の構造と機能について述べてきた。The above has described the structure and function of sugar chains of glycoproteins.

糖鎖の構造と機能の解析の手段については現在著しく進
展してきており、ペプチド骨格に結合した糖鎖の物理化
学的性質についているいろな解析が可能となってきた。
Significant progress has been made in methods for analyzing the structure and function of sugar chains, and it has become possible to conduct various analyzes of the physicochemical properties of sugar chains bound to peptide backbones.

とくに糖鎖を逐次解離してゆく特異性の高い酵素(エキ
ソグリコシダーゼ)やペプチド鎖との結合点をペプチド
鎖と糖鎖の双方を傷めずに開裂するグリコペプチダーゼ
やエンド型グリコシターゼが実用になったことによって
、糖鎖の生物学的な役割についても詳細な研究ができる
ようになったことは特筆すべきことであろう。また、グ
リコシルトランスフェラーゼにより、新たな糖鎖を付加
することも可能である。例えば、シアル酸ト、ランスフ
ェラーゼにより、糖鎖の末端にシアル酸を新たに付加す
ることもできる。その他種々のグリコシルトランスフェ
ラーゼやグリコシダーゼの阻害剤を用いることにより、
付加する糖鎖を変化させる技術もよく知られている。
In particular, highly specific enzymes (exoglycosidases) that sequentially dissociate sugar chains, and glycopeptidases and endo-glycosidases that cleave the bonding points with peptide chains without damaging both the peptide chains and sugar chains, have come into practical use. It is noteworthy that this has made it possible to conduct detailed research on the biological roles of sugar chains. It is also possible to add new sugar chains using glycosyltransferase. For example, sialic acid can be newly added to the end of a sugar chain using sialic acid transferase. By using various other glycosyltransferase and glycosidase inhibitors,
Techniques for changing the sugar chains added are also well known.

先に述べた水泡性口内炎ウィルスの膜結合糖蛋白質のよ
うに、糖鎖を付加する技法がa鎮の機能を研究する目的
に用いられた例はあるが、産業上利用価値の高いポリペ
プチドの改良に用いられた例はまだない。一般に、生理
活性ポリペプチドは、プロテアーゼ切断による活性低下
、熱処理による活性低下、あるいは生体内に投与したと
きにクリアランスを受けやすいことなどの好ましくない
性質を有する場合が多い。これまでに、このようなポリ
ペプチドのアミノ酸配列を改変し、新たな糖鎖を意図的
に付加することにより、プロテアーゼ抵抗性、熱安定性
、あるいは血中安定性などを増加させたという例は知ら
れていない。本発明において意図的に新たな糖鎖を付加
することにより、上記ポリペプチドの諸性質を改善する
手法を開発した。
As with the membrane-bound glycoprotein of the vesicular stomatitis virus mentioned above, there are examples in which the technique of adding sugar chains has been used to study the function of anti-alcoholic agents, but it is difficult to develop polypeptides with high industrial value. There are no examples of it being used for improvement yet. Generally, physiologically active polypeptides often have undesirable properties such as decreased activity due to protease cleavage, decreased activity due to heat treatment, or susceptibility to clearance when administered in vivo. To date, there have been no examples of increasing protease resistance, thermostability, or blood stability by modifying the amino acid sequence of such polypeptides and intentionally adding new sugar chains. unknown. In the present invention, we have developed a method to improve various properties of the above polypeptide by intentionally adding new sugar chains.

発明が解決しようとする問題点 生理活性ポリペプチドは、一般に、プロテアーゼ切断に
よる活性低下、熱処理による活性低下、生体内に投与し
たときにクリアランスを受けやすいなど、不利な性質を
有している場合が多い。たとえば、UKはトロンビンと
いうプロテアーゼによって不活性型になってしまう。生
理活性ポリペプチドのかかる諸性質を改善することは重
要な課題である。
Problems to be Solved by the Invention Physiologically active polypeptides generally have disadvantageous properties such as decreased activity due to protease cleavage, decreased activity due to heat treatment, and susceptibility to clearance when administered in vivo. many. For example, UK is rendered inactive by a protease called thrombin. Improving these properties of bioactive polypeptides is an important issue.

問題点を解決するための手段 本発明では、かかる課題を解決するために、生理活性ポ
リペプチドに新たな1$1を付与する方法を開発した。
Means for Solving the Problems In order to solve the problems, the present invention has developed a new method for adding $1 to physiologically active polypeptides.

その方法は、プロテアーゼ切断部位近傍などの所望の部
位に新たな糖鎖の付加が可能となるように、ポリペプチ
ドのアミノ酸配列を変化させ、その変異ポリペプチドを
コードするDNAを組換えDNA技法により構築し、組
換え発現ベクターに組込んだものを微生物または動物細
胞に導入し、発現させることを利用した方法である。
This method involves changing the amino acid sequence of a polypeptide so that a new sugar chain can be added to a desired site, such as near the protease cleavage site, and then using recombinant DNA techniques to generate DNA encoding the mutant polypeptide. This method utilizes constructing a recombinant expression vector, introducing it into a microorganism or animal cell, and expressing it.

このような方法によって得られたグリコシル化ポリペプ
チドの性質を調べたところ、プロテアーゼ抵抗性などの
すぐれた性質が付与されていることを見い出し、本発明
を完成するに至った。
When the properties of the glycosylated polypeptide obtained by such a method were investigated, it was discovered that it was endowed with excellent properties such as protease resistance, leading to the completion of the present invention.

発明の詳細な説明 本発明によれば、少なくとも1つの糖鎖の付加が可能な
アミノ酸配列を有する新規ポリペプチドおよびそのグリ
コシル化ポリペプチド、該ポリペプチドまたは該グリコ
シル化ポリペプチドをコードするDNA、該DNAを含
有する組換え体プラスミド、繊組換え体プラスミドを含
む微生物または動物細月包、および該微生物または動物
細胞を用いる該ポリペプチドまたは該グリコシル化ポリ
ペプチドの製造法が提供される。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a novel polypeptide having an amino acid sequence to which at least one sugar chain can be added, a glycosylated polypeptide thereof, a DNA encoding the polypeptide or the glycosylated polypeptide; A recombinant plasmid containing the DNA, a microorganism or animal capsule containing the recombinant plasmid, and a method for producing the polypeptide or the glycosylated polypeptide using the microorganism or animal cell are provided.

本発明の目的は、任意のポリペプチドまたはグリコシル
化ポリペプチドに少なくとも一つの新たな糖鎖を付加す
ることにより、前記した糖鎖の持つ機能のいずれかを、
ポリペプチドまたはグリコシル化ポリペプチドに新たに
付与しようとするものである。例えば本発明は新たなa
taを付加することにより一ポリベブチドまたはグリコ
シル化ポリペプチドを安定化して血中でのクリアランス
を延長させ、また、そのポリペプチドまたはグリコシル
化ポリペプチドを生体内の特定の場所に指向させること
を目的とするものである。またプロテアーゼによるポリ
ペプチドの切断が生物学的活性に大きく関与している場
合においては、I!i#lを付加することによりプロテ
アーゼ抵抗性を増加させ、生物学的活性を制御すること
ができる。
The purpose of the present invention is to add at least one new sugar chain to any polypeptide or glycosylated polypeptide, thereby enhancing any of the functions of the sugar chain described above.
It is intended to be newly added to a polypeptide or a glycosylated polypeptide. For example, the present invention provides a new
By adding ta, the purpose is to stabilize a polypeptide or a glycosylated polypeptide to prolong its clearance in the blood, and to direct the polypeptide or glycosylated polypeptide to a specific location in the body. It is something to do. Furthermore, in cases where cleavage of polypeptides by proteases is significantly involved in biological activity, I! By adding i#l, protease resistance can be increased and biological activity can be controlled.

新たな糖鎖の付加が可能なアミノ酸配列をポリペプチド
中に作成するためには、ポリペプチドのアミノ酸置換、
アミノ酸欠失、アミノ酸挿入などの方法によって行うこ
とができる。
In order to create an amino acid sequence in a polypeptide that allows the addition of new sugar chains, amino acid substitution in the polypeptide,
This can be achieved by methods such as amino acid deletion and amino acid insertion.

たとえばN−グリコシド結合型糖鎖を結合させるための
アミノ酸としては、アスパラギン(Asn)が、0−グ
リコシド結合型糖鎖を結合させるためのアミノ酸として
は、セリン(Set)、スレオニン(Thr)が知られ
ているので、これらのアミノ酸がポリペプチド上の好適
な位置に存在するようにすればよい。
For example, asparagine (Asn) is known as an amino acid for binding N-glycoside-linked sugar chains, and serine (Set) and threonine (Thr) are known as amino acids for binding O-glycoside-linked sugar chains. Therefore, these amino acids may be present at suitable positions on the polypeptide.

好適には、Asn−X−Thr/Ser (Xはプロリ
ン以外のアミノ酸)で示されるトリペプチドを、対象と
するポリペプチドの適当な部位に導入することによって
糖鎖の付加が可能なアミノ酸を該ポリペプチド中に存在
させることができる。
Preferably, an amino acid to which a sugar chain can be added is introduced into the target polypeptide by introducing a tripeptide represented by Asn-X-Thr/Ser (X is an amino acid other than proline) into an appropriate site of the target polypeptide. can be present in the polypeptide.

このトリペプチドの導入は遺伝子の部位特異的変異の方
法に従って行うことができる。
Introduction of this tripeptide can be carried out according to the method of site-specific mutagenesis of genes.

新たな糖鎖を付加するにあたって重要なのは、糖鎖を付
加する位置である。前述のように、ポリペプチド上の位
置によっては糖鎖が付加しない場合があるし、また新た
な糖鎖が付加されても、その結果ポリペプチドの正しい
立体構造が破壊され、膜輸送が阻害されたり、活性を消
失する場合もある。したがって、新たな糖鎖を付加する
位置は少なくともポリペプチドの表面部位にある必要が
ある。立体構造が既にわかっているポリペプチドにおい
ては、その表面部位があきらかなので、容易に付加部位
を決定することができる。また、糖鎖付加による活性低
下を最小限におさえるためには、活性部位から立体構造
上できるだけ離れている方が望ましい。そこで、立体構
造に加え活性部位も明らかなポリペプチドにおいては上
記のことを考慮して付加部位を決定できる。一方、ポリ
ペプチドの立体構造が未知の場合には、ポリペプチドの
一次構造よりその親水性(HVdropathy)を計
算し、表面部位を推定することができる。また、−次構
造からチョーーファスマン(Chou−Fasman)
  [バイオケミストリー(Biochemistry
) 13  、211 (1974)。
What is important when adding a new sugar chain is the position at which the sugar chain is added. As mentioned above, sugar chains may not be added depending on the position on the polypeptide, and even if new sugar chains are added, the correct three-dimensional structure of the polypeptide may be disrupted and membrane transport may be inhibited. In some cases, the activity may be lost. Therefore, the position at which a new sugar chain is added needs to be at least on the surface of the polypeptide. In a polypeptide whose three-dimensional structure is already known, its surface site is obvious, so the attachment site can be easily determined. Furthermore, in order to minimize the decrease in activity due to glycosylation, it is desirable to be as far away from the active site as possible in terms of steric structure. Therefore, in polypeptides in which the active site is known in addition to the three-dimensional structure, the addition site can be determined by taking the above into account. On the other hand, when the three-dimensional structure of a polypeptide is unknown, its surface site can be estimated by calculating its hydrophilicity (HVdropathy) from the polypeptide's primary structure. Also, from the -order structure, Chou-Fasman
[Biochemistry
) 13, 211 (1974).

バイオケミストリー(Biochemistry)  
13 .222(1974)、  アドバアンスト・エ
ンザイモロジー(Adv。
Biochemistry
13. 222 (1974), Advanced Enzymology (Adv.

εnzymo1.) 47 、45(1978) 〕の
方法、あるいはロブソン(Robson) [ジャーナ
ル・オン・モレキュラー・バイオロジー(J、!Jol
、Biol、) 107 、327(1976)。
εnzymo1. ) 47, 45 (1978)] or the method of Robson [Journal on Molecular Biology (J,!Jol
, Biol.) 107, 327 (1976).

同120.97(197B)]の方法で2次構造を予想
することで、ターン構造を形成しそうな場所を推定する
こともできる。また、各種プロテアーゼで処理して、切
断されやすい部位を同定することにより、表面部位に関
してさらに詳しい情報を得ることができる。プロテアー
ゼ切断部位近傍は、ポリペプチドの表面に位置している
可能性が高いと考えられるため、ポリペプチドに効率よ
く糖鎖を付加しようとする際や、天然の蛋白質と同等の
活性を有する糖鎖付加ポリペプチドを取得しようとする
際には、糖鎖付加の絶好の標的部位となる。また、プロ
テアーゼ切断部位近傍に糖鎖が付加されたポリペプチド
は、そのプロテアーゼに対して抵抗性になることが期待
され、その安定化を図るという意味においても、プロテ
アーゼ切断部位近傍は糖鎖の付加部位として非常に適し
ているといえる。
120.97 (197B)], it is also possible to estimate the location where a turn structure is likely to be formed. Furthermore, more detailed information regarding surface sites can be obtained by treating with various proteases and identifying sites that are likely to be cleaved. It is thought that the vicinity of the protease cleavage site is likely to be located on the surface of the polypeptide, so when trying to efficiently add sugar chains to the polypeptide, it is necessary to When attempting to obtain an additional polypeptide, it becomes an ideal target site for glycosylation. In addition, polypeptides with sugar chains added near the protease cleavage site are expected to become resistant to the protease, and in order to stabilize them, sugar chains are added near the protease cleavage site. It can be said that it is very suitable as a part.

好適にはポリペプチドのプロテアーゼ切断部位から8ア
ミノ酸残基以内に糖鎖付加部位を導入することが望まし
い。
It is preferable to introduce a glycosylation site within 8 amino acid residues from the protease cleavage site of the polypeptide.

また、立体構造が既知の場合も未知の場合も、上記のよ
うにして選択した部位のいくつかに実際に糖鎖付加部位
を導入し、そこに実際にf1鎖が付加するかどうかを確
認する必要がある。また、糖鎖が付加されたポリペプチ
ドについては、それが生物学的活性を保持しているか、
活性の低下はないか、すぐれた機能が付加されているか
、などについて評価する必要がある。
In addition, whether the three-dimensional structure is known or unknown, glycosylation sites are actually introduced into some of the sites selected as above, and it is confirmed whether the f1 chain is actually added there. There is a need. In addition, regarding polypeptides with added sugar chains, whether they retain biological activity or not,
It is necessary to evaluate whether there is any decrease in activity and whether superior functions are added.

本発明の対象とするポリペプチドとしては、生理活性を
有するものであればいずれでもよいが、好適には、コロ
ニー刺激因子(顆粒球・マクロファージコロニー刺激因
子、顆粒球コロニー刺激因子、マクロファージコロニー
刺激因子)、組織プラスミノーゲン活性化因子(t−P
A)、ウロキナーゼ(UK) 、インターフェロン−α
、インター7エロンーβ、インターフェロン−γ、リン
ホトキシン、リポコルチン、スーパーオキシドジスムタ
ーゼ、エリスロポイエチン、インターロイキン−1,−
2,−3,−4,−5,−6または−7などがあげられ
る。
The polypeptide targeted by the present invention may be any polypeptide as long as it has physiological activity, but preferably colony-stimulating factors (granulocyte/macrophage colony-stimulating factor, granulocyte colony-stimulating factor, macrophage colony-stimulating factor) ), tissue plasminogen activator (t-P
A), urokinase (UK), interferon-α
, inter7eron-β, interferon-γ, lymphotoxin, lipocortin, superoxide dismutase, erythropoietin, interleukin-1,-
Examples include 2, -3, -4, -5, -6 or -7.

ポリペプチドにa鎮を付加する方法は以下のとおりであ
る。まず、プロテアーゼ切断部位近傍などの所望の部位
のアミノ酸配列を新たな糖鎖の付加が可能となるように
改変した変異ポリペプチドをコードするDNAを組換え
DNA技法により構築する。次に、そのD N Aを発
現ベクターに組み込んだものを微生物(酵母やカビなど
)または動物細胞(CHO細胞やナマルバ細胞など)に
導入し、発現させることにより、新たな11鎮の付加し
たポリペプチドを得ることができる。N−グリコシド結
合型糖鎖を付加しようとする際には、糖鎖付加部位にN
−グリコシド結合部位(Asn−XSer/Thr:X
はPro以外の任意のアミノ酸)が生じるように改変す
ればよい。変異ポリペプチドをコードするDNAの構築
は、部位特異的変異や合成りNA リンカ−を使用して
行うことができる。
The method for adding α-alpha to a polypeptide is as follows. First, a DNA encoding a mutant polypeptide in which the amino acid sequence at a desired site, such as the vicinity of a protease cleavage site, has been modified to enable the addition of a new sugar chain is constructed using recombinant DNA techniques. Next, by introducing the DNA into an expression vector and expressing it in microorganisms (yeast, mold, etc.) or animal cells (CHO cells, Namalva cells, etc.), the new 11-molecule-added polypeptide is produced. peptides can be obtained. When attempting to add an N-glycoside-linked sugar chain, N
-Glycosidic binding site (Asn-XSer/Thr:X
may be modified to produce any amino acid other than Pro). Construction of a DNA encoding a mutant polypeptide can be performed using site-specific mutagenesis or a synthetic NA linker.

また、糖鎖の機能はその構造に大きく依存している。し
たがって、付加する糖鎖の構造を変化させ、より優れた
性質を付加する糖鎖を選択することも重要なことであり
、本発明はこうした最適化の過程をも含むものである。
Furthermore, the function of sugar chains is highly dependent on their structure. Therefore, it is important to change the structure of the added sugar chain and select a sugar chain that provides better properties, and the present invention also includes such an optimization process.

糖鎖の構造を変化させる方法としては以下に示すような
ものがある。
Methods for changing the structure of sugar chains include the following.

1)蛋白質を生産させる宿主を変える。2)上記の組み
換え体プラスミドを含有する微生物または動物細胞を、
■−デオキシノジリマイシン、1デオキシマンノジリマ
イシン、スワインソニンなどの糖鎖の生合成あるいはプ
ロセッシングに係わる酵素の阻害剤を含有する培地で培
養する。3)Ii鎮付加タンパクを、シアリダーゼ、β
−ガラクトシダーゼ、β−N−アセチルグルコサミニダ
ーゼ、β−マンノシダーゼ、エンドグリコシダーゼ等の
各種グリコシダーゼや、シアル酸トランスフェラーゼ等
のグリコシルトランスフェラーゼで処理する。
1) Change the host that produces the protein. 2) Microorganisms or animal cells containing the above recombinant plasmid,
(2) Culture in a medium containing an inhibitor of enzymes involved in the biosynthesis or processing of sugar chains, such as deoxynojirimycin, 1-deoxymannojirimycin, and swainsonine. 3) Ii anti-added protein, sialidase, β
- Treatment with various glycosidases such as galactosidase, β-N-acetylglucosaminidase, β-mannosidase, endoglycosidase, and glycosyltransferase such as sialic acid transferase.

本発明のポリペプチドまたはグリコシル化ポリペプチド
がhG−CSF、UKおよびt−PAである場合につい
てさらに具体的に説明する。
The case where the polypeptide or glycosylated polypeptide of the present invention is hG-CSF, UK, and t-PA will be explained more specifically.

(1)本発明のポリペプチドまたはグリコシル化ポリペ
プチドがhG−C5Fである場合:組換えDNA技法を
用いて大腸菌で生産し、精製したhG−CSFおよびh
G−C5F誘導体hG−CSF [ND28]  (参
考例16参照)を用いての解析からhG−CSFの成熟
ポリペプチドのN末端より144番目のフェニルアラニ
ン(Phe)残基の後が、キモトリプシンによって分解
されやすいことが明らかとなった。またhG−CSF[
ND28)に関しては、N末端の4〜7アミノ酸残基が
種々のプロテアーゼ(ズブチリシン、キモトリプシン、
トリプシンなど)によって切断されやすくなっているこ
とも判明した。なおhG−CSF [:ND28]は、
大腸菌で生産、精製した成熟hG−CSFに比べて、活
性が上昇していることが知られている。上述したような
知見から、hG−CSF CND28]のNi:端に近
い部分およびN末端より144番目付近がポリペプチド
の表面に存在していることが推定される。そこでhG−
CSF [ND28]のN末端より6番目あるいは14
5番目のアミノ酸残基に糖鎖を付加することを試みた。
(1) When the polypeptide or glycosylated polypeptide of the present invention is hG-C5F: hG-CSF produced in Escherichia coli using recombinant DNA technology and purified
Analysis using the G-C5F derivative hG-CSF [ND28] (see Reference Example 16) revealed that the 144th phenylalanine (Phe) residue from the N-terminus of the mature polypeptide of hG-CSF is degraded by chymotrypsin. It turned out to be easy. In addition, hG-CSF [
ND28), the N-terminal 4 to 7 amino acid residues are linked to various proteases (subtilisin, chymotrypsin,
It was also found that they were more easily cleaved by trypsin, etc. Note that hG-CSF [:ND28] is
It is known that the activity is increased compared to mature hG-CSF produced and purified using E. coli. From the above-mentioned findings, it is estimated that the portion near the Ni: end of hG-CSF CND28] and the vicinity of the 144th position from the N-terminus are present on the surface of the polypeptide. So hG-
6th or 14th from the N-terminus of CSF [ND28]
An attempt was made to add a sugar chain to the 5th amino acid residue.

hG−C5F [ND28]のN末端より6番目のアミ
ノ酸残基に糖鎖付加部位を持つ誘導体がhG−CSF 
[ND2 BN6〕でありN末端より145番目のアミ
ノ酸残基にFi鎮付加部位を持つ誘導体がh G  C
S F CN D 28 N145]である。この場合
、糖鎖の付加によりプロテアーゼ抵抗性の獲得が期待さ
れる。またポリペプチドの安定化により、血中でのクリ
アランスが遅くなることも期待される。
hG-CSF is a derivative that has a glycosylation site at the 6th amino acid residue from the N-terminus of hG-C5F [ND28].
[ND2 BN6], and the derivative with the Fi-adding site at the 145th amino acid residue from the N-terminus is hG C
S F CN D 28 N145]. In this case, acquisition of protease resistance is expected due to the addition of sugar chains. Stabilization of the polypeptide is also expected to slow its clearance in the blood.

本発明で用いたhG−CSF、hG−CSF[ND28
) 、hG−CSF CND28N6)およびhG−C
SF CND28N145)のアミノ酸配列は、それぞ
れ第1表、第2表、第3表右よび第4表に示した。
hG-CSF used in the present invention, hG-CSF[ND28
), hG-CSF CND28N6) and hG-C
The amino acid sequences of SF CND28N145) are shown in Tables 1, 2, 3, right, and 4, respectively.

本発明では、hG−CSFShG−CSF CND28
) 、hG−CSF (ND28N6)およびhc−C
5F [ND28N145)をそれぞれコードするDN
Aを組換えDNA技法により構築し、組換え発現ベクタ
ーに組込んだものを動物細胞に導入し、発現させること
により、hG−CSF。
In the present invention, hG-CSFShG-CSF CND28
), hG-CSF (ND28N6) and hc-C
DN that codes for 5F [ND28N145) respectively
hG-CSF is obtained by constructing A by recombinant DNA technology, inserting it into a recombinant expression vector, introducing it into animal cells, and expressing it.

hG−C5F CND28] 、hG−CSF [:N
D28N6)およびhG−C5F CND28N145
 ]を生産することができる。このようにして得られる
ポリペプチドのうちhG−CSF [:ND28N6]
およびhG−CSF CND28N145]においては
、生産される全hG−CSFの約173に新たな糖鎖(
N−グリコシド結合型a鎮)が付加している。またhG
−CSF CND28N6]およびhG−CSF [N
D28N145]について、新たな糖鎖の付加したもの
と付加しなかったものとのプロテアーゼ感受性を比較し
たところ、新たな糖鎖の付加したものの方がプロテアー
ゼ抵抗性になっていることが判明した。また、hG−C
5F(ND28N6:lにおいては、新たな糖鎖の付加
したものは、それを酵素的に除去したものに比べて熱に
対して安定であることも判明し、本発明の有効性が示さ
れた。なお、動物細胞で発現させたhG−CSF (N
D28)l、:は新たにo−グリコシド結合が付加する
ことも明らかとなっている。
hG-C5F CND28], hG-CSF [:N
D28N6) and hG-C5F CND28N145
] can be produced. Among the polypeptides obtained in this way, hG-CSF [:ND28N6]
and hG-CSF CND28N145], approximately 173 new sugar chains (
N-glycosidic linkage type a) is added. Also hG
-CSF CND28N6] and hG-CSF [N
D28N145], when we compared the protease sensitivity of those with and without new sugar chains added, we found that the ones with new sugar chains were more resistant to proteases. Also, hG-C
It was also found that in 5F (ND28N6:l), the one to which a new sugar chain was added was more stable against heat than the one from which it was removed enzymatically, demonstrating the effectiveness of the present invention. In addition, hG-CSF (N
It has also been revealed that a new o-glycosidic bond is added to D28) l, :.

この場合も新たな糖鎖の付加したものの方がプロテアー
ゼ抵抗性になっている。
In this case as well, those with new sugar chains added are more resistant to proteases.

(2)本発明のポリペプチドあるいはグリコシル化ポリ
ペプチドがUKあるいはt−PAである場合:現在使用
されている血栓溶解剤としてはウロキナーゼ(UK)お
よびストレプトキナーゼ(SK)があるが、これらの血
栓溶解剤は血栓成分のフィブリンに対する親和性を有し
ていない。そのため、血栓を溶解させるには多量投与が
必要であり、また血栓に吸着したプラスミノーゲンだけ
でなく血中のプラスミノーゲンも活性化することにより
、全身線溶の亢進が起こり、出血傾向が現れる。これら
の血栓溶解剤に対し、フィブリン親和性を有する組織プ
ラスミノーゲン活性化因子(t−PA)とUKの不活性
型前駆体であるプロウロキナーゼ(p r o−UK)
が最近注目を集めている。
(2) When the polypeptide or glycosylated polypeptide of the present invention is UK or t-PA: Currently used thrombolytic agents include urokinase (UK) and streptokinase (SK); The lytic agent has no affinity for the thrombus component fibrin. Therefore, large doses are required to dissolve the thrombus, and by activating not only plasminogen adsorbed to the thrombus but also plasminogen in the blood, systemic fibrinolysis is accelerated and bleeding tendency is increased. appear. For these thrombolytic agents, tissue plasminogen activator (t-PA), which has fibrin affinity, and prourokinase (p r o-UK), which is an inactive precursor of UK, are used.
has been attracting attention recently.

t−PAはフィブリン親和性を有するために、血栓に特
異的に吸着し、効率よく血栓を溶解すると同時に、全身
の線溶亢進も出現しないことが期待される。t−PAに
は1本鎖型と2本鎖型が存在し、プラスミンにより1本
鎖型は2本鎖型に変換される。′2本鎮t−PAが活性
型であるが、1重鎮t−PAもフィブリン分解物が存在
すると、2本tj+ t −P Aと同等のフィブリン
溶解活性を示す。1重鎮t−PAと2重鎖t−PAのフ
ィブリン親和性を比較した場合、1重鎮t−PAの方が
フィブリン親和性が強いことが明らかにされている(テ
ィト (Tate)ら:バイオケミストリー(Bioc
hemistry) 26 、338 (1987) 
〕o したがって、1重鎮t−PAの方が血栓に対する
特異性が高く、2重鎖t−PAより優れているといえる
Since t-PA has fibrin affinity, it is expected to specifically adsorb to thrombi and dissolve thrombi efficiently, while at the same time not causing systemic fibrinolysis. t-PA exists in single-stranded type and double-stranded type, and the single-stranded type is converted into the double-stranded type by plasmin. 'Two-layer t-PA is the active type, but single-layer t-PA also exhibits fibrinolytic activity equivalent to that of two-layer tj+t-PA in the presence of fibrin degradation products. When comparing the fibrin affinity of single chain t-PA and double chain t-PA, it has been revealed that single chain t-PA has stronger fibrin affinity (Tate et al.: Biochemistry). (Bioc
hemistry) 26, 338 (1987)
]o Therefore, it can be said that single-chain t-PA has higher specificity for blood clots and is superior to double-chain t-PA.

一方、UKにも1本鎖型と2本鎖型が存在し、プラスミ
ンにより不活性な1本鎮UKから活性型の2末鎖UKに
変換される。この不活性な1本鎮UKはp r o−U
Kとも呼ばれる。この不活性な1重鎖UK、すなわちp
 r o−UKはトロンビンというプロテアーゼが存在
すると、活性を失った2本鎖型のUKに変換されてしま
う〔イチノセ(Ich 1nose)ら:ジャーナル・
オン・バイオロジカル・ケミストリー(J、Biol、
Chem、 ) 261 .3486(1986)) 
 Cグアビイチ(Gurewich)とパネル(Pan
nell)ニブラット (Blood) 69 .76
9(1987) ] 、このトトロピンに対する感受性
はpro−UKにとって不利な性質である。
On the other hand, UK also exists in single-chain and double-chain types, and plasmin converts the inactive single-chain UK into the active two-chain UK. This inert one bottle UK is pro
Also called K. This inactive single-chain UK, i.e. p
In the presence of a protease called thrombin, r o-UK is converted to a double-stranded UK that has lost its activity [Ich 1nose et al.: Journal
on Biological Chemistry (J, Biol,
Chem, ) 261. 3486 (1986))
C Gurewich and Pan
nell) Niblat (Blood) 69. 76
9 (1987)], this sensitivity to totropine is a disadvantageous property for pro-UK.

上述のように、血栓溶解酵素であるt−PAおよびp 
r o−UKは、プラスミンやトロンビンなどのプロテ
アーゼの作用により不利な型に変換してしまう。そこで
、本発明においてのべた方法を用いてこれらのプロテア
ーゼ切断部位の近傍に糖鎖を付加し、これらのプロテア
ーゼに対する感受性を低くすることができれば、より優
れた血栓溶解酵素になることが期待できる。このような
観点から、成熟型pro−UKの164番目のPhe残
基をAsn残基に変換し、このAsn残基にN−グリコ
シド結合型11i鎮を導入した誘導体UK−Slをコー
ドするDNAならびに成熟型pro−UKの153番目
のLeu残基をAsn残基に置換し、かつ155番目の
Pro残基をThr残基に置換し、このAsn残基にN
−グリコシド結合型糖鎖を導入した誘導体UK−33を
コードするDNAを構築した。
As mentioned above, the thrombolytic enzymes t-PA and p
r o-UK is converted into an unfavorable form by the action of proteases such as plasmin and thrombin. Therefore, if the method described in the present invention can be used to add sugar chains near the cleavage site of these proteases and reduce the sensitivity to these proteases, it is expected that a more excellent thrombolytic enzyme will be produced. From this point of view, the 164th Phe residue of the mature pro-UK was converted to an Asn residue, and the DNA encoding the derivative UK-Sl, in which the N-glycoside-linked 11i compound was introduced into this Asn residue, The 153rd Leu residue of mature pro-UK was replaced with an Asn residue, and the 155th Pro residue was replaced with a Thr residue, and this Asn residue was replaced with an N
- A DNA encoding a derivative UK-33 into which a glycoside-linked sugar chain was introduced was constructed.

なお、本発明で用いた天然型pro−UK、UK−31
およびUK−S3のアミノ酸配列は、それぞれ第5表、
第6表および第7表に示した。
Note that the natural pro-UK used in the present invention, UK-31
The amino acid sequences of UK-S3 and UK-S3 are shown in Table 5 and
It is shown in Tables 6 and 7.

本発明では、pro=UKSLTK−31およびUK−
33をそれぞれコードするDNAを組換えDNA技法に
より構築し、組換え発現ベクターに組み込んだものを動
物細胞に導入し、発現させることにより、pro−UK
ならびに新たな糖鎖が付加されたUK−51およびUK
−33を製造する。このようにして得られたp r o
−UKlUK−SlおよびUK−33の性質を比較した
ところ、UK−31およびUK−53は天然型pro−
UKに比べ、トロンビンに対する感受性が低くなってい
ることならびに血中安定性、熱安定性が向上しているこ
とが判明し、本発明の有効性がUKの場合においても示
されている。
In the present invention, pro=UKSLTK-31 and UK-
Pro-UK
and UK-51 and UK with new sugar chains added.
-33 is manufactured. The p r o obtained in this way
-UKl When comparing the properties of UK-Sl and UK-33, UK-31 and UK-53 are naturally pro-
It was found that the sensitivity to thrombin was lower and the blood stability and thermal stability were improved compared to the UK case, demonstrating the effectiveness of the present invention also in the UK case.

本発明のポリペプチドあるいはグリコシル化ポリペプチ
ドがhG−CSFSUKあるいはt−PAである場合、
hG−CSF、UKあるいはt−FAをコードするDN
Aとしては、hG−CSF。
When the polypeptide or glycosylated polypeptide of the present invention is hG-CSFSUK or t-PA,
DN encoding hG-CSF, UK or t-FA
A is hG-CSF.

UKあるいはt−PAをコードするメツセンジャーRN
Aから組換えDNA技法で逆転写して得られるcDNA
、染色体DNAから得られるhG−CSF1tJKある
いはt−’−PAをコードするDNA。
Metsenger RN code UK or t-PA
cDNA obtained by reverse transcription from A using recombinant DNA technology
, DNA encoding hG-CSF1tJK or t-'-PA obtained from chromosomal DNA.

hG−C5FSUKあるいはt−PAをコードする合成
りNAなどが利用できる。
Synthetic RNA encoding hG-C5FSUK or t-PA can be used.

hG−CSFcDNAとしては、hG−CSFをコード
しているものであればいかなるものも用いられることが
できるが、具体的にはpcSF2を用いることができる
。pCSF2は、本発明者によって製造されたものであ
り、その製造法は参考例4に記載されている。
Any hG-CSF cDNA can be used as long as it encodes hG-CSF, and specifically, pcSF2 can be used. pCSF2 was produced by the present inventor, and its production method is described in Reference Example 4.

pcsF2中のhG−CSFcDNAは、M13ファー
ジを用いたデイデオキシ・シーフェンス(dideox
y 5equence)法〔ジェイ・メシング(J、 
!Jessing)ら:ジーン(Gene) 19 、
269 (1982) )により決定された。pCSF
2中のhG−CSFcDNAはシグナル配列の一部を欠
いているが成熟蛋白質部分は完全に含んでいる。成熟蛋
白質部分の塩基配列を第1表に示す。
The hG-CSF cDNA in pcsF2 was purified using dideoxy phage (dideox) using M13 phage.
y 5equence) method [Jay Messing (J,
! Jessing et al.: Gene 19,
269 (1982)). pCSF
The hG-CSF cDNA in 2 lacks part of the signal sequence but completely contains the mature protein part. The base sequence of the mature protein portion is shown in Table 1.

ヒトt−PAcDNAあるいはヒトUK c DNAと
しては、ヒトt−PAあるいはヒトUKをコードしてい
るものであればいかなるものも用いることができるが、
具体的にはプラスミドptPA?中のヒトt−PAcD
NAあるいはプラスミドptJKlあるいはpUKll
の中のヒトUKcDNAを用いることができる。ptP
A7、pUKl、pUKllは、本発明者によって製造
されたものであり、その製造法は参考例1,2.3に記
載されている。pUKlとpUKll中のヒ)UKcD
NAはM13ファージを用いたデイデオキシ・シーフェ
ンス(dideoxy 5equence)法により決
定した。
As human t-PA cDNA or human UK cDNA, any cDNA that encodes human t-PA or human UK can be used.
Specifically, plasmid ptPA? human t-PAcD in
NA or plasmid ptJKl or pUKll
Human UK cDNA in can be used. ptP
A7, pUKl, and pUKll were manufactured by the present inventor, and the manufacturing method thereof is described in Reference Examples 1 and 2.3. UKcD in pUKl and pUKll
NA was determined by the dideoxy 5 sequence method using M13 phage.

pUKlとpUKllの中のヒトUKcDNAはともに
完全なpro−UKをコードしていないが、それぞれの
cDNAの塩基配列は第5表に示す塩基配列の一部と一
致している。
Although the human UK cDNAs in pUKl and pUKll do not encode complete pro-UK, the base sequences of each cDNA partially match the base sequences shown in Table 5.

なお、ptPA7を含む大腸菌はε5cherichi
acoli BtP^?(FBRM 0P−1467)
として、pUKIを含む大腸菌はEscherichi
a  coli Elに1 (FERM 0P1463
)として、およびpUKllを含む大腸菌はEsche
richia  coli Elに11(FERM 0
P−1464)として、工業技術院微生物工業技術研究
所(微工研)に昭和62年9月3日付で寄託されている
In addition, E. coli containing ptPA7 is ε5cherichi
acoli BtP^? (FBRM 0P-1467)
As Escherichia coli containing pUKI
a coli El 1 (FERM 0P1463
), and E. coli containing pUKll as Esche
richia coli El to 11 (FERM 0
P-1464) and was deposited with the Institute of Microbial Technology (Feikoken) of the Agency of Industrial Science and Technology on September 3, 1986.

hG−CSFSUKあるいはt−PAをコードするDN
Aを組込むプラスミドとしては、大腸菌または動物細胞
で該DNAが発現できるものなら、いかなるプラスミド
も用いることができる。好ましくは、大腸菌内でhG−
CSF%UK、あるいはt−PAを発現させるには、適
当なプロモータ、例えば、trp系、Iac系のプロモ
ーターの下流に外来DNAを挿入することができ、しか
もシャインーダルガーノ配列(以下SD配列と略記する
)と開始コドン(ATG)の間を適当な距離、例えば6
〜18塩基に調整したプラスミドを用いることができる
。具体的に好適なプラスミドとしては、本発明者らによ
って造成されたpKYPIO(特開昭58−11060
0)、pTrS33 (参考例5)などがあげられる。
DN encoding hG-CSFSUK or t-PA
Any plasmid can be used as the plasmid for incorporating A as long as the DNA can be expressed in E. coli or animal cells. Preferably, hG-
In order to express CSF%UK or t-PA, foreign DNA can be inserted downstream of an appropriate promoter, such as a trp system or Iac system promoter, and a Shine-Dalgarno sequence (hereinafter referred to as an SD sequence) can be inserted. ) and the start codon (ATG) by an appropriate distance, for example, 6
A plasmid adjusted to ~18 bases can be used. A specifically suitable plasmid is pKYPIO (Japanese Patent Application Laid-Open No. 58-11060) constructed by the present inventors.
0), pTrS33 (Reference Example 5), and the like.

また、hG−CSF、UK、ある、いはt−PAをコー
ドするDNAを動物細胞で発現させる際に用いるプラス
ミドとしては、動物細胞で該DNAを発現できるものな
らいかなるプラスミドも用いることができる。好ましく
は、適当なプロモーター、例tばSV40初期フo %
 −9−1SV40後期プロモーターなどの下流に外来
DNAを挿入することができ、しかも、ポリAシグナル
、スプライシングシグナルなどを有するプラスミドを用
いることができる。
Further, as a plasmid used when expressing DNA encoding hG-CSF, UK, or t-PA in animal cells, any plasmid that can express the DNA in animal cells can be used. Preferably, a suitable promoter, for example SV40 early promoter
-9-1 Foreign DNA can be inserted downstream of the SV40 late promoter, and a plasmid having a polyA signal, a splicing signal, etc. can be used.

具体的に好適なプラスミドとしては、本発明者らによっ
て造成されたpAGE103  [:水上ら:ジャーナ
ル・オン・バイオケミストリー(J、 Biochem
、)。
A specifically suitable plasmid is pAGE103 constructed by the present inventors [: Mizukami et al.: Journal on Biochemistry (J, Biochem
,).

101 、1307〜1310(1987)] 、ps
EIPA1−9AやpsEIPAlsEldh f r
 1−9A (参考例9)などがあげられる。
101, 1307-1310 (1987)], ps.
EIPA1-9A and psEIPAlsEldh f r
1-9A (Reference Example 9) and the like.

pAGE 103を含む大腸菌はBscherichi
acoli EAGE 103 (FERM  BP 
−1312)として昭和62年3月23日付で微工研に
寄託されている。また、ジヒドロ葉酸還元酵素(以下d
hfrと略記する)遺伝子を選択マーカーとして有する
プラスミドとしては、例えば、pSV2−dhfr[:
1ス・サブラマ−?−(S、Subramani)ら:
モレキュラー・アンド・セルラー・バイオロンィ(Mo
l、 Ce1l、  Riot、)  1.854(1
981) Eなどがあげられる。
E. coli containing pAGE 103 is Bscherichi
acoli EAGE 103 (FERM BP
-1312) and was deposited with the Institute of Fine Technology on March 23, 1986. In addition, dihydrofolate reductase (hereinafter d
For example, pSV2-dhfr[:
1st Subrama? -(S, Subramani) et al:
Molecular and cellular biology (Mo
l, Ce1l, Riot, ) 1.854 (1
981) E etc.

hG−CSF、UKあるいはt−PAの新規ポリペプチ
ドおよび新規グリコシル化ポリペプチドをコードするD
NAとベクターDNAとの組換えは、制限酵素を用いて
両DNAを消化後、T4DNAIJガーゼを用いて結合
する一量的組換えDNA技法を用いて行うことができる
。結合に際しては、制限酵素を用いて消化したDNA断
片の末端を、DNAポリメラーゼI・クレノー断片を用
いる埋め込み反応、T4DNAポリメラーゼを用いる埋
め込み反応または削り込み反応を利用して加工する方法
やDNAIJンカーを用いる方法によっても行うことが
できる。
D encoding novel polypeptides and novel glycosylated polypeptides of hG-CSF, UK or t-PA
Recombination of NA and vector DNA can be performed using mono-quantitative recombinant DNA techniques, in which both DNAs are digested with restriction enzymes and then ligated using T4 DNA IJ gauze. For ligation, the ends of DNA fragments digested with restriction enzymes are processed using a embedding reaction using DNA polymerase I/Klenow fragment, an embedding reaction or shaving reaction using T4 DNA polymerase, or a DNA IJ linker is used. It can also be done by a method.

h G−CS F c DNAを持つプラスミドとして
pC5F2をpro−UKcDNAを持つプラスミドと
してpUKlおよびpUKllを用い、また必要な場合
には、化学合成したDNAIJンカーや部位特異的変異
を用いて、h G−CS F、およびUKの新規ポリペ
プチドあるいは新規グリコシル化ポリペプチドをコード
するDNAを組み込んだ組換え体プラスミドを造成する
例を以下に述べる。
Using pC5F2 as a plasmid carrying h G-CS F c DNA and pUKl and pUKll as plasmids carrying pro-UK cDNA, and if necessary, using a chemically synthesized DNA IJ linker or site-specific mutation, h G- An example of constructing a recombinant plasmid incorporating DNA encoding CSF and a novel UK polypeptide or a novel glycosylated polypeptide will be described below.

まず、hG−CSF劇導体hG−CSF (ND28〕
 (参考例16参照)を動物細胞で発現させるための組
換え体プラスミドpA328を造成する例を述べる。
First, hG-CSF drama conductor hG-CSF (ND28)
An example of constructing a recombinant plasmid pA328 for expressing (see Reference Example 16) in animal cells will be described.

第5図に示したようにして、pAS3−3 (参考例1
0)をM l u rとApaLIで切断後、約3、 
OKbのDNA断片を精製する。また同プラスミドをA
atI[とMlulで切断後、約6.3 KbのDNA
断片を精製する。一方、pCfBD28 (参考例16
参照)をAat■とXhoIで切断後、約0.3 Kb
のDNA断片を精製する。これら3つのDNA断片と第
5図に示した合成りNAをT4DNAリガーゼにより結
合し、pA328を得る。
As shown in FIG. 5, pAS3-3 (Reference Example 1
After cutting 0) with Mlur and ApaLI, about 3,
Purify the OKb DNA fragment. The same plasmid was also used as A
After cutting with atI and Mlul, approximately 6.3 Kb of DNA was obtained.
Purify the fragments. On the other hand, pCfBD28 (Reference Example 16
(see) was cut with Aat■ and XhoI, approximately 0.3 Kb
Purify the DNA fragment. These three DNA fragments and the synthetic DNA shown in FIG. 5 are ligated using T4 DNA ligase to obtain pA328.

次に、hG−CSF (NO38)のN末端より第6番
目のアミノ酸残基にN−グリコシド結合型糖鎖の付加部
位を有する新規hG−C9Fプラスミドをコードする組
換え体プラスミドpASN6を造成する例について述べ
る。
Next, an example of constructing a recombinant plasmid pASN6 encoding a novel hG-C9F plasmid having an addition site for an N-glycoside-linked sugar chain at the 6th amino acid residue from the N-terminus of hG-CSF (NO38). Let's talk about.

第6図に示したようにして、pAS3−3をM I u
 IとApaLIで切断後、約3. OKbのDNA断
片を精製する。また、pAS28をXholとM l 
u Tで切断後、約6.55 KbのDNA断片を精製
する。これら2つのDNA断片と第6図に示した合成り
NAを74DNAIJガーゼにより結合し、pASN6
を得る。
As shown in FIG. 6, pAS3-3 was
After cutting with I and ApaLI, approximately 3. Purify the OKb DNA fragment. In addition, pAS28 was combined with Xhol and M l
After cutting with uT, a DNA fragment of approximately 6.55 Kb is purified. These two DNA fragments and the synthetic RNA shown in Figure 6 were joined using 74DNAIJ gauze to create pASN6.
get.

次に、hG−CSF CND28]のN末端より第14
5番目のアミノ酸残基にN−グリコシド結合型糖鎖の付
加部位を有する新規hG−CSFポリペプチドをコード
する組換え体プラスミドpASN145を造成する例を
述べる。
Next, the 14th
An example of constructing a recombinant plasmid pASN145 encoding a novel hG-CSF polypeptide having an N-glycoside-linked sugar chain addition site at the fifth amino acid residue will be described.

pASNl 45の造成は部位特異的変異を用いて行う
。第7(1)図に示すように、pCfBD28をPvu
nとBamHIで切断後、約0.94 KbのDNA断
片を精製する。また、M13ファージベクターのMl 
3mp 19RFDNAをSma IとBamHIで切
断後、約7.24 KbのDNA断片を精製する。こう
して得られる2つのDNA断片をT4DNAリガーゼに
より結合し、pt19BD28Cを得る。ついで、この
pt19B028cを大腸菌JM105にトランスフェ
クションし、得られたファージより一本鎖pt19BD
28cを得る。同じ第7(1)図に示すようにして、M
13mp19RFDNAをH−indmとEcoRIで
切断後、約7.2 KbのDNA断片を精製する。この
約7.2 KbのDNA断片と上記で得られた一本鎖p
t19BD28cを混合し、変性処理の後再びアニール
させることによりギャップト・デュプレックスDNAを
生成させ、これを精製する。ついで、このギャップト・
デュプレックスDNAに第7(1)図に示した合成りN
Aをアニールさせた後、りL//−断片とT4DNAリ
ガーゼにより現状化する。この環状化DNAを大腸菌J
M105株にトランスフェクションし、部位特異的変異
が導入されたpt19BD28cN145を得る。
Construction of pASN145 is performed using site-directed mutagenesis. As shown in Figure 7(1), pCfBD28 was
After cutting with n and BamHI, a DNA fragment of approximately 0.94 Kb is purified. In addition, Ml of M13 phage vector
After cutting 3mp 19RF DNA with Sma I and Bam HI, a DNA fragment of about 7.24 Kb is purified. The two DNA fragments thus obtained are ligated using T4 DNA ligase to obtain pt19BD28C. Next, this pt19B028c was transfected into Escherichia coli JM105, and single-stranded pt19BD was extracted from the obtained phage.
Get 28c. As shown in the same Figure 7(1), M
After cutting 13mp19RF DNA with H-indm and EcoRI, a DNA fragment of approximately 7.2 Kb is purified. This approximately 7.2 Kb DNA fragment and the single-stranded p
t19BD28c is mixed and annealed again after denaturation treatment to generate gapped duplex DNA, which is then purified. Next, this gapt
The synthetic N shown in Figure 7(1) is added to the duplex DNA.
After annealing A, it is brought into its current state using the R//- fragment and T4 DNA ligase. This circularized DNA was transferred to E. coli J
M105 strain is transfected to obtain pt19BD28cN145 into which site-specific mutations have been introduced.

次に第7(2)図に示すようにしてpt19BD28N
CN 145をBgj!IとBamHIで切断後、約0
.85にbのDNA断片を精製する。一方、pcfBD
28をBa−mHIとBgiI切断後、約3.25にb
のDNA断片を精製する。こうして得られる2つのDN
A断片を各々T4DNAIJガーゼで結合することによ
り、pcfBD28N145を得る。
Next, as shown in Figure 7(2), pt19BD28N
Bgj CN 145! After cutting with I and BamHI, approximately 0
.. 85. Purify the DNA fragment b. On the other hand, pcfBD
After cutting 28 with Ba-mHI and BgiI, approximately 3.25 b
Purify the DNA fragment. The two DNs obtained in this way
pcfBD28N145 is obtained by ligating each A fragment with T4DNAIJ gauze.

次に、同じ第7(2)図に示すようにして、pCfBD
28N145をBa nn[とBamHIで切断後、約
1.3 KbのDNA断片を精製する。こうして得た約
1.3 KbのDNA断片をDdeIで切断後、DNA
ポリメラーゼ・クレノー断片で処理することにより突出
末端を埋め、さらにAatUで切断後、約0.2にbの
DNA断片を精製する。また、pAS28をAatII
とXhoIで切断後、約0.8KbのDNA断片を精製
する。また、I)SEIPAISEldhfrl−9A
 (参考例9)をSma■とXholで切断後、約8.
7 KbのDNA断片を精製する。こうして得た約0.
2にす、約0.8にb1約8.7にbの3つのDNA断
片をT4DNAリガーゼで結合することによりpASN
l 45を得る。
Next, as shown in the same FIG. 7(2), pCfBD
After cutting 28N145 with Bann[ and BamHI, a DNA fragment of approximately 1.3 Kb is purified. After cutting the approximately 1.3 Kb DNA fragment thus obtained with DdeI, the DNA
After filling in the protruding ends by treatment with polymerase Klenow fragment and further cutting with AatU, the DNA fragment of approximately 0.2b is purified. In addition, pAS28 was converted into AatII
After cutting with and XhoI, a DNA fragment of about 0.8 Kb is purified. Also, I) SEIPAISEldhfrl-9A
After cutting (Reference Example 9) with Sma■ and Xhol, approximately 8.
Purify the 7 Kb DNA fragment. Approximately 0.
pASN was created by ligating three DNA fragments of approximately 0.8 to b1 to approximately 8.7 to b using T4 DNA ligase.
I get 45.

次に、トロンビン切断部位近傍にN−グリコシド型糖鎖
を付加したUK誘導体UK−31を動物細胞内で発現す
る組換え体プラスミドpsEIUKSI−1dを造成す
る例を述べる。
Next, we will describe an example of constructing a recombinant plasmid psEIUKSI-1d that expresses UK-31, a UK derivative with an N-glycoside type sugar chain added near the thrombin cleavage site, in animal cells.

第9図に示したようにして、pUKl  (参考例2)
をPstlとBamHIで切断した後、890hpのD
NA断片を精製する。一方、Ml 3mp 18RFD
NA Cヤニシコーペロン(Yan 1sch−Per
ron)ら:ジーン(Gene) 33 .103(1
985) ]をPstlとBamHIで切断した後、約
7.2にbのDNA断片を精製する。このようにして得
られる両DNA断片をT4DNA!Jガーゼにより結合
し、UK・cDNAの一部をMl 3mp 18ベクタ
ーにサブクローン化したプラスミドpUKmps1を得
る。
As shown in Figure 9, pUKl (Reference Example 2)
After cutting with Pstl and BamHI, 890hp of D
Purify the NA fragment. On the other hand, Ml 3mp 18RFD
NA C Yan 1sch-Peron
ron) et al.: Gene 33. 103(1
985) ] with Pstl and BamHI, the DNA fragment of b is purified to approximately 7.2. Both DNA fragments obtained in this way are converted into T4DNA! The plasmid pUKmps1 was obtained by ligating with J gauze and subcloning part of the UK cDNA into the Ml 3mp 18 vector.

次いで、常法によりpUKmpslの1本鎖DNAを調
製した後、第10図に示したようにして、UKの164
番目のアミノ酸残基にN−ググコシド型糖鎖が付加され
るように塩基配列を変える。すなわちPhe−164を
Asnに変換するための合成りNA  5’−GGGG
AGAAAACACCA CC−3’とMl 3mp1
8のDNA塩基配列決定用の合成りNA 5’−GTTTTCCCAGTCACGAC−3’をブ
ライマーと乙て、pUKmpslの1本鎖DNAを大腸
菌DNAポリメラーゼ■・クレノー断片により2本鎖D
NAに変換すると同時に、所望の位置に変異を導入する
。このようにして変異を導入した2本鎖DNAをPst
lとEcoRIで切断した後、約600bpのDNA断
片を精製する。一方、UK−cDNAを運ぶpUKll
(参考例3)をAat■とPstlで切断した後、約1
.0にbのDNA断片を精製する。また、UK・cDN
Aの3′末端側にKpn Iサイトを導入したpUKB
lol(参考例12)をAatIIとEcoRIで切断
した後、約2.9 KbのDNA断片を精製する。この
ようにして得られる3種類のDNA断片をT4DNA!
Jガーゼにより結合し、UK誘導体UK−31をコード
する組換え体プラスミドpUKSIを得る。
Next, after preparing the single-stranded DNA of pUKmpsl by a conventional method, as shown in FIG.
The base sequence is changed so that an N-gugucoside sugar chain is added to the th amino acid residue. That is, the synthetic NA 5'-GGGG for converting Phe-164 to Asn
AGAAAACACCA CC-3' and Ml 3mp1
Using synthetic DNA 5'-GTTTTCCCAGTCACGAC-3' for DNA sequencing of No. 8 as a primer, the single-stranded DNA of pUKmpsl was converted into double-stranded DNA using Escherichia coli DNA polymerase and Klenow fragment.
At the same time as converting to NA, a mutation is introduced at a desired position. The double-stranded DNA into which mutations have been introduced in this way is transformed into Pst
After digestion with EcoRI and EcoRI, a DNA fragment of approximately 600 bp is purified. On the other hand, pUKll carrying UK-cDNA
After cutting (Reference Example 3) with Aat■ and Pstl, approximately 1
.. Purify the DNA fragment of 0.b. Also, UK cDN
pUKB with Kpn I site introduced at the 3' end of A
After cutting lol (Reference Example 12) with AatII and EcoRI, a DNA fragment of about 2.9 Kb is purified. The three types of DNA fragments obtained in this way are T4DNA!
J gauze to obtain the recombinant plasmid pUKSI encoding the UK derivative UK-31.

続いて、第11図に示したようにして、遺伝子増幅用の
dhfr遺伝子を持つ外来遺伝子発現べフタ− psEIPAlsEldhf rl−9A (参考例9
)をKpn IとXhoIで切断した後、約8.6にb
のDN’A断片を精製した。一方、UKを発現する組換
え体プラスミドpsEIUKprol−LA(参考例1
3)をXholと8g1■で切断した後、約0.75に
bdDNA断片を精製した。また、UK−31をコード
するpUKslをKpnIとBgIl■で切断した後、
約1.15 KbのDNA断片を精製する。このように
して得られる3種類のDNA断片をT4DNAIJガー
ゼにより結合し、UK−3tを発現しうる組換え体プラ
スミドpsEIUKSI−1dを得る。
Subsequently, as shown in FIG. 11, a foreign gene expression vector psEIPAlsEldhf rl-9A (Reference Example 9) having the dhfr gene for gene amplification was prepared.
) was cut with Kpn I and Xho I, and then b
The DNA'A fragment was purified. On the other hand, recombinant plasmid psEIUKprol-LA expressing UK (Reference Example 1
After cleaving 3) with Xhol and 8g1■, a bdDNA fragment of approximately 0.75 was purified. In addition, after cutting pUKsl encoding UK-31 with KpnI and BgIl■,
A DNA fragment of approximately 1.15 Kb is purified. The three types of DNA fragments thus obtained are joined together using T4DNAIJ gauze to obtain a recombinant plasmid psEIUKSI-1d capable of expressing UK-3t.

同様にしてUK−33を発現しうる組換え体プラスミド
pSEUKS3を得ることができる。
Similarly, a recombinant plasmid pSEUKS3 capable of expressing UK-33 can be obtained.

上記組換え技法における反応の条件は、−船釣に下記の
とおりである。
The reaction conditions in the above recombinant technique are as follows.

DNAの制限酵素による消化反応は通常0.1〜20u
gのDNAを2〜200mM(好ましくは10〜40m
M>のT r i s −HCl (p)16.0〜9
.5好ましくはpH7,0〜8.0) 、O〜200m
MのNaC1,2〜20Il1M(好ましくは5〜10
mM)のM g C12を含む反応液中で、制限酵素o
、t−too単位(好ましくは1■のDNAに対して1
〜3単位)を用い、20〜70℃(至適温度は用いる制
限酵素により異なる)において、15分間〜24時間行
う。反応の停止は、通常55〜75℃で5〜30分間加
熱することによるが、フェノールまたはジエチルピロカ
ーボネートなどの試薬により制限酵素を失活させる方法
も用いることができる。
Digestion reaction of DNA with restriction enzymes is usually 0.1-20u.
g of DNA at 2-200mM (preferably 10-40mM
M > T r i s -HCl (p) 16.0-9
.. 5 preferably pH 7.0-8.0), O-200m
M of NaCl 1,2-20Il1M (preferably 5-10
Restriction enzyme o
, t-too units (preferably 1 for 1 μ of DNA)
~3 units) at 20 to 70°C (the optimal temperature varies depending on the restriction enzyme used) for 15 minutes to 24 hours. The reaction is usually stopped by heating at 55 to 75°C for 5 to 30 minutes, but a method of inactivating the restriction enzyme with a reagent such as phenol or diethylpyrocarbonate can also be used.

制限酵素消化によって生じたD N A断片あるいはギ
ャップト・デュプレックスDNAの精製は、低融点アガ
ロースゲル電気泳動法(以下、LGT法と略記する)[
エル・ウィスランダ−(L、Wieslander)=
アナリティカル・バイオケミストリイー(Analyt
icalBiochemistry) 98.305(
1979)コあるいはアガロースゲル・凍結融解法(以
下、AFT法と略記する)を用いて行うことができる。
Purification of DNA fragments or gapped duplex DNA generated by restriction enzyme digestion is performed using low melting point agarose gel electrophoresis (hereinafter abbreviated as LGT method) [
El Wieslander (L, Wieslander) =
Analytical Biochemistry
icalBiochemistry) 98.305 (
1979) or the agarose gel freeze-thaw method (hereinafter abbreviated as AFT method).

このAFT法とは、DNA断片を含むアガロースゲル(
0,7〜1.5%)のスライスに対して、等lのTEa
衡液[10mM Tris −HCj! (pH7,5
) 、1mM  EDTA]および二倍量のフェノール
(TEil衝液で飽和したもの)を加え、混合した後、
−70℃と65℃での凍結−融解を2回繰り返し、さら
に遠心分離によって生じる上層の水溶液を分取し、エタ
ノール沈澱によってDNA断片を回収する方法である。
This AFT method is an agarose gel containing DNA fragments (
equal l TEa for slices (0.7-1.5%)
Equilibrium [10mM Tris-HCj! (pH 7,5
), 1mM EDTA] and twice the amount of phenol (saturated with TEil buffer) and after mixing,
This is a method in which freezing and thawing are repeated twice at -70°C and 65°C, and then the upper aqueous solution produced by centrifugation is separated, and DNA fragments are recovered by ethanol precipitation.

DNA断片回収機・マックスイールドA E −324
1型(アト−株式会社製)を用いて、アガロースゲルや
ポリアクリルアミドゲルからDNA断片を電気泳動によ
って溶出し、精製できる[以下、この方法を電気泳動的
溶出法(electro−elution)と略称する
]。
DNA fragment recovery machine Max Yield A E-324
DNA fragments can be eluted and purified from agarose gel or polyacrylamide gel by electrophoresis using Type 1 (manufactured by Atto Co., Ltd.) [Hereinafter, this method will be abbreviated as electro-elution method. ].

DNA断片の結合反応は、2〜200mM(好ましくは
10〜40mM)のT r i s −HCl (pH
6,1〜9.5、好ましくはpH7,0〜8.0) 、
2〜20mM(好ましくは5〜10mM)のMgCl3
.0.1〜10mM(好ましくは0.5〜2.0 mM
)のATP%1〜50mM(好ましくは5〜10mM)
のジチオスレイトール(以下DTTともいう)を含む反
応液中で、T4DNAリガーゼ1〜t、ooo単位を用
い、1〜37℃(好ましくは3〜20℃)で15分間〜
72時間(好ましくは2〜20時間)行う。
The DNA fragment binding reaction is carried out using 2 to 200 mM (preferably 10 to 40 mM) Tris-HCl (pH
6.1 to 9.5, preferably pH 7.0 to 8.0),
2-20mM (preferably 5-10mM) MgCl3
.. 0.1-10mM (preferably 0.5-2.0mM
) ATP% 1-50mM (preferably 5-10mM)
In a reaction solution containing dithiothreitol (hereinafter also referred to as DTT), using T4 DNA ligase 1 to t, ooo units, at 1 to 37°C (preferably 3 to 20°C) for 15 minutes to
It is carried out for 72 hours (preferably 2 to 20 hours).

結合反応によって生じた組換え体プラスミドDNAは、
必要によりコーエンらの形質転換法〔ニス・エヌ・コー
エン(S、 N、 Cohen)ら:プロシーディング
・オン・デ・ナショナル・アヵデミイ・オン・サイエン
ス(Proc、Natl、^cad、 Sci、)、U
SA、 69.2110(1972))あるいはハナハ
ンの形質転換法[)1anahan :ジャーナル・オ
ン・モレキュラー・バイオロジー(J、 Mo1.Bi
ol、> 166 、557(1983) )を用いて
、大腸菌に導入する。
The recombinant plasmid DNA produced by the ligation reaction is
If necessary, the transformation method of Cohen et al.
SA, 69.2110 (1972)) or Hanahan's transformation method [)1anahan: Journal on Molecular Biology (J, Mo1. Bi
ol, > 166, 557 (1983)) into E. coli.

結合反応によって生じた組み換え体M13ファージRF
DNAは、必要により公知のトランスフェクション法〔
口野嘉幸ら:蛋白質・核酸・酵素到、 294(198
4))によって、大腸菌JM105株〔ジェイ・メシン
グ(JoMessing)ら:ジーン(Gene) 3
3.103 (1985)]に導入する。
Recombinant M13 phage RF generated by binding reaction
DNA can be obtained by known transfection methods if necessary [
Yoshiyuki Kuchino et al.: Proteins, Nucleic Acids, Enzymes, 294 (198
4)), Escherichia coli strain JM105 [JoMessing et al.: Gene 3]
3.103 (1985)].

組換え体プラスミドDNAおよび組み換え体M13ファ
ージRFDNAを持つ大腸菌から該DNAの単離は、バ
ーンボイムらの方法〔エイチ・シ−・バーンボイム(H
,C,Birnboim)ら:ヌクレイック・アシッド
・リサーチ(Nucleic Ac1ds Res、)
7、1513(1979))などを用いて行う。
Isolation of recombinant plasmid DNA and recombinant M13 phage RF DNA from Escherichia coli was performed using the method of Birnboim et al.
, C. Birnboim) et al.: Nucleic Acid Research.
7, 1513 (1979)).

組み換え体M13ファージからの一本$11 D N 
Aの単離は公知の方法〔口野嘉幸ら:蛋白質・核酸・酵
素29 、294 (1984)]に従って行う。
One bottle from recombinant M13 phage $11 DN
Isolation of A is performed according to a known method [Yoshiyuki Kuchino et al.: Proteins, Nucleic Acids and Enzymes 29, 294 (1984)].

本発明で使用するデオキシオリゴヌクレオチドは、リン
酸アミダイト・法による固相合成法C8,L。
The deoxyoligonucleotide used in the present invention is synthesized using a solid phase synthesis method C8,L using the phosphate amidite method.

Beaucageら:テトラへドロン・レターズ(Te
tra−hedron LettJ 22.1859(
1981)] 、およびり、 ’ J。
Beaucage et al.: Tetrahedron Letters (Te
tra-hedron LettJ 22.1859 (
1981)], andori, 'J.

BcBr ieら:同24.245(1983) )に
従い、アプライド・バイオシステムズ社380A−D 
N A合成機[Applied Biosystems
 In’c1Foster C1ty、 C^9440
4 ]を用いて合成することができる。合成されたデオ
キシオリゴヌクレオチドを他のDNA断片と結合させる
反応に用いる場合には、約20ピコモル(pmoles
)のデオキシオリゴヌクレオチドを204のT4キナー
ゼ緩衝液1:50mM Tris−HCj! (pH7
,6)、10mM  MgC1= 、5mM  DTT
、0.1 mMEDTA、0.5mM  ATPI中で
、5単位のT4DNAキナーゼを加えることにより、5
′−リン酸化する。ハイブリダイゼーション用のプロー
ブとして用いる場合には、上記のT4キナーゼ緩衝液の
中の0.5 mM  A T Pの代わりに20〜50
μCiのCr−”P″JATP (3000Ci/mm
o+、 7フージヤム(^mersham、 Arli
Arlln Heights、 It)を用いて、その
5′末端を放射能標識する。
BcBrie et al. 24.245 (1983)), Applied Biosystems 380A-D
NA Synthesizer [Applied Biosystems
In'c1Foster C1ty, C^9440
4]. When using the synthesized deoxyoligonucleotide in a reaction to combine with other DNA fragments, approximately 20 picomoles (pmoles)
) deoxyoligonucleotides in 204 T4 kinase buffer 1:50mM Tris-HCj! (pH7
,6), 10mM MgCl= , 5mM DTT
, 0.1 mM EDTA, 0.5 mM ATPI by adding 5 units of T4 DNA kinase.
′-phosphorylate. When used as a probe for hybridization, add 20 to 50 mM ATP in place of 0.5 mM ATP in the T4 kinase buffer described above.
μCi Cr-”P”JATP (3000Ci/mm
o+, 7 fujiam (^mersham, Arli
The 5' end is radiolabeled using Arlln Heights, It).

プラスミドDNAの構造解析については、プラスミドD
NAを1〜10種類の制限酵素で消化後アガロースゲル
電気泳動あるいはポリアクリルアミドゲル電気泳動によ
り切断部位を調べる。さらにDNAの塩基配列を決定す
る必要があるときは麺13ファージを用いたデイデオキ
シ・シーフェンス(dideoxy 5equence
)法によって決定する。
For structural analysis of plasmid DNA, refer to plasmid D
After digesting NA with 1 to 10 types of restriction enzymes, the cleavage site is examined by agarose gel electrophoresis or polyacrylamide gel electrophoresis. Furthermore, when it is necessary to determine the base sequence of DNA, we use the dideoxy 5 sequence using the Noodle 13 phage.
) determined by law.

本発明のポリペプチドおよびグリコシル化ポリペプチド
は大腸菌あるいは動物細胞を宿主として用いることによ
り、以下のようにして製造することができる。
The polypeptide and glycosylated polypeptide of the present invention can be produced in the following manner using E. coli or animal cells as a host.

まず、大腸菌を宿主として新規hG−CSFポリペプチ
ドを生産する例について述べる。
First, an example of producing a novel hG-CSF polypeptide using E. coli as a host will be described.

プラスミド(例えばpcfBD28N145)を用いて
大腸菌に−12MM294株(Proc、 Natl。
A plasmid (e.g. pcfBD28N145) was used to inoculate E. coli with the -12MM294 strain (Proc, Natl.

Acad、 Sci、 、 USA、 73 .417
4.1976>を形質転換させ、アンピシリン耐性(^
ρ′以下同じ)のコロニーの中からpcfBD28N1
45を有する大腸菌を選びだす。pcfBD28N14
5を有する大腸菌を培地に培養することにより培養物中
に新規hG−C5Fポリペプチドを生成させることがで
きる。
Acad, Sci, USA, 73. 417
4.1976> and ampicillin resistance (^
pcfBD28N1 from among the colonies of
45 is selected. pcfBD28N14
By culturing E. coli containing 5 in a medium, a novel hG-C5F polypeptide can be produced in the culture.

ここで用いる培地としては大腸菌の生育ならびに新規h
G−CSFポリペプチドの生産に好適なものならば合成
培地、天然培地のいずれも使用できる。
The culture medium used here is for the growth of E. coli and for new h.
Both synthetic and natural media can be used as long as they are suitable for producing G-CSF polypeptides.

炭素源としては、グルコース、フラクトース、ラクトー
ス、グリセロール、マンニトール、ソルビトールなどが
、窒素源としては、NH4Cj! 、(NH4) 2S
O4、カザミノ酸、酵母エキス、ポリペプトン、肉エキ
ス、バタトトリプトン、コーン・ステイープ・リカーな
どが、その他の栄養源としてはに、HPO,。
Carbon sources include glucose, fructose, lactose, glycerol, mannitol, sorbitol, etc., and nitrogen sources include NH4Cj! , (NH4)2S
Other nutritional sources include O4, Casamino Acids, Yeast Extract, Polypeptone, Meat Extract, Batatotryptone, Corn Steep Liquor, and HPO.

に)1.PO,、NaC1、Mg5Oa 、ビタミンB
1、MgCl2などが使用できる。
)1. PO,, NaC1, Mg5Oa, vitamin B
1, MgCl2, etc. can be used.

培養はpH5,5〜8.5、温度18〜40℃で通気攪
拌培養により行われる。培養5〜90時間で培養菌体中
に新規hG−CSFポリペプチドが蓄積するので、培養
物から菌体を集菌し、菌体を超音波処理により破砕し、
遠心して得られる菌体残渣を得る。この菌体残渣からマ
ーストンらの方法[F、A、0、Marstonら: 
[110/TεCHNOLOGY  2.800(19
84) )あるいはペニカらの方法[Penn1ca 
et al。
Cultivation is carried out at pH 5.5 to 8.5 and temperature of 18 to 40° C. with aeration and stirring. Since the novel hG-CSF polypeptide accumulates in the cultured cells after 5 to 90 hours of culture, the cells are collected from the culture, and the cells are disrupted by ultrasonication.
Centrifuge to obtain bacterial cell residue. From this bacterial cell residue, the method of Marston et al. [F, A, 0, Marston et al.
[110/TεCHNOLOGY 2.800 (19
84)) or the method of Pennica et al.
et al.

!ネイチャー(〜ature) 3(II、 214<
4983) E 、あるいはウィンクラ−らの方法[W
inkler et al、 :バイオ/テクノロジー
(810/TBCHNOLOGY) 3 、990(1
985)’]を用いることにより、新規hG−C5Fポ
リペプチドを抽出・精製・可溶化・再生することができ
る。
! Nature (~ture) 3 (II, 214<
4983) E, or the method of Winkler et al. [W
inkler et al.: Bio/Technology (810/TBCHNOLOGY) 3, 990(1)
985)'], the novel hG-C5F polypeptide can be extracted, purified, solubilized, and regenerated.

次に、動物細胞を宿主として新規hG−CSFポリペプ
チドあるいは新規hG−C5Fグリコシル化ポリペプチ
ドを生産する方法について述べる。
Next, a method for producing a novel hG-CSF polypeptide or a novel hG-C5F glycosylated polypeptide using animal cells as a host will be described.

新規hG−CSFポリペプチドあるいは新規hG−CS
Fグリコシル化ポリペプチドを発現させる際の宿主とし
ては、該ポリペプチドあるいは該グリコシル化ポリペプ
チドを発現できるものならいかなる動物細胞も用いるこ
とができる。具体的に好適な動物細胞としては、dhf
rが欠損したCHD細胞〔ジー・ウルラウブ&エル・ニ
ー・チヱイシン(G、Llrlaub & L、A、C
hasin): Proc。
Novel hG-CSF polypeptide or new hG-CS
As a host for expressing the F-glycosylated polypeptide, any animal cell that can express the polypeptide or the glycosylated polypeptide can be used. Specifically preferred animal cells include dhf
r-deficient CHD cells [G, Llrlaub & L, A, C
hasin): Proc.

Natl、^cad、Sci、、 USA、 77 、
4216(1980))などがあげられる。
Natl, ^cad, Sci,, USA, 77,
4216 (1980)).

以下に、新規hG−CSFを発現しつるプラスミドとし
てpASN6、宿主としてdhfrを欠損したCHO細
胞を用いて新規hG−csFポリペプチドあるいは新規
hG−CSFグリコシル化ポリペプチドを製造する例を
述べる。
An example of producing a novel hG-csF polypeptide or a novel hG-CSF glycosylated polypeptide using pASN6 as a plasmid expressing a novel hG-CSF and dhfr-deficient CHO cells as a host will be described below.

プラスミドpASN6を例えばリン酸カルシウム法〔ク
ラハム&ファン・デル・ニブ(Graham &Van
 der Eb):ヴイロロンイ(Virology)
 52 、546(1978)] LJ、 F) d 
h f r欠損CHO株に導入する。
Plasmid pASN6 was prepared using, for example, the calcium phosphate method [Graham & Van der Nyb].
der Eb): Virology
52, 546 (1978)] LJ, F) d
h f r-deficient CHO strain.

pASN6を有する形質転換株は例えば6418および
透析ウシ胎児血清を含むMEM ALPHA培地(リボ
核酸およびデオキシリポ核酸不含有:ギブコ・オリエン
タル社製゛)により選択することができる。さらに形質
転換株の中からメソトレキセートを用いて新規hG−C
8Fポリペプチド遺伝子が増幅された形質転換株を得る
こともできる。
Transformants having pASN6 can be selected, for example, using MEM ALPHA medium (ribonucleic acid and deoxyliponucleic acid free: manufactured by Gibco Oriental) containing 6418 and dialyzed fetal bovine serum. Furthermore, new hG-C was extracted from among the transformed strains using methotrexate.
It is also possible to obtain a transformed strain in which the 8F polypeptide gene is amplified.

得られた形質転換株を培地に培養することにより培養物
中に新規hG−CSFポリペプチドあるいは新規hG−
C9Fグリコシル化ポリペプチドを生成させることがで
きる。
By culturing the obtained transformed strain in a medium, a novel hG-CSF polypeptide or a novel hG-
C9F glycosylated polypeptides can be produced.

培地としては、各種血清(例えばウシ胎児血清)を加え
たハムFIO培地、ハムF12培地(以上フローラボ社
製)、ダルベツコMEM培地、RPMI−1640培地
(以上日永製薬社製) 、MEMALPHA培地および
これらの混合培地が用いられる。培地には必要により、
グルタミン0.5〜5mM、抗生物質〔ヘニシリン(2
5U/1Tll)、ストレプトマイシン(257zg/
ml) 、G 418 (0,3mg/mりなど〕、重
曹(0,01%)などを適量加えてもよい。
Examples of the culture medium include Ham's FIO medium supplemented with various serums (e.g., fetal bovine serum), Ham's F12 medium (manufactured by Flow Lab), Dulbecco's MEM medium, RPMI-1640 medium (manufactured by Hinaga Pharmaceutical Co., Ltd.), MEMALPHA medium, and the like. A mixed medium is used. For the culture medium, if necessary,
Glutamine 0.5-5mM, antibiotic [henicillin (2
5U/1Tll), streptomycin (257zg/
ml), G 418 (0.3 mg/ml, etc.), baking soda (0.01%), etc. may be added in appropriate amounts.

培養には、種々の培養ビン、デイツシュ、ローラーボト
ル、スピンナーフラスコ、ジャーファーメンタ−などを
用いることができる。培養は、通常種細胞密度5 X 
10’ 〜I X 10’細胞/mlとし、30〜40
℃、2〜10日間行うと、各細胞密度に応じ、本発明物
質が主に細胞外に分泌される。
For culturing, various culture bottles, dishes, roller bottles, spinner flasks, jar fermenters, etc. can be used. Culture is usually carried out at a seed cell density of 5×
10' to I x 10' cells/ml, 30 to 40
℃ for 2 to 10 days, the substance of the present invention is mainly secreted outside the cells depending on the cell density.

培養物から細胞を遠心除去し、遠心後の上清から新規h
 G−CS Fポリペプチドあるいは新規hG−C5F
グリコシル化ポリペプチドを分離抽出する。
Cells were removed from the culture by centrifugation, and fresh h
G-CSF polypeptide or novel hG-C5F
Separate and extract the glycosylated polypeptide.

以上、hG−CSFの場合について、大腸菌あるは動物
細胞を宿主とした新規ポリペプチドおよび新規グリコシ
ル化ポリペプチドの製造法について述べたが、UKある
いはその他の任意の蛋白質の場合も同様に製造すること
ができる。
The above describes the method for producing a novel polypeptide and a novel glycosylated polypeptide using E. coli or animal cells as a host in the case of hG-CSF, but the same method can be used for producing UK or any other protein. Can be done.

また上記のようにして得られたhG−CSF活性の測定
は以下のように行う。
Furthermore, the hG-CSF activity obtained as described above is measured as follows.

8〜12週令のC3H/He雄マウス(静岡実験動物協
同組合)の大腿骨より骨髄細胞を無菌的にとり出し、牛
胎児血清(FBS)を10%添加したa −Minim
um Es5ential Medium (Flow
Laboratories、以下a−MEM培地と略す
)に懸濁する。この細胞(約5XlO’個)懸濁液1.
5mlを、ナイロン・ウール(Nylon wool)
  (和光純薬、Nylon Fiber 146−0
4231>をつめたカラム(0,3g)に浸漬し、5%
CO,インキュベーター内にて37℃90分間反応させ
る。次いで予め37℃に加温したα−MEM培地をカラ
ムに流し、溶出してくるナイロン・ウール非吸着性の骨
髄細胞を得る。この細胞をα−M E M培地で一回洗
浄し、所定の濃度に調整する。
Bone marrow cells were aseptically removed from the femurs of 8- to 12-week-old C3H/He male mice (Shizuoka Experimental Animal Cooperative Association), and a-Minim was added with 10% fetal bovine serum (FBS).
um Es5nential Medium (Flow
Laboratories (hereinafter abbreviated as a-MEM medium). This cell (approximately 5XlO' cells) suspension 1.
5 ml of nylon wool
(Wako Pure Chemical, Nylon Fiber 146-0
4231> in a column (0.3 g) packed with 5%
React for 90 minutes at 37°C in a CO incubator. Next, α-MEM medium preheated to 37° C. is passed through the column to obtain bone marrow cells that are eluted and non-adsorbable to nylon wool. The cells are washed once with α-MEM medium and adjusted to a predetermined concentration.

次いで、間部らの方法[0kabe T、et al、
、cancerResearch  44.4503−
4506(1986) ]に準じて骨髄造血幹細飽コロ
ニー形成能を測定する。すなわち、a−MEM  0.
2m11FBS  0.4mlおよび2段階稀釈した各
サンプル0.2mlの混液に、上記の方法で調製した骨
髄細胞(2X10’個/ml)の0.2mlを混和する
。これに42℃に保温した0、6%寒天(口1fco、
^gar purified # 0560−01)溶
液を等量(1,0m1)混和し、その0.5mlを24
穴マルチデイツシ5(Nunc社製、$ 143982
)に播種する(5X10’個/dish、  n=3)
 a 5%CO2インキュベーター中で37℃7日間培
養し、40個以上の細胞からなるコロニーの数を顕微鏡
(O1ympus社製、x40)で計数する。コロニー
計数後、注意深くスライドグラス上にとり出し、アセト
ン・ホルマリン混液で30秒間固定後、Kubotaら
の方法〔にubotaに、、et at1E!XI)、
Hematology、、8.339−344 (19
80))でエステラーゼ2型染色を施し、各コロニーの
同定を行う。
Then, the method of Mabe et al. [0kabe T, et al.
, cancerResearch 44.4503-
4506 (1986)], the bone marrow hematopoietic stem saturation colony forming ability is measured. That is, a-MEM 0.
0.2 ml of bone marrow cells (2×10′ cells/ml) prepared in the above method is mixed with a mixture of 0.4 ml of 2ml11FBS and 0.2 ml of each sample diluted in two stages. Add to this 0.6% agar (1 fco,
^gar purified # 0560-01) solution was mixed in equal volume (1.0 ml), and 0.5 ml was
Hole multi-date 5 (manufactured by Nunc, $143982)
) (5 x 10' pieces/dish, n=3)
a) Culture at 37°C for 7 days in a 5% CO2 incubator, and count the number of colonies consisting of 40 or more cells using a microscope (Olympus, x40). After counting the colonies, they were carefully taken out onto a slide glass, fixed for 30 seconds with a mixture of acetone and formalin, and then subjected to the method of Kubota et al. XI),
Hematology, 8.339-344 (19
80)) to perform esterase type 2 staining and identify each colony.

各サンプルの力価は、コロニー形成試験の2段階稀釈に
於ける計数結果から以下の様に算出する。
The titer of each sample is calculated as follows from the counting results in the two-step dilution of the colony formation test.

スタンダードとして用いたインタクトG−CSFのコロ
ニー形成の最大値のA値を与える活性を50単位と定義
し、これに各サンプルの稀釈率および単位ml当りの活
性に換算するため、20を乗じて力価(単位)とする。
The activity that gives the maximum A value for colony formation of intact G-CSF used as a standard is defined as 50 units, and in order to convert this to the dilution rate of each sample and the activity per unit ml, multiply it by 20 and calculate the power. value (unit).

比活性は、単位蛋白質(mg)当りの力価(単位/■)
で表示する。
Specific activity is the titer (unit/■) per unit protein (mg)
Display in .

また、h G−CS Fの蛋白質量は、抗hG−CSF
単クローン抗体を用いたエンザイム・リンクド・イムノ
・ソルベント・アッセイ(ELISA)によって求める
。なお、このときの標準物質としては、大腸菌で生産、
精製し、ローリ−法によって定量したhG−CSF標品
を用いる。また抗hG−CSF単クローン抗体は、花卉
らの方法〔花卉ら:キャンサー・リサーチ(Cance
r Res、)。
In addition, the protein amount of hG-CSF is
It is determined by enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies. The standard material used at this time was E. coli-produced,
A hG-CSF preparation purified and quantified by the Lowry method is used. In addition, the anti-hG-CSF monoclonal antibody was prepared using the method of Hana et al. [Hana et al.: Cancer Research.
rRes,).

46、4438 (1986) )に従って調製したも
のを用いる。t−PAまたはUKの活性はフィブリン・
プレート0アツセイ法[:Granelli−Pipe
rnoとRe1ch:ジャーナル・オン・エクスペリメ
ンタル・メディシン (J、ExP、Med、) 14
8 、223(1978))によって測定することがで
きる。
46, 4438 (1986)). The activity of t-PA or UK is
Plate 0 assay [: Granelli-Pipe
rno and Re1ch: Journal on Experimental Medicine (J, ExP, Med,) 14
8, 223 (1978)).

以下、本発明のポリペプチドあるいはグリコシル化ポリ
ペプチドがhG−CSFまたはUKである場合の実施例
を述べる。実施例1から5は、本発明のポリペプチドあ
るいはグリコシル化ポリペプチドがhG−C5Fである
場合の実施例で、実施例6から13はUKの場合の賃施
例である。
Examples in which the polypeptide or glycosylated polypeptide of the present invention is hG-CSF or UK will be described below. Examples 1 to 5 are examples in which the polypeptide or glycosylated polypeptide of the present invention is hG-C5F, and Examples 6 to 13 are examples in the case of UK.

実施例1゜ hG−C5F誘導体hG−CSF [ND28](参考
例16参照)を動物細胞で発現するための組換え体プラ
スミドpA328の造成(第5図参照): 参考例10で得られたpAS3−32■を10mM  
Tr i 5−HCl (pH7,5) 、7mMM 
g C12,6mM  2−メルカプトエタノールおよ
び150mM  NaCj!を含む緩衝液(以下“Y−
150緩衝液”と略記する)20gに溶かし、制限酵素
Mlul(宝酒造社製;以下制限酵素については特記し
ない限りすべて宝酒造社製)を10単位加え、37℃で
2時間消化反応を行った。その後、ApaL Iを5単
位加え、さらに37℃で10分間部分消化反応を行った
。この反応液からLGT法により約3.0にbのDNA
断片約0.5gを精製、回収した。
Example 1 Construction of recombinant plasmid pA328 for expressing hG-C5F derivative hG-CSF [ND28] (see Reference Example 16) in animal cells (see Figure 5): pAS3 obtained in Reference Example 10 -32■ 10mM
Tri 5-HCl (pH 7,5), 7mM
g C12, 6mM 2-mercaptoethanol and 150mM NaCj! (hereinafter referred to as “Y-
150 buffer solution), 10 units of restriction enzyme Mlul (manufactured by Takara Shuzo Co., Ltd.; all restriction enzymes hereinafter are manufactured by Takara Shuzo Co., Ltd. unless otherwise specified) were added, and a digestion reaction was carried out at 37°C for 2 hours. , 5 units of ApaL I were added, and a partial digestion reaction was further carried out at 37°C for 10 minutes.From this reaction solution, the DNA of approximately 3.0 b was extracted by the LGT method.
Approximately 0.5 g of the fragment was purified and collected.

また同プラスミド2.を10mM  Tris−HCj
!(pH7,5)、7 mM  M g Cl 2.6
 mM2−メルカプトエタノールおよび50mM  K
(1を含む緩衝液(以下“K−50緩衝液”と略記する
)20mに溶かし、制限酵素AatII(東洋紡績社製
)を10単位加え、37℃で2時間消化反応を行った。
Also, the same plasmid 2. 10mM Tris-HCj
! (pH 7,5), 7 mM M g Cl 2.6
mM 2-mercaptoethanol and 50 mM K
1 (hereinafter abbreviated as "K-50 buffer"), 10 units of restriction enzyme AatII (manufactured by Toyobo Co., Ltd.) was added, and a digestion reaction was performed at 37°C for 2 hours.

その後、NaC11g度が100mMになるようにNa
C1を添加し、10単位のM l u Tを加え、37
℃でさらに2時間反応を行った。この反応液からLGT
法により約6.3 KbのDNA断片を約1■精製、回
収した。
After that, NaC was adjusted to 11g to 100mM.
Add C1, add 10 units of M l u T, 37
The reaction was further carried out at ℃ for 2 hours. From this reaction solution, LGT
Approximately 1 inch of a DNA fragment of approximately 6.3 Kb was purified and recovered using the method.

別に、pCfBD28 (参考例16参照)2重gをに
一50緩衝液20dに溶かし、制限酵素Aatff(東
洋紡績社製)を10単位加え、37℃で2時間消化反応
を行った。その後、NaC1濃度が50mMになるよう
にNaCJを添加し、10単位のXholを加え37℃
でさらに2時間消化反応を行った。この反応液からLG
T法により約0.3 KbのDNA断片約0.1Rを精
製、回収した。
Separately, 2 g of pCfBD28 (see Reference Example 16) was dissolved in 20 d of Ni-50 buffer, 10 units of restriction enzyme Aatff (manufactured by Toyobo Co., Ltd.) was added, and a digestion reaction was performed at 37° C. for 2 hours. Then, NaCJ was added so that the NaC1 concentration was 50mM, 10 units of Xhol was added, and the temperature was kept at 37°C.
The digestion reaction was carried out for an additional 2 hours. From this reaction solution, LG
A DNA fragment of approximately 0.1R of approximately 0.3 Kb was purified and recovered by the T method.

一方、成熟型hG−C5FのN末端のアミノ酸であるT
hrをAlaに、3番目のアミノ酸であるLeuをTh
rに、4番目のアミノ酸であるGlyをTyrに、5番
目のアミノ酸であるPr。
On the other hand, the N-terminal amino acid T of mature hG-C5F
hr is replaced with Ala, and the third amino acid Leu is replaced with Th.
r, Gly, the fourth amino acid, Tyr, and Pr, the fifth amino acid.

をArgに置換するために、下記のDNA!Jンヵーを
合成した。
To replace with Arg, use the following DNA! A J-linker was synthesized.

まず、−重鎮DNA (43mer 、 2種)をアプ
ライド・バイオシステムズ社3g0A−DNA合成機を
用いて合成した。次に、合成したDNA(43mer、
 2種)をおのおの20ピコモルずつ、50mM  T
r 1s−HCR(pH7,5) 、10mM  Mg
C1zs 5mMジチオスレイトール、0.1mM  
EDTAおよび1mM  ATPを含む緩衝液(以下こ
の緩衝液を“T4キナーゼ緩衝液と略記する)40dに
溶かし、T4ポリヌクレオチドキナーゼ(宝酒造社製二
以下同じ)30単位を加えて、37℃で60分間リン酸
化反応を行った。
First, -heavyweight DNA (43mer, 2 types) was synthesized using an Applied Biosystems 3g0A-DNA synthesizer. Next, synthesized DNA (43mer,
2 types), 20 pmol each, 50mM T
r 1s-HCR (pH 7,5), 10mM Mg
C1zs 5mM dithiothreitol, 0.1mM
Dissolve in 40 d of a buffer containing EDTA and 1 mM ATP (hereinafter abbreviated as "T4 kinase buffer"), add 30 units of T4 polynucleotide kinase (manufactured by Takara Shuzo Co., Ltd.), and incubate at 37°C for 60 minutes. A phosphorylation reaction was performed.

上記で得た、pAS3−3由来のM I u I −A
paLI断片(約3.0Kb)0.5.と同プラスミド
由来のAatII−Mlul断片(約6.3にb)1.
0gおよびpCfBD28由来のAatn−Xhol断
片(0,3Kb) 0.1.を20mM  Tris−
HCJ  (pH7,6) 、10mM  MgC1,
,10mMジチオスレイトールおよび1mM  ATP
を含む緩衝液(以下この緩衝液を“T41Jガーゼ緩衝
液°と略記する)25gに溶かし、この混合液に上記D
NA!Iンカーを約1ピコモル加えた。
M I u I -A derived from pAS3-3 obtained above
paLI fragment (approximately 3.0 Kb) 0.5. AatII-Mlul fragment derived from the same plasmid (approximately 6.3 b) 1.
0g and Aatn-Xhol fragment (0,3 Kb) from pCfBD28 0.1. 20mM Tris-
HCJ (pH 7,6), 10mM MgCl,
, 10mM dithiothreitol and 1mM ATP
(hereinafter this buffer will be abbreviated as "T41J gauze buffer") containing the above D.
NA! Approximately 1 pmol of Inker was added.

この混合溶液にさらにT4DNA!Jガーゼ(宝酒造社
製二以下同じ)400単位を加え、4℃、18時間結合
反応を行った。
Add T4DNA to this mixed solution! 400 units of J gauze (manufactured by Takara Shuzo Co., Ltd., hereinafter the same) were added, and a binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて大腸菌H
8101株〔ポリバー(Bolivar)ら:ジーン(
Gene) 2.75 (1977) ]をココーンら
の方法〔ニス・エヌ・コーエン(S、 N、 Cohe
n)ら:プロシーディング・オン・ザ・ナショナル・ア
カデミ−・オン・サイエンス(Proc、Natl、A
cad、Sci、)USA。
Using the obtained mixture of recombinant plasmids, E. coli H.
Strain 8101 [Bolivar et al.: Gene (
Gene) 2.75 (1977)] using the method of Cocone et al.
n) et al.: Proceedings on the National Academy of Sciences (Proc. Natl. A.
cad, sci,) USA.

69 、2110 (1972)) (以下、大腸菌の
形質転換にはこの方法を用いる)により形質転換し、ア
ンピシリン(Ap)耐性株を得た。この形質転換株から
公知の方法〔エイチ・シー・バーンボイム(If。
69, 2110 (1972)) (hereinafter, this method will be used for the transformation of E. coli) to obtain an ampicillin (Ap) resistant strain. From this transformed strain, a known method [H.C. Birnboim (If.

C,Birnboim)ら:ヌクレイック・アシッド・
リサーチ(Nucleic Ac1ds Res、) 
7 、1513 (1979))(以下、プラスミドD
NAの単離はこの方法を用いる)に従ってプラスミドD
NAを単離した。
C., Birnboim) et al.: Nucleic acid.
Research (Nucleic Ac1ds Res,)
7, 1513 (1979)) (hereinafter referred to as plasmid D
Plasmid D was isolated using this method.
NA was isolated.

得られたプラスミドの構造は、制限酵素消化およびM1
3ファージを用いたデイデオキシ・シーフェンス法によ
り確認した。このプラスミドをpA328 (第5図参
照)と呼ぶ。プラスミドpΔ32Bを含む微生物はEs
cherichia coliBAS2B FBRM 
0P−2069として昭和63年9月24日付で微工研
に寄託しである。該プラスミドがコードするポリペプチ
ド(hG−CSF誘導体)は、成熟型hG−CSFに比
べて以下のようにアミノ酸残基が置換されている。
The structure of the resulting plasmid was determined by restriction enzyme digestion and M1
Confirmation was made by the Deideoxy Seefence method using 3 phages. This plasmid is called pA328 (see Figure 5). The microorganism containing plasmid pΔ32B is Es
cherichia coliBAS2B FBRM
It was deposited with the Institute of Fine Technology on September 24, 1986 as 0P-2069. The polypeptide (hG-CSF derivative) encoded by the plasmid has the following amino acid residue substitutions compared to mature hG-CSF.

pA328がコードするポリペプチド(hG−CSF誘
導体)を以後hG−C5F [ND2g]と呼ぶ。
The polypeptide (hG-CSF derivative) encoded by pA328 is hereinafter referred to as hG-C5F [ND2g].

実施例2゜ hG−C5F [ND28]  (参考例16参照)の
N末端から第6番目のアミノ酸残基にN−グリコシド結
合型糖鎖の付加が可能となった新規hG−C5Fポリペ
プチドをコードする組換え体プラスミドpASN6の造
成(第6図参照) :参考例1Oで得られたpAS3−
32ugをY−150緩衝液20戚に溶かし、制限酵素
M l ul  10単位を加え、37℃で2時間消化
反応を行った。その後、ApaLIを5単位加え、さら
に37℃で10分間部分消化反応を行った。この反応液
からLGT法により約3.0にbのDNA断片約0.5
■を精製、回収した。
Example 2 Encodes a novel hG-C5F polypeptide in which an N-glycosidic sugar chain can be added to the 6th amino acid residue from the N-terminus of hG-C5F [ND28] (see Reference Example 16) Construction of recombinant plasmid pASN6 (see Figure 6): pAS3- obtained in Reference Example 1O
32ug was dissolved in 20ml of Y-150 buffer, 10 units of restriction enzyme M lul was added, and a digestion reaction was performed at 37°C for 2 hours. Thereafter, 5 units of ApaLI were added, and a partial digestion reaction was further performed at 37°C for 10 minutes. From this reaction solution, approximately 3.0 and approximately 0.5 b DNA fragments were obtained using the LGT method.
(2) was purified and recovered.

別に、前項で得たpA328 2■を’f’−150緩
衝液20誠に溶かし、制限酵素XholとM l u■
をそれぞれlO単位加え、37℃で2時間消化反応を行
った。この反応液からLGT法により、約6.55にb
のDNA断片1.0■を精製、回収した。
Separately, dissolve pA328 2■ obtained in the previous section in 20cm of 'f'-150 buffer, add restriction enzyme Xhol and Mlu■
10 units of each were added, and the digestion reaction was carried out at 37°C for 2 hours. From this reaction solution, approximately 6.55 b
A DNA fragment of 1.0 mm was purified and recovered.

一方、実施例1のpAS28がコードするhG−C5F
 CND28)のN末端から第6番目のアミノ酸である
AlaをAsnに置換し、N−グリコシド結合型糖鎖の
付加部位を形成するために下記のDNA!Jンカーを合
成した。下記DNA!Jンカー中には新たに5naB1
切断部位が生じるように設計されているため、同リンカ
−が組み込まれたことは制限酵素5naB1で切断する
ことにより!!忍することができる。
On the other hand, hG-C5F encoded by pAS28 of Example 1
In order to replace Ala, the 6th amino acid from the N-terminus of CND28) with Asn, and form an addition site for an N-glycoside-linked sugar chain, the following DNA! I synthesized a J-linker. DNA below! New 5naB1 in J car
Since the design is such that a cleavage site is created, the linker was incorporated by cutting with the restriction enzyme 5naB1! ! I can endure it.

一本鋼D N A (43mer % 2種)はアプラ
イド・バイオシステムズ社380A−DNA合成機を用
いて合成した。
Ipponko DNA (43mer% 2 types) was synthesized using an Applied Biosystems 380A-DNA synthesizer.

合成したDNA (43mer 、 2種) l;!#
(7)オ(7)20ピコモルずつ、40μgのT4キナ
ーゼ緩衝液に溶かし、T4ポリヌクレオチドキナーゼ3
0単位を加えて37℃で60分間リン酸化反応を行った
Synthesized DNA (43mer, 2 types) l;! #
(7) Dissolve 20 picomole of O(7) in 40 μg of T4 kinase buffer, T4 polynucleotide kinase 3
0 units was added and the phosphorylation reaction was carried out at 37°C for 60 minutes.

上記で得たpAS3−3由来のMlul−ApaL■断
片(約3.0Kb) 0.5ggトpAS 28由来の
XhoI−MJul断片(約6.55Kb)1gを全量
30誠のT4リガーゼ緩衝液に溶かし、この混合液に上
記D N A Uンヵーを約1ピコモル加えた。
0.5 gg of the Mlul-ApaL fragment derived from pAS3-3 (approximately 3.0 Kb) obtained above and 1 g of the Xho I-M Jul fragment derived from pAS 28 (approximately 6.55 Kb) were dissolved in T4 ligase buffer containing a total volume of 30 Makoto. About 1 picomole of the above D N A Unker was added to this mixed solution.

この混合液にさらに400単位のT 4 DNA !I
ガーゼを加え、4℃で18時間結合反応を行った。
Add 400 units of T 4 DNA to this mixture! I
Gauze was added and the binding reaction was carried out at 4°C for 18 hours.

組換え体プラスミドを含む反応混合物を用いて、大腸菌
H8101株をコーエンらの方法(両逆)により形質転
換し、Ap耐性株を得た。この形質転換株より、公知の
方法に従って、プラスミドDNAを分離、精製した。該
プラスミドDNAの構造は、制限酵素消化およびM13
・ファージを用いたデイデオキシ・シーフェンス法によ
り確認した。このプラスミドをpASN6と呼ぶ。プラ
スミドpASN6を含む微生物はEscherichi
a coliEASN6 FERM 0P−2070と
して昭和63年9月24日付で微工研に寄託しである。
Using the reaction mixture containing the recombinant plasmid, E. coli strain H8101 was transformed by the method of Cohen et al. (both inversely) to obtain an Ap-resistant strain. Plasmid DNA was isolated and purified from this transformed strain according to a known method. The structure of the plasmid DNA was determined by restriction enzyme digestion and M13
・Confirmed by Deideoxy Sea Fence method using phages. This plasmid is called pASN6. The microorganism containing plasmid pASN6 is Escherichia
It was deposited with the Institute of Fine Technology on September 24, 1986 as a coli EASN6 FERM 0P-2070.

該プラスミドがコードするポリペプチド(hG−CSF
Is導体)は、成熟型hG−C5Fと比べ以下のように
アミノ酸残基が置換されている。
The polypeptide (hG-CSF) encoded by the plasmid
Is conductor) has the following amino acid residue substitutions compared to mature hG-C5F.

pASN6がコードするポリペプチド(hGCSF誘導
体)を以後hG−CSF [ND28N6〕と呼ぶ。
The polypeptide (hGCSF derivative) encoded by pASN6 is hereinafter referred to as hG-CSF [ND28N6].

実施例3゜ bG−cSF [:ND28]  (参考例16参照)
のN末端から第145番目のアミノ酸残基にNグリコシ
ド結合型糖鎖の付加が可能となった新規hG−CSFポ
リペプチドをコードする組換え体プラスミドpAsN1
45の造成〔第7(13図および第7(2)図参照〕 
: (a)  鋳型−末鎖DNA (−末鎖pt19B02
8c)の造成:pCfBD28 (参考例16参照)3
μgを10mM  Tr i 5−HCI  (pH7
,5> 、7mMMgCl!* 、6mM  2−メル
jyブトエ9)−ルを含む緩衝液(以下″Y−0緩衝液
”と略記する)20戚に溶かし、制限酵素pvuffを
IO単位加え37℃で2時間消化反応を行った。その後
、NaCl1濃度が100mMになるようにNaCj!
を添加し、10単位のBamHIを加えて37℃でさら
に2時間反応を行った。
Example 3゜bG-cSF [:ND28] (See Reference Example 16)
Recombinant plasmid pAsN1 encoding a novel hG-CSF polypeptide in which an N-glycoside-linked sugar chain can be added to the 145th amino acid residue from the N-terminus of
Creation of 45 [No. 7 (see Figure 13 and Figure 7 (2)])
: (a) Template-end strand DNA (-end strand pt19B02
8c) Creation: pCfBD28 (see Reference Example 16) 3
μg of 10mM Tri 5-HCI (pH 7
, 5>, 7mM MgCl! *, dissolved in 20% buffer solution (hereinafter abbreviated as "Y-0 buffer") containing 6mM 2-merjybutene9)-ol, and IO unit of restriction enzyme pvuff was added, followed by a digestion reaction at 37°C for 2 hours. Ta. Then, add NaCj! so that the NaCl1 concentration is 100mM.
was added, 10 units of BamHI was added, and the reaction was further carried out at 37°C for 2 hours.

この反応液からLGT法により、hG−CSF[ND2
8]のC末端部分をコードする約0.94KbのDNA
断片(PvulI−Barr+Hr断片)約0、5Ji
gを得た。
From this reaction solution, hG-CSF[ND2
Approximately 0.94 Kb DNA encoding the C-terminal part of [8]
Fragment (PvulI-Barr+Hr fragment) about 0.5Ji
I got g.

一方、M13ファージベクターであるMt3mp 19
RFDNA (宝酒造社製) 1■を全量50dのY−
0緩衝液に溶かし、制限酵素Sma Iを10単位加え
、37℃、2時間消化反応を行った。
On the other hand, the M13 phage vector Mt3mp 19
RFDNA (manufactured by Takara Shuzo Co., Ltd.) 1■ in total amount of 50d Y-
0 buffer, 10 units of restriction enzyme Sma I was added, and a digestion reaction was performed at 37°C for 2 hours.

その後、NaC1g1度が100mMになるようにNa
C1を添加し、制限酵素BamHIをIO単位加え37
℃、2時間消化反応を行った。この反応液からLGT法
により約’?、 24 K bのDNA断片(Smal
−BamHI断片)約0.8.を得た。
After that, add NaC so that 1g of NaC becomes 100mM.
Add C1, add IO units of restriction enzyme BamHI and add 37
Digestion reaction was carried out at ℃ for 2 hours. From this reaction solution, approximately '? , 24 Kb DNA fragment (Smal
-BamHI fragment) about 0.8. I got it.

上記で得たPvun−BamHI断片(約0.94Kb
)0.2J1gと、Sma l−BamHI断片(約7
.24Kb)0.05■をT4リガーゼ緩衝液50頭に
溶かし、この混合液にT4DNAIJガーゼ400単位
を加え12℃、16時間結合反応を打法に、公知の方法
〔メシング(Messing)ら:メソッド・イン・エ
ンザイモロン−(Methods inεr+zymo
logy) iol 、 20 (1983) ]に従
い、上記反応液を用いて大腸菌JM105株をトランス
フェクションし、組換え体ファージを得た。この組換え
体ファージの感染した大腸菌JMI 05株の培養菌体
より、プラスミドDNA回収法に準じて、組換え体M1
3ファージRFDNAを回収した。
Pvun-BamHI fragment obtained above (approximately 0.94 Kb
) 0.2J1g and Sma l-BamHI fragment (approximately 7
.. 24Kb) 0.05cm was dissolved in 50 units of T4 ligase buffer, 400 units of T4 DNA IJ gauze was added to this mixture, and the binding reaction was carried out at 12°C for 16 hours using a known method [Messing et al.: Methods]. In Enzymoron-(Methods inεr+zymo
Escherichia coli strain JM105 was transfected using the above reaction solution according to the method of E. coli, 20 (1983)] to obtain a recombinant phage. From the cultured cells of Escherichia coli JMI strain 05 infected with this recombinant phage, recombinant M1 was extracted according to the plasmid DNA recovery method.
3 phage RF DNA was recovered.

このRFDNA (これをpt19B028cと呼ぶ)
の構造は、BamHl、EcoRI、Bgflで切断し
、ポリアクリルアミドゲル電気泳動により確認した。こ
の組換え体ファージより、前記公知の方法に従って一本
鎖pt19BD28cを回収し鋳型とした。
This RFDNA (this is called pt19B028c)
The structure of was confirmed by digestion with BamHl, EcoRI, and Bgfl, and polyacrylamide gel electrophoresis. Single-stranded pt19BD28c was recovered from this recombinant phage according to the above-mentioned known method and used as a template.

ら)ギャップト・デュプレックスD N A (Gap
pedDu’plex D N A >の造成:Ml 
3mp 19RFDNA (宝酒造社製)3JLgを1
0mM  Tris−HCl(pH7,5)、7mM 
 MgCl2.6mM  2−メルカプトエタノールお
よび100mM  NaCj!を含む緩衝液【以下“Y
−100緩衝液”、と略記する)30通に溶かし、制限
酵素EcoRIと)(i ndII[をそれぞれlO単
位ずつ加え、37℃で2時間消化反応を行った。この反
応液からLGT法により約7、2 K bのDNA断片
(Ec oRr −Hi ndm断片)約2.5tLg
を得た。
) gapped duplex DNA (Gap
Creation of pedDu'plex DNA>: Ml
3mp 19RFDNA (manufactured by Takara Shuzo Co., Ltd.) 3JLg in 1
0mM Tris-HCl (pH 7,5), 7mM
MgCl2.6mM 2-mercaptoethanol and 100mM NaCj! Buffer solution containing [hereinafter referred to as “Y
The restriction enzymes EcoRI and )(indII) were added in 10 units each, and the digestion reaction was carried out at 37°C for 2 hours. From this reaction solution, approximately 7.2 Kb DNA fragment (EcoRr-Hindm fragment) approximately 2.5tLg
I got it.

このmp 19RFDNA由来のEcoRI−Hind
III断片(約7.2Kb)2.と前項で得た鋳型−末
鎖DNA、pt19BD28CINを50mM  Tr
is−HCl(pH7,8) 、7mMM g C12
および6mM  2−メルカプトエタノールを含む緩衝
液(以下1クレノー緩衝液″と略記する)274に溶か
し、100℃で6分間煮沸することによりDNAを変性
させた。その後、65℃で10分間、37℃で40分間
、4℃で40分間、水中で10分間放置し、アニール反
応を行い鋳型中のhG−CSF遺伝子部分だけが一本鎖
となったギャップト・デュプレックスD N Aを生成
させた。生成したギャップト・デュプレックスDNAは
LGT法により回収した。
EcoRI-Hind derived from this mp 19RF DNA
III fragment (approximately 7.2 Kb)2. The template-end strand DNA obtained in the previous section, pt19BD28CIN, was diluted with 50mM Tr.
is-HCl (pH 7,8), 7mM g C12
The DNA was dissolved in a buffer solution (hereinafter abbreviated as "1 Klenow buffer") containing 6 mM 2-mercaptoethanol and denatured by boiling at 100°C for 6 minutes. Thereafter, the DNA was denatured at 65°C for 10 minutes at 37°C. The template was left for 40 minutes at 4°C, 40 minutes at 4°C, and 10 minutes in water to perform an annealing reaction to generate gapped duplex DNA in which only the hG-CSF gene portion in the template was single-stranded. Gapped duplex DNA was recovered by the LGT method.

(C)  突然変異誘発(ρt 19BD28CN 1
45の造成)実施例1で得たpA328がコードするh
c−CSF CND28] 173N末端から第145
番目ノアミノ酸であるGlnをAsnに、第147番目
のアミノ酸であるArgをSetに置換し、N−グリコ
シド結合型糖鎖の付加部位を形成するために、以下に示
す一本tJIDNAを合成した。下記−末鎖D N A
中には、新たにPvu Iサイトが生じるように設計さ
れているので、突然変異が導入されたものはこれを制限
酵素Pvulで切断するここと1こより確l忍すること
ができる。
(C) Mutagenesis (ρt 19BD28CN 1
45) h encoded by pA328 obtained in Example 1
c-CSF CND28] 145th from 173N terminus
A single tJI DNA shown below was synthesized by replacing Gln, the amino acid No. 1, with Asn, and Arg, the amino acid No. 147, with Set, to form an addition site for an N-glycoside-linked sugar chain. Below - End strand DNA
Some of them are designed to generate a new Pvu I site, so those into which a mutation has been introduced can be protected by cutting this site with the restriction enzyme Pvul.

−重鎮D N Aの合成は、アプライド・ノイイオシス
テムズ社380A−DNA合成機を用いて行った。合成
した一本鎖DNA1gを50dのT4キナーゼ緩衝液に
溶かし、T4ポリヌクレオチドキナーゼ30単位を加え
て37℃で60分間リン酸化反応を行った。
- Synthesis of the heavyweight DNA was carried out using an Applied Neuiosystems 380A-DNA synthesizer. 1 g of the synthesized single-stranded DNA was dissolved in 50 d of T4 kinase buffer, 30 units of T4 polynucleotide kinase was added, and a phosphorylation reaction was performed at 37° C. for 60 minutes.

次に、このリン酸化した1重鎮D N A 0.2 u
gと前項で得たギャップト・デュプレックスDNA0.
1 ugを6.5mM  Tr i 5−HCI  (
pH7,5)  、 8  mM   Mg  Ci 
 *  、  1mM2 −メ JL/カプトエタノー
ルおよび100mM  NaCj!を含む緩衝液34d
に溶かし、65℃で60分間、室温で30分間放置し、
1本taD N Aをギャップト・デコプレックスDN
Aにアニールさせた。
Next, this phosphorylated one-stack DNA 0.2 u
g and the gapped duplex DNA obtained in the previous section.
1 ug of 6.5mM Tri 5-HCI (
pH7.5), 8mM MgCi
*, 1mM 2-MeJL/captoethanol and 100mM NaCj! A buffer solution 34d containing
Dissolve it in and leave it at 65℃ for 60 minutes and at room temperature for 30 minutes.
1 taDN A gapped decoplex DN
A was annealed.

この溶液にdATPldTTP、dCTP。Add dATPldTTP and dCTP to this solution.

dGTPをそれぞれ0.5mMになるように加えた後、
1.5単位のDNAポリメラーゼ■・クレノー断片と4
00単位のT4DNA!Jガーゼを加え、4℃、16時
間の伸長反応を行った。
After adding dGTP to 0.5mM each,
1.5 units of DNA polymerase ■ Klenow fragment and 4
00 units of T4DNA! J gauze was added and an elongation reaction was performed at 4°C for 16 hours.

該反応液を用いて大腸菌JM105をトランスフェクシ
ョンし、変異導入ファージを得た。
E. coli JM105 was transfected using the reaction solution to obtain a mutated phage.

変異導入ファージの感染した大腸菌JM105よりRF
DNAを回収し、制限酵素切断およびM13ファージを
用いたデイデオキシ・シーフェンス法により構造V11
認を行った。目的の変異が導入されたRFDNAをpt
19BD28cN145と呼ぶ。
RF from E. coli JM105 infected with mutagenic phage
The DNA was recovered and the structure V11
confirmed. pt the RF DNA into which the desired mutation has been introduced.
It is called 19BD28cN145.

(6) pcfBD28N145の造成(第7(2)図
参照ン 前項で得たpt19BD28cN145 3■を50庫
のY−100!!衝液に溶かし、制限酵素Bgll(ベ
ーリンガー・マンハイム社製)およびBamHIをそれ
ぞれ10単位加え、37℃で2時間消化反応を行った。
(6) Construction of pcfBD28N145 (see Figure 7 (2)) Dissolve 3 pt19BD28cN145 obtained in the previous section in 50 bottles of Y-100!! solution, and add 10 each of restriction enzymes Bgll (manufactured by Boehringer Mannheim) and BamHI. unit was added, and the digestion reaction was carried out at 37°C for 2 hours.

反応液からLGT法により、前項で導入した変異部位を
含む約0.85 KbのDNA断片(Bgl 1−Ba
mHI断片)を0.4■得た。
An approximately 0.85 Kb DNA fragment (Bgl 1-Ba
mHI fragment) was obtained.

一方、pCfBD28 (参考例16参照)2■を50
JJiのY−100緩衝液に溶かし、制限酵素BamH
Iを10単位加え37℃で2時間消化反応を行った。そ
の後、制限酵素Bg11を5単位加え、37℃でさらに
10分間部分消化反応を行った。この反応液からLGT
法により、約3.25xbのDNA断片(BamHI−
Bgl I断片)を0.5■得た。
On the other hand, pCfBD28 (see Reference Example 16) 2■
Dissolve the restriction enzyme BamH in JJi's Y-100 buffer.
10 units of I was added and the digestion reaction was carried out at 37°C for 2 hours. Thereafter, 5 units of restriction enzyme Bg11 were added, and a partial digestion reaction was performed at 37°C for an additional 10 minutes. From this reaction solution, LGT
A DNA fragment of approximately 3.25xb (BamHI-
0.5μ of Bgl I fragment) was obtained.

上記で得たpt19BD28cN145由来のBgji
l−BamHI断片(約0.85にb)0.4ugとp
CfBD28由来のBgl 1−BamHI断片(約3
.25にb)0.5ugをT4’リガーゼ緩衡液60〃
に溶かし、400単位のT4DNAリガーゼを加え、1
2℃で16時間結合反応を行った。
Bgji derived from pt19BD28cN145 obtained above
0.4ug l-BamHI fragment (approximately 0.85b) and p
Bgl 1-BamHI fragment from CfBD28 (approximately 3
.. 25 b) 0.5ug of T4' ligase buffer 60
Add 400 units of T4 DNA ligase to 1
The binding reaction was carried out for 16 hours at 2°C.

該反応液を用いた大腸菌H8101株を形質転換し、A
p耐性株を得た。該形質転換株よりプラスミドDNAを
単離し制限酵素切断により構造解析を行った。目的の構
造を有するプラスミドDNAをpcfBD28N145
と呼ぶ。
E. coli H8101 strain was transformed using the reaction solution, and A
A p-resistant strain was obtained. Plasmid DNA was isolated from the transformed strain and structurally analyzed by restriction enzyme digestion. Add plasmid DNA having the desired structure to pcfBD28N145
It is called.

(e)  pAsN145の造成 前項で得たpCf、BD28N 145.5.を50d
のy−too緩衝液に溶かし、制限酵素BanIII 
(東洋紡績社製)およびBamHIを各々10単位加え
、37℃で2時間消化反応を行った。この反応液からL
GT法により約1.3 KbのDNA断片(BanII
I−BamHI断片)1■を得た。この約1.3 Kb
のDNA断片1■を50城のy−too緩衝液に溶かし
、制限酵素Ddel(東洋紡績社製)を10単位加え3
7℃で2時間消化反応を行った。フェノール−クロロホ
ルム等量混合液による抽出(以下フェノール−クロロホ
ルム抽出と略記する)およびエタノール沈殿でDNAを
回収し、30mのクレノー緩衝液に溶かし、DNAポリ
メラーゼI・クレノー断片を2単位加え37℃で1時間
反応を行った。68℃で10分間処理しDNAポリメラ
ーゼI・クレノー断片を失活させ後、エタノール沈殿で
DNAを回収した。
(e) Construction of pAsN145 pCf obtained in the previous section, BD28N 145.5. 50d
Dissolve the restriction enzyme BanIII in y-too buffer.
(manufactured by Toyobo Co., Ltd.) and BamHI (10 units each) were added, and a digestion reaction was performed at 37°C for 2 hours. From this reaction solution, L
Approximately 1.3 Kb DNA fragment (BanII
I-BamHI fragment) 1■ was obtained. This approximately 1.3 Kb
Dissolve one DNA fragment of
Digestion reaction was carried out at 7°C for 2 hours. DNA was recovered by extraction with an equal volume mixture of phenol-chloroform (hereinafter abbreviated as phenol-chloroform extraction) and ethanol precipitation, dissolved in 30 m Klenow buffer, added with 2 units of DNA polymerase I/Klenow fragment, and incubated at 37°C for 1 hour. A time reaction was performed. After inactivating the DNA polymerase I/Klenow fragment by treating at 68° C. for 10 minutes, the DNA was recovered by ethanol precipitation.

回収したDNAは、20dのに一50緩衝液に溶かし、
制限酵素AatlI(東洋紡績社製)10単位を加えて
37℃、2時間消化反応を行った。この反応液よりLG
T法により約0.2にbのDNA断片〔口de E  
(平坦末端)−Aatfl断片〕約0.1■を得た。
The recovered DNA was dissolved in 150% buffer for 20 d.
10 units of restriction enzyme AatlI (manufactured by Toyobo Co., Ltd.) were added and a digestion reaction was carried out at 37°C for 2 hours. From this reaction solution, LG
A DNA fragment of approximately 0.2 b was obtained using the T method.
(Flat end)-Aatfl fragment] about 0.1 .mu. was obtained.

別に実施例1で得たpAs2gの2ugを20dのに一
50緩衝液に溶かし、制限酵素AatII(東洋紡績社
製) 10単位を加え、37℃で2時間消化反応を行っ
た。その後、制限酵素Xholを5単位加え、37℃で
さらに10分間部分消化反応を行った。この反応液より
LGT法により約0.8にbのDNA断片(AatII
−XhoI断片)約0.1■を得た。
Separately, 2 ug of 2 g of pAs obtained in Example 1 was dissolved in a 20-day buffer, 10 units of restriction enzyme AatII (manufactured by Toyobo Co., Ltd.) was added, and a digestion reaction was performed at 37° C. for 2 hours. Thereafter, 5 units of the restriction enzyme Xhol were added, and a partial digestion reaction was carried out at 37°C for an additional 10 minutes. From this reaction solution, a DNA fragment of approximately 0.8b (AatII
-XhoI fragment) approximately 0.1■ was obtained.

一方、参考例9で得たpsBIPAlsBldhfrl
−9^2、を20dのY−0緩衝液に溶かし、制限酵素
Sma Iを10単位加え、37℃で2時間消化反応を
行った。その後、NaC1濃度が100mMになるよう
にNaC1を添加し、制限酵素Xh。
On the other hand, psBIPAlsBldhfrl obtained in Reference Example 9
-9^2 was dissolved in 20d of Y-0 buffer, 10 units of restriction enzyme Sma I was added, and a digestion reaction was performed at 37°C for 2 hours. Thereafter, NaCl was added so that the NaCl concentration was 100 mM, and restriction enzyme Xh was added.

Iを10単位加え、37℃でさらに2時間消化反応を行
った。この反応液からLGT法により約8.7xbのD
NA断片(Sma I−X、h o I断片)約1■を
得た。
10 units of I was added, and the digestion reaction was further carried out at 37°C for 2 hours. About 8.7xb of D was obtained from this reaction solution by the LGT method.
About 1 inch of NA fragment (Sma I-X, ho I fragment) was obtained.

上記のようにして得たpcfBD28N145由来のD
del(平坦末端) −AatlI断片(約0、2 K
b)約0.1■、pAs28由来のAatII−Xho
I断片(約0.8にb)約0.1■、pSEIPAIS
Eldhfrl−9A由来のSma I −Xho1断
片(約8.7にh)約1.を30dのT4DNAIJガ
ーゼ緩衝液に溶かし400単位のT4DNA!Iガーゼ
を加え、4℃で18時間結合反応を行った。該反応液を
用いて大腸IHBIOI株を形質転換し、Ap耐性株を
得た。該形質転換株よりプラスミドを単離し、制限酵素
切断による構造解析を行った結果、目的の構造を有する
プラスミドDNA、pAsNl 45を得た。プラスミ
ドpASN145を含む微生物はIEscherich
ia coliBASN145 FERM 0P−20
71として昭和63年9月24日付で微工研に寄託しで
ある。該プラスミドがコードするポリペプチド(hG−
CSF誘導体)は、成熟型hG−CSFと比べて以下の
ようにアミノ酸残基が置換されている。
D derived from pcfBD28N145 obtained as above
del (flat end) -AatlI fragment (approximately 0,2 K
b) Approximately 0.1■, AatII-Xho from pAs28
I fragment (about 0.8b) about 0.1■, pSEIPAIS
Sma I-Xho1 fragment from Eldhfrl-9A (about 8.7 h) about 1. Dissolve 400 units of T4DNA in 30d of T4DNA IJ gauze buffer! I gauze was added and the binding reaction was carried out at 4°C for 18 hours. The colon IHBIOI strain was transformed using the reaction solution to obtain an Ap-resistant strain. A plasmid was isolated from the transformed strain and subjected to structural analysis by restriction enzyme digestion. As a result, plasmid DNA pAsNl 45 having the desired structure was obtained. The microorganism containing plasmid pASN145 is IEscherich
ia coli BASN145 FERM 0P-20
No. 71, it was deposited with the Institute of Fine Technology on September 24, 1986. The polypeptide (hG-
CSF derivative) has the following amino acid residue substitutions compared to mature hG-CSF.

pAsNl 45がコードするポリペプチド(hG−C
SF誘導体)を以後hG−C5F[:ND28N145
]と呼ぶ。
The polypeptide encoded by pAsNl 45 (hG-C
SF derivative) hereinafter hG-C5F[:ND28N145
].

実施例4゜ hG−CSF (ND28] 、hG−C5F (ND
28N6]、hG−CsF’ (ND28Ni5]およ
びhG−CSFの動物細胞による生産=(1)  pA
32gを保有する動物細胞によるhG−CSF [ND
28]の生産: pA328のdhfr欠撫CHO株への導入はリン酸カ
ルシウム法に準じて行った。すなわち、Fe210%と
7.5%N a HCOs溶液〔フロ・ラボラトリーズ
 (Flow Laboratories)社製〕11
50量を加えたMEM  ALPHA培地(リボ核酸お
よびデオキシリボ核酸含有:ギブコ・オリエンタル社製
)〔以下、この培地をMEMα(非選択培地)と略記す
る15m1にIXIG’細胞/m細胞/m上うに細胞を
接種し〔培養には直径6C1lのデイツシユを使用した
: LUX社製(以下、培養には LUX社のデイプレ
ーを用いた))、37℃、COzインキュベーターにて
1日間培養した。一方、pA328のto4を450m
の10mM  Tris−HCj! (pH7,5)溶
液に溶解し、この溶液に500gの2801NaC1,
1,5mM  NazHPOa、50mMHEPES 
(N−2−ヒドロキシエチルピペラジン−N’−2−エ
タンスルフォン酸)  (pH7,1)を含む溶液を加
えて混合した。さらに504の2.5M  CaCJ!
を溶液を加えて混合し、室温で5分間静置した。このD
NA溶液全量を、培地を除き新しいMEMα(非選択培
地HOmlを加えてさらに1時間培養したdhfr欠損
CHO株に添加し、8時間インキュベートした。PBS
で細胞を洗浄し、5mlのMEMα(非選択培地)を加
えて16時間培養した。細胞をPBSCNaCl  8
g/l、K(10,2g/l、N a 2HP O4(
無水)1.15g/l、KH2P0゜0.2g/J)で
洗浄し、0.05%トリプシン、0.02%EDTA 
(エチレンジアミン4酢酸)を含む溶液3dを加え、余
分の溶液を除いた後、37℃に5分間インキニベートし
た(トリプシン処理)。透析FC3(ギブコ・オリエン
タル社製)を10%、7.5% N a HCO3溶液
を1150量、100 X非必須アミノ酸溶液を1/1
00量、G418(ギブコ・オリエンタル社製)を0、
3 mg/mlになるように加えたMEM  ALPH
A培地(リボ核酸およびデオキシリボ核酸不含有) 〔
以下、この培地をMEMα(選択培地)と略記する〕を
加えてよく細胞を懸濁し、直径ioamのデイツシュを
用い、37℃、COaインキュベーターにて5日間培養
した。PBSで細胞を洗浄し、MEMα(選択培地)を
加えて5日間培養した。同様の操作をして、さらに5日
間培養した。PBSで細胞を洗浄した後、トリプシン処
理し、lO…1のMEMα(選択培地)を加えて細胞を
懸濁し、直径6cmのデイツシュを用い、37℃、CO
2インキュベーターにて3〜7日間培養した。出現して
きたコロニーをトリプシン処理した後、50nMのメン
トレキセート(以下、MTXと略記する)を含む10m
1のMEMα(選択培地)を用いて細胞濃度5X10’
/m+になるように直径10cmのデイツシュ1枚に植
え込んだ。5日おきに上記培地を用いて培地の交換を計
3回行った。出現してきたMTX耐性のコロニーを単コ
ロニー分離し、各々直径6cI11のデイツシュを用い
、コンフルエントになるまで培養した。その後、FCS
を含まないMEMα(選択培地)に交換し、2日後、培
養液中のhG−CSF [ND281)の生産量を調べ
たところ、クローンNα22が最も多く、そのhG−C
5F CND28]生産量は10■/106細胞・2日
であった。このクローンを、100m1の50nMM 
T Xを含むMEMα(選択培地)を含むファルコン(
Fa Icon) 3027型ローラー・ボトルで培養
し、コンフルエントになった後、FCSを除去した上記
培地を用い、3日間培養した。
Example 4 hG-CSF (ND28), hG-C5F (ND
28N6], hG-CsF' (ND28Ni5] and hG-CSF production by animal cells = (1) pA
hG-CSF by animal cells harboring 32g [ND
[28] Production: pA328 was introduced into the dhfr CHO strain according to the calcium phosphate method. That is, 10% Fe2 and 7.5% Na HCOs solution [manufactured by Flow Laboratories] 11
50 volumes of MEM ALPHA medium (containing ribonucleic acid and deoxyribonucleic acid: manufactured by Gibco Oriental) [hereinafter, this medium will be abbreviated as MEMα (non-selective medium). was inoculated (a 6C1 liter diameter dish was used for culturing; manufactured by LUX (hereinafter, a LUX Dayplate was used for culturing)) and cultured at 37°C in a COz incubator for one day. On the other hand, pA328 to4 was set to 450m
of 10mM Tris-HCj! (pH 7,5) solution, 500 g of 2801NaCl,
1,5mM NazHPOa, 50mM HEPES
A solution containing (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) (pH 7.1) was added and mixed. Furthermore, 504 2.5M CaCJ!
The solution was added and mixed, and the mixture was allowed to stand at room temperature for 5 minutes. This D
The entire amount of the NA solution was added to the dhfr-deficient CHO strain, which had been cultured for an additional hour after removing the medium and adding fresh MEMα (non-selective medium HOml), and incubated for 8 hours.PBS
The cells were washed with water, 5 ml of MEMα (non-selective medium) was added, and cultured for 16 hours. Cells in PBSCNaCl 8
g/l, K(10,2g/l, Na 2HP O4(
Anhydrous) 1.15 g/l, KH2P0゜0.2 g/J), 0.05% trypsin, 0.02% EDTA
After adding solution 3d containing (ethylenediaminetetraacetic acid) and removing the excess solution, the mixture was incubated at 37° C. for 5 minutes (trypsin treatment). 10% dialysis FC3 (manufactured by Gibco Oriental), 1150 volumes of 7.5% Na HCO3 solution, 1/1 volume of 100X non-essential amino acid solution
00 amount, G418 (manufactured by Gibco Oriental) 0,
MEM ALPH added to 3 mg/ml
A medium (ribonucleic acid and deoxyribonucleic acid free) [
Hereinafter, this medium will be abbreviated as MEMα (selective medium)] to thoroughly suspend the cells, and cultured in a COa incubator at 37° C. for 5 days using a dish with an ioam diameter. Cells were washed with PBS, MEMα (selective medium) was added, and cultured for 5 days. The same operation was performed and the cells were cultured for an additional 5 days. After washing the cells with PBS, trypsinization, suspending the cells by adding 1O...1 of MEMα (selective medium), and incubating the cells in a 6 cm diameter dish at 37°C in CO2.
The cells were cultured in 2 incubators for 3 to 7 days. After treating the emerging colonies with trypsin, 10 m containing 50 nM mentrexate (hereinafter abbreviated as MTX) was added.
Cell concentration 5X10' using 1 MEMα (selective medium)
/m+ in one datesch with a diameter of 10 cm. The medium was replaced every 5 days using the above medium three times in total. The MTX-resistant colonies that appeared were isolated as single colonies, and cultured until confluent using a 6cI11 diameter dish. After that, F.C.S.
After 2 days, the production amount of hG-CSF [ND281) in the culture solution was examined, and it was found that clone Nα22 produced the most hG-CSF [ND281].
5F CND28] The production amount was 10 μ/10 6 cells/2 days. This clone was added to 100ml of 50nMM
Falcon (containing MEMα (selective medium) containing T
After culturing in a 3027 type roller bottle and reaching confluence, the cells were cultured for 3 days using the above medium from which FCS was removed.

この100 mlの培養液は実施例5で用いた。This 100 ml culture solution was used in Example 5.

(2) pASN6を保有する動物細胞によるhG−C
SF CND28N6]の生産: pASN6およびdhfr欠損CHO細胞株を用いて、
上で述べた手順と同様の手順で、hG−CSF [ND
28N6)を生産する細胞株を得た。この中でクローン
Nα16の生産量が最も多く、その生産量は7■/10
6細胞・2日であった。
(2) hG-C by animal cells harboring pASN6
Production of SF CND28N6: Using pASN6 and dhfr-deficient CHO cell line,
hG-CSF [ND
28N6) was obtained. Among them, the production amount of clone Nα16 is the highest, and its production amount is 7■/10
It was 6 cells/2 days.

このクローンを、100+nlの50nMM T Xを
含むMEMα(選択培地)を含むファルコン3o27型
ローラー・ボトルで培養し、コンフルエントになった後
、FCSを除去した上記培地を用い、3日間培養した。
This clone was cultured in a Falcon 3o27 type roller bottle containing MEMα (selective medium) containing 100+nl of 50 nM TX, and after reaching confluence, it was cultured for 3 days using the above medium from which FCS was removed.

この100m1の培養液は実施例5で用いた。This 100ml culture solution was used in Example 5.

(3)  pAsN145を保有する動物細胞によるh
G−CSF CND28N145)の生産:pASNI
 45およびdhfr欠損CHO細胞株を用いて、上で
述べた手順と同様の手順で、hG−CSF CND28
N145]を生産する細胞株を得た。この中でクローン
に9の生産量が最も多く、その生産量は7■/10’細
胞・2日であった。このクローンを、100m1の50
nM  MTXを含むMEMα(選択培地)を含むファ
ルコン3027型ローラー・ボトルで培養し、コンフル
エントになった後、FCSを除去した上記培地を用い、
3日間培養した。
(3) h by animal cells harboring pAsN145
Production of G-CSF CND28N145): pASNI
hG-CSF CND28 in a similar manner to that described above using 45 and dhfr-deficient CHO cell lines.
A cell line producing N145] was obtained. Among them, clone 9 had the highest production amount, and its production amount was 7μ/10' cells/2 days. This clone was added to 100ml of 50
Cultured in a Falcon 3027 type roller bottle containing MEMα (selective medium) containing nM MTX, and after reaching confluence, using the above medium from which FCS was removed,
It was cultured for 3 days.

この100m1の培養液は実施例5で用いた。This 100ml culture solution was used in Example 5.

(4)  p A S 3−3を保有する動物細胞によ
るhG−CSFの生産: 参考例1Oで得られたpAS3−3およびdhfr欠損
CHO細胞株を用いて、上で述べた手順と同様の手順で
、hG−C5Fを生産する細胞株を得た。この中でクロ
ーンNα5の生産量が最も多(、その生産量はlO■/
10’m胞・2日であった。このクローンを、100m
1の50nM  MTXを含むMEMa (選択培地)
を含むファルコン3027型ローラー・ボトルで培養し
、コンフルエントになった後、FC8を除去した上記培
地を用い、3日間培養した。
(4) Production of hG-CSF by animal cells harboring pAS3-3: Similar procedures to those described above using pAS3-3 obtained in Reference Example 1O and the dhfr-deficient CHO cell line. Thus, a cell line producing hG-C5F was obtained. Among them, the production amount of clone Nα5 is the highest (the production amount is lO /
It was 10'm cell and 2 days old. This clone is 100m
1 of MEMa (selective medium) containing 50 nM MTX
After reaching confluence, the cells were cultured in a Falcon 3027 roller bottle containing FC8, and then cultured for 3 days using the above medium from which FC8 had been removed.

この100m1の培養液は実施例5で用いた。This 100ml culture solution was used in Example 5.

実施例5゜ hG−C5Fの糖鎖導入型誘導体、hG−CSF (N
D28) 、hG−CSF (ND28N6〕およびh
G−C5F [:ND28N145]のプロテアーゼ抵
抗性とhG−C5F [ND28N6)の熱安定性に関
する検討 (1)糖鎖付加の確認 実施例4で得た天然型hG−C5F、hG−C5F [
ND28] 、hG−CSF CND28N6)あるい
はh G−CS F CND 28 N145]を含有
する無血清培養液から、遠心により細胞を完全に除去し
た後、各サンプル15−を5DS−ポリアクリルアミド
ゲル電気泳動〔レムリ(Laernmli):ネイチ+
 −(Nature) 227 、680(1970)
)に供した。この際、プラスミドDNAを含まないCH
O細胞の培養上清と、大腸菌で生産、精製したhG−C
SFおよびhG−CSF [ND28)(参考例16参
照)も合わせて5DS−ポリアクリルアミドゲル電気泳
動に供した。泳動後ゲルを銀染色(和光純薬社製の銀染
色キットを使用)したパターンを第8(1)図に示す。
Example 5゜Glycosylated derivative of hG-C5F, hG-CSF (N
D28), hG-CSF (ND28N6] and h
Study on protease resistance of G-C5F [:ND28N145] and thermostability of hG-C5F [ND28N6) (1) Confirmation of glycosylation Natural hG-C5F obtained in Example 4, hG-C5F [
ND28], hG-CSF CND28N6) or hG-CSF CND28N145]. After completely removing cells by centrifugation, each sample 15 was subjected to 5DS-polyacrylamide gel electrophoresis [ Laernmli: Neich+
-(Nature) 227, 680 (1970)
). At this time, CH that does not contain plasmid DNA
Culture supernatant of O cells and hG-C produced and purified with E. coli
SF and hG-CSF [ND28) (see Reference Example 16) were also subjected to 5DS-polyacrylamide gel electrophoresis. The pattern obtained by silver staining the gel after electrophoresis (using a silver staining kit manufactured by Wako Pure Chemical Industries, Ltd.) is shown in FIG. 8(1).

一方、同一ゲル上の蛋白質をニトロセルロース膜に移し
た後、抗h G−CS F単りローン抗体を用いて酵素
抗体染色〔山部−史、細胞工学、2.1061(198
3))を行ったものが第8C2)図である。抗h G−
CS F単りローン抗体は、花卉らの方法〔花卉ら二ヰ
ヤンサー・リサーチ(Cancer  Res、)、 
46.4438 (1986)]に従って調製したもの
を用いた。
On the other hand, after transferring the proteins on the same gel to a nitrocellulose membrane, enzyme antibody staining was performed using an anti-hG-CSF single antibody [Fumi Yamabe, Cell Engineering, 2.1061 (198
3)) is shown in Figure 8C2). Anti-hG-
The CSF single-loan antibody was prepared using the method of Hana et al. [Cancer Res.
46.4438 (1986)] was used.

天然のhG−CSFあるいはCHO細胞で生産されるh
G−CSFは、N末端より第133番目のThr、残基
にO−グリコシド結合型糖鎖が1本付加することが知ら
れている。またそのとき付加する糖鎖には、シアル酸を
1個含むものと2個含むものの2種があることも知られ
ている〔大枝ら:ジャーナル・オン・バイオケミストリ
ー(J、Binchem、)、 103.544(19
88) ]。
Natural hG-CSF or h produced in CHO cells
G-CSF is known to have one O-glycoside-linked sugar chain added to the 133rd Thr residue from the N-terminus. It is also known that there are two types of sugar chains added at this time: those containing one sialic acid and those containing two sialic acids [Oheda et al.: Journal on Biochemistry (J, Binchem), 103 .544 (19
88) ].

本研究においても、同様にCHO細胞で生産したh G
−CS FにはO−グリコシド結合型糖鎖が一本付加し
ていた。また付加する糖鎖には、シアル酸を1個含むも
のと2個含むものが存在していた。第8(1)図または
第8(2)図で見られるhG−CSFの2本のバンドは
シアル酸の数の違いによるものである。
In this study, we also used hG produced in CHO cells.
One O-glycoside-linked sugar chain was added to -CSF. Furthermore, some sugar chains to be added contained one sialic acid and others contained two sialic acids. The two bands of hG-CSF seen in FIG. 8(1) or FIG. 8(2) are due to the difference in the number of sialic acids.

これに対しCHO細胞で生産されたhG−CSF[ND
28)には、O−グリコシド結合型糖鎖が1つ付加した
ものに加え2本付加したものも存在していることが判明
した。また、hG−CSF CND28]にN−グリコ
シレーション結合部位を新たに導入したhG−CSF 
CND28N6]およびhG−CSF (’ND28N
145]では、ともに生産される全hG−C5Fの約1
/3にN−グリコシド結合型糖鎖が付加していた。
In contrast, hG-CSF [ND
28), it was found that in addition to those with one O-glycoside-linked sugar chain, there were also those with two O-glycoside-linked sugar chains. In addition, hG-CSF with a newly introduced N-glycosylation binding site in [hG-CSF CND28]
CND28N6] and hG-CSF ('ND28N
[145], approximately 1 of the total hG-C5F produced together.
An N-glycoside-linked sugar chain was added to /3.

その際、hG−CSF CND2 BNl 45)にお
いては、hG−CSF [:ND28)の場合と同様に
、新たな0−グリコシド結合型糖鎖が付加されたものも
存在していた。したがってhc−C5F [ND28N
’l 45]の場合、付加する糖鎖の種類と数の違いに
より4種のポリペプチドが存在している。すなわち、天
然型と同様に一本のO−グリコシド結合型糖鎖が付加し
たもののほか、O−グリコシド結合型糖鎖が2本付加し
たもの、O−グリコシド結合型糖鎖が1本、N−グリコ
シド結合型糖鎖が1本付加したものおよびO−グリコシ
ド結合型I!鎖が2本、N−グリコシド結合型糖鎖が1
本付加したものが存在している。一方、hG−CSF 
(ND28N6]には、新たな0−グリコシド結合型糖
鎖の付加はほとんどない。
At that time, in hG-CSF CND2 BNl 45), there was also one to which a new 0-glycoside-linked sugar chain was added, as in the case of hG-CSF [:ND28). Therefore, hc-C5F [ND28N
'l 45], there are four types of polypeptides depending on the type and number of sugar chains added. That is, in addition to those with one O-glycoside-linked sugar chain added like the natural type, those with two O-glycoside-linked sugar chains, one O-glycoside-linked sugar chain, and N- Those with one glycoside-linked sugar chain and O-glycoside-linked sugar chain I! 2 chains, 1 N-glycosidic sugar chain
This addition exists. On the other hand, hG-CSF
(ND28N6] has almost no new O-glycoside-linked sugar chain added.

なお、N−グリコシド結合型糖鎖が付加していることは
、N−グリコシド結合型糖鎖とポリペプチドの結合部分
を切断する酵素であるN−グリカナーゼ(生化学工業)
で処理することにより確認した。0−グリコシド結合型
糖鎖の場合は、0−グリカナーゼおよびシアリダーゼ(
ともに生化学工業)を用いて確認した。第8(3)図は
、第8(2)図の模式図であり、各々のバンドが有する
糖鎖の種類と数について記しである。
The addition of N-glycoside-linked sugar chains means that N-glycanase (Seikagaku Corporation) is an enzyme that cleaves the bond between N-glycoside-linked sugar chains and polypeptides.
This was confirmed by processing. In the case of 0-glycoside-linked sugar chains, 0-glycanase and sialidase (
Both were confirmed using Seikagaku Corporation). FIG. 8(3) is a schematic diagram of FIG. 8(2), and describes the type and number of sugar chains each band has.

(2)  プロテアーゼ抵抗性の検討 前項で示したように、CHO細胞で生産したhG−cs
F’ (ND28] 、hG−csF’ END28N
6)およびhG−CsF’ (ND28N145 )に
は、各々新たな糖鎖が付加したものと付加しないものが
存在していた。そこで新たな糖鎖が付加したものと付加
しないものを両方含んでいる前項の培養上清に直接キモ
)IJプシンを加えることにより、糖鎖の付加の有無に
よるプロテアーゼ抵抗性を比較した。hG−C5F (
ND28) 、hG−CSF [ND28N6]および
hG−CSF (ND28N145)を各々含有する前
項の培養上清450誠に0.5 mg/mlのキモトリ
プシン〔シグマ(Sigma)社製〕を各々24加え、
37℃で保温した。キモトリプシンを添加後10,20
,30,60,120.180分後に60dずつ採取し
、5DS−ポリアクリルアミドゲル電気泳動用の緩衝液
[0,25MTr i 5−HCl  (pH6,8)
 、8%ラウリル硫酸ナトリウム(SDS) 、40%
グリセロ−JL+、0.004%ブロムフェノールブル
ー)を20m添加することにより反応を停止させた。
(2) Examination of protease resistance As shown in the previous section, hG-cs produced in CHO cells
F' (ND28], hG-csF' END28N
6) and hG-CsF' (ND28N145), there were those with new sugar chains added and those without. Therefore, by directly adding IJ psin to the culture supernatant described in the previous section, which contains both those with and without new sugar chains added, protease resistance was compared depending on whether sugar chains were added or not. hG-C5F (
ND28), hG-CSF [ND28N6], and hG-CSF (ND28N145) were added to 450 mg of the culture supernatant from the previous section, respectively, and 0.5 mg/ml of chymotrypsin [manufactured by Sigma] was added at 24 μl each.
It was kept warm at 37°C. After adding chymotrypsin 10,20
, 30, 60, 120. After 180 minutes, samples of 60 d were collected and treated with 5DS-polyacrylamide gel electrophoresis buffer [0,25 M Tri 5-HCl (pH 6,8).
, 8% Sodium Lauryl Sulfate (SDS), 40%
The reaction was stopped by adding 20 m of glycero-JL+, 0.004% bromophenol blue).

またキモトリプシンを添加しないサンプルも調製し、こ
れをキモ) IJプシン添加後θ分の試料とした。
A sample to which chymotrypsin was not added was also prepared and used as a sample at θ minutes after the addition of chymotrypsin.

次に各試料20dをSO3−ポリアクリルアミドゲル電
気泳動に供し、その後ニトロセルロース膜にポリペプチ
ドを移した後、前項と同様にして酵素抗体染色を行った
。その結果、hG−CSF (ND28] 、hG−C
SF (ND28N6)、hG−CSF [ND28N
145)のいずれの場合においても、新たな糖鎖の付加
したものは添加しないものに比べてキモトリプシン抵抗
性になっていることが判明した。
Next, each sample 20d was subjected to SO3-polyacrylamide gel electrophoresis, and after the polypeptide was transferred to a nitrocellulose membrane, enzyme-antibody staining was performed in the same manner as in the previous section. As a result, hG-CSF (ND28), hG-C
SF (ND28N6), hG-CSF [ND28N
145), it was found that those to which a new sugar chain was added were more resistant to chymotrypsin than those to which no sugar chain was added.

hG−CSF CND28)においては0−グリコシド
結合型糖鎖が1本付加しているもの(天然型)よりは2
本付加しているものの方がキモトリプシン抵抗性になっ
ていた[第8(葡図〕。
hG-CSF CND28) has two 0-glycoside-linked sugar chains (natural type)
Those with this addition were more resistant to chymotrypsin [No. 8 (Figure 8)].

またhG−CSF [ND28N6]の場合、N−グリ
コシド結合型糖鎖が新たに付加したものの方が付加して
いないものより抵抗性になっていた〔第8(5]図〕。
Furthermore, in the case of hG-CSF [ND28N6], those with newly added N-glycoside-linked sugar chains were more resistant than those without them [Figure 8 (5)].

hG−CSF (ND28N145〕の場合は、0−グ
リコシド結合型糖鎖を1本もつもの(天然型)と、0−
グリコシド結合型糖鎖が新たに1本付加したもの、N−
グリコシド結合型糖鎖が新たに付加したもの、および両
方が新たに付加したものの4種のポリペプチドが存在し
ているが、この場合もN−グリコシド結合型糖鎖が新た
に付加したものの方が抵抗性になっていた。また、N−
グリコシド結合型糖鎖に加えO−グリコシド結合型糖鎖
が新たに付加したものではさらに抵抗性になっていた〔
第8(6)図〕。
In the case of hG-CSF (ND28N145), there are two types: one with one 0-glycoside-linked sugar chain (natural type) and the other with one 0-glycoside-linked sugar chain (natural type), and
One newly added glycoside-linked sugar chain, N-
There are four types of polypeptides, one with a newly added glycoside-linked sugar chain and one with both newly added, but in this case as well, the one with a newly added N-glycoside-linked sugar chain is better. It had become resistant. Also, N-
Those with newly added O-glycoside-linked sugar chains in addition to glycoside-linked sugar chains were even more resistant [
Figure 8 (6)].

(3)  熱安定性に関する検討 実施例4@で得た、hG−CSF (ND28N6]を
含有する無血清培養液5mlをモルカッ)−10(ミ’
Jポア社製)を用いて500dに濃縮した。次に、その
うちの100dを5uperose12カラム(ファル
マシア社製)(1cmx30C鳳)に通塔し、N−グリ
コシド結合型糖鎖の付加したhG−CSF [ND28
N6)のみを分取した。クロマトグラフィーには、0.
1MTr i 5−HCJ!(pH8,0)、0.2M
NaCji’、1mM  EDTAを含む緩衝液を使用
した。通塔は0.5 ml/minで行った。上記クロ
マトグラフィーを3回繰り返し、N−グリコシド結合型
糖鎖の付加したヒトG−CSF l”ND28N6)を
含む溶液(ヒトG−C5F濃度は約1.74g/ml)
を約1.5ml得た。この溶液350mに、1%ツ4−
 :/ (Tween) 2Qを3.5 ulとN−グ
リカナーゼ(生化学工業社製)をI Jll(0,25
Units)加え、37℃で17.5時間反応を行い、
N−グリコシド結合型糖鎖の除去を行った。また、N−
グリカナーゼのかわりに滅菌水をIJd!加えたものも
同時に調製し、同様に反応に供した。反応終了後両反応
液の一部を5DS−ポリアクリルアミド電気泳動に供し
、その後銀染色を行うことにより、N−グリカナーゼ処
理したサンプルにおいては、N−グリコシド結合型糖鎖
が除去されていることを確認した。
(3) Study on thermostability 5 ml of the serum-free culture solution containing hG-CSF (ND28N6) obtained in Example 4@ was injected into molkat)-10 (Mi'
It was concentrated to 500 d using J-Pore Co., Ltd.). Next, 100d of it was passed through a 5uperose 12 column (manufactured by Pharmacia) (1cm x 30C) to obtain hG-CSF [ND28
Only N6) was collected. For chromatography, 0.
1MTr i 5-HCJ! (pH 8,0), 0.2M
A buffer containing NaCji', 1mM EDTA was used. The column was passed at a rate of 0.5 ml/min. The above chromatography was repeated three times, and a solution containing human G-CSF l"ND28N6) to which N-glycoside-linked sugar chains were added (human G-C5F concentration was approximately 1.74 g/ml)
About 1.5 ml of was obtained. To 350ml of this solution, add 1%
:/ (Tween) 3.5 ul of 2Q and IJll (0,25 ul of N-glycanase (manufactured by Seikagaku Corporation)
Units) and reacted at 37°C for 17.5 hours.
N-glycoside-linked sugar chains were removed. Also, N-
Use sterile water instead of glycanase! The added material was also prepared at the same time and subjected to the reaction in the same manner. After the reaction was completed, a portion of both reaction solutions was subjected to 5DS-polyacrylamide electrophoresis, and then silver staining was performed to confirm that N-glycoside-linked sugar chains had been removed in the N-glycanase-treated sample. confirmed.

上記の両反応液は、反応終了後直ちに56℃での熱安定
性の比較の実験に使用した。各反応液60mを56℃に
保温し、0. 30. 120゜240.360分後に
104ずつサンプリングを行い、マウスの骨髄造血幹細
胞を用いたコロニー形成能試験によりhG−CSF活性
を測定した。その結果を第8(7)図に示す3図中の活
性は、37℃で17.5時間保温した後の活性を100
%とした時の残存活性で示しである。
Both of the above reaction solutions were used in an experiment to compare thermal stability at 56° C. immediately after the completion of the reaction. 60 m of each reaction solution was kept at 56°C, and 0. 30. After 120, 240, and 360 minutes, 104 samples were taken, and hG-CSF activity was measured by a colony forming ability test using mouse bone marrow hematopoietic stem cells. The results are shown in Figure 8 (7).The activity in Figure 3 is the activity after incubation at 37°C for 17.5 hours.
The residual activity is expressed as %.

なお、37℃で17.5時間保温後の活性は、保温前の
活性を100%としたとき、N−グリカナーゼ処理した
ものでは48.1%、コントロールでは66.8%であ
った。
The activity after incubation at 37° C. for 17.5 hours was 48.1% in the N-glycanase-treated sample and 66.8% in the control, when the activity before incubation was taken as 100%.

第8(7)図に示したように、N−グリコシド結合型糖
鎖の付加したhG−CSF [ND28N6〕 (コン
トロール)は同糖鎖を除去したhG−CSF [ND2
8N6]  (N−グリカナーゼ処理)よりも熱に対し
て安定であることが判明した。
As shown in Figure 8 (7), hG-CSF [ND28N6] (control) with N-glycoside-linked sugar chains added is different from hG-CSF [ND2] with the same sugar chains removed.
8N6] (N-glycanase treatment).

実施例6゜ UK−31発現プラスミドpsEIUKs1−1dの造
成: (1)鋳型1本鎖DNA (1重鎮pUKmps1)の
造成: 参考例2で得た約3.のpUKlを30〃のY−100
緩衝液に溶かし、制限酵素PstlとBamH[をそれ
ぞれ10単位ずつ加え、37℃で2時間消化反応を行っ
た。65℃、10分間の熱処理後、AFT法〔バイオテ
クニクス(BioTechniques)2 .6ロー
67(1984) ]を用いて890bflのPstl
−BamHI  DNA断片を精製した。
Example 6 Construction of UK-31 expression plasmid psEIUKs1-1d: (1) Construction of template single-stranded DNA (single-strand pUKmps1): Approximately 3.5% of the plasmid psEIUKs1-1d obtained in Reference Example 2 was used. pUKl of 30〃Y-100
The mixture was dissolved in a buffer solution, 10 units each of restriction enzymes Pstl and BamH were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, AFT method [BioTechniques 2. 6 row 67 (1984)] using 890bfl Pstl
- BamHI DNA fragment was purified.

一方、M13ファージベクターであるM13mp 18
RF  DNA (宝酒造社製)約1■を全量3(ld
のY−100緩衝液に溶かし、制限酵素PstlとBa
mHIとをそれぞれ10単位ずつ加え、37℃で2時間
消化反応を行った。
On the other hand, the M13 phage vector M13mp18
RF DNA (manufactured by Takara Shuzo Co., Ltd.) approximately 1 cm in total amount 3 (ld
Dissolve restriction enzymes Pstl and Ba in Y-100 buffer.
10 units of mHI and mHI were added, and the digestion reaction was carried out at 37°C for 2 hours.

65℃、10分間の熱処理後、AFT法を用いて約7.
2にhのDNA断片を精製した。
After heat treatment at 65°C for 10 minutes, approximately 7.
In step 2, the h DNA fragment was purified.

このようにして得られたpUK1由来の890bpのD
NA断片とMl 3mp 18RF由来の約7.2にb
のDNA断片を全量20dのT4リガーゼ緩衡液に溶か
し、300単位の74DNAIJガーゼを加え、4℃で
18時間結合反応を行った。
The 890 bp D derived from pUK1 thus obtained
About 7.2 b from NA fragment and Ml 3mp 18RF
The DNA fragment was dissolved in a total amount of 20 d of T4 ligase buffer, 300 units of 74 DNA IJ gauze was added, and a ligation reaction was performed at 4°C for 18 hours.

次に、公知の方法〔メシング(Messing)ら:メ
ソッド・イン・エンザイモロン= (Methodsi
n [!nzymology)101.20(1983
) ]に従い、上記反応液を用いて大腸菌JM1G5株
をトランスフェクションし、組換え体ファージを得た。
Next, a known method [Messing et al.: Method in enzyme
n [! zymology) 101.20 (1983
)], E. coli strain JM1G5 was transfected using the above reaction solution to obtain a recombinant phage.

続いて、公知の方法〔上記文献〕に従い、この組換え体
ファージを大腸菌JM105株に感染させた後、培養液
から1本鎖ファージDNAを回収した。また、培養菌体
より、プラスミドDNA回収法に準じて、2本鎖ファー
ジDNAを回収した。この2本鎖ファージDNA (p
UKmpS 1)の構造は制限酵素消化により確認した
(第9図参照)。
Subsequently, E. coli JM105 strain was infected with this recombinant phage according to a known method [cited above], and single-stranded phage DNA was recovered from the culture solution. Further, double-stranded phage DNA was recovered from the cultured bacterial cells according to the plasmid DNA recovery method. This double-stranded phage DNA (p
The structure of UKmpS 1) was confirmed by restriction enzyme digestion (see Figure 9).

(2)オリゴヌクレオチドを用いたUK−cDNAへの
変異の導入: (A)変異導入用合成りNAの調製とリン酸化:UKの
164番目のアミノ酸残基PheをAsnに変え、糖鎖
を付加したUK誘導体(このUK誘導体を以下、UK−
3Lと略記する)を製造するため、17塩基の合成りN
A5’ −GGGGAGAA^^CACCACC−3’
をアプライド・バイオシステムズ社380A−DNA合
成機を用いて合成した。
(2) Introduction of mutations into UK-cDNA using oligonucleotides: (A) Preparation and phosphorylation of synthetic RNA for mutation introduction: Change the 164th amino acid residue Phe of UK to Asn and add a sugar chain. UK derivative (hereinafter referred to as UK-
In order to produce 17 bases (abbreviated as 3L), N
A5'-GGGGAGAA^^CACCACC-3'
was synthesized using an Applied Biosystems 380A-DNA synthesizer.

次にこのようにして得られた合成りNA25ピコモル(
pa+gles)を10域の50mM  Tris−H
CI (pH7,6) 、10mM  MgC1,,5
mM  DTT、0.1mM、EDTAlo、5mMA
TPを含む溶液中で、5単位の74DNAキナーゼ(宝
酒造社製)を加え、37℃で30分間反応させることに
より、5′末端をリン酸化した。
Next, 25 picomole of the synthetic NA obtained in this way (
pa+gles) in 10 range of 50mM Tris-H.
CI (pH 7,6), 10mM MgCl,,5
mM DTT, 0.1mM, EDTAlo, 5mMA
The 5' end was phosphorylated by adding 5 units of 74 DNA kinase (manufactured by Takara Shuzo Co., Ltd.) in a solution containing TP and reacting at 37°C for 30 minutes.

(B) 2種のオリゴヌクレオチド・プライマーを用い
る部位特異的変異の導入: 上で得られた1本鎖の組換えファージDNA6.5m(
約2ugのDNAを含む)と14の10倍濃度のポリメ
ラーゼ緩衝液(500mMTr i 5−HCI (p
H7,8) 、70mMM g C1x、60mM  
2−メルカプトエタノール、0.25mM  dATP
%0.25mMdCTP、0.25mM  dGTPお
よび0.25mM  dTTPを含む〕と上記で得られ
た変異導入用合成りNA2m(2,5ピコモル)を混合
した溶液を65℃に5分間、55℃に5分間、37℃に
10分間、25℃に10分間放置した後、3単位の大腸
菌DNAポリメラーゼI・クレノー(Klenow)断
片(宝酒造社製)(以下、クレノー断片と略記する)を
加え、25℃で30分間反応させた。次いで、この反応
液に、IJllの10倍濃度のポリメラーゼ緩衝液と0
.5pmole/JJIIのM13プライマーM4 (
宝酒造社製)6mと3単位のクレノー断片を加え、37
℃で10分間、25℃で40分間反応させた後、10m
M  ATPを2−と300単位のT4DNAリガーゼ
を加え、11℃で18時間結合反応を行った。この反応
液に対して、フェノール抽出とクロロホルム抽出を行っ
た後、エタノール沈殿によってD N A断片を回収し
た。このDNA断片を全量30威のY−100緩衝液に
溶かし、12単位のEcoRIと12単位のPstIを
加え、37℃で2時間消化反応を行った。
(B) Introduction of site-specific mutations using two types of oligonucleotide primers: The single-stranded recombinant phage DNA 6.5m obtained above (
containing about 2ug of DNA) and 14 10x polymerase buffer (500mM Tri 5-HCI (p
H7,8), 70mM g C1x, 60mM
2-mercaptoethanol, 0.25mM dATP
% 0.25mM dCTP, 0.25mM dGTP and 0.25mM dTTP] and the synthetic NA2m for mutagenesis obtained above (2.5 pmol) was heated to 65°C for 5 minutes and then to 55°C for 5 minutes. After incubating at 37°C for 10 minutes and at 25°C for 10 minutes, 3 units of Escherichia coli DNA polymerase I Klenow fragment (manufactured by Takara Shuzo Co., Ltd.) (hereinafter abbreviated as Klenow fragment) was added and incubated at 25°C. The reaction was allowed to proceed for 30 minutes. Next, this reaction solution was added with a polymerase buffer at a concentration of 10 times that of IJll and 0.
.. 5pmole/JJII M13 primer M4 (
Add 6 m (manufactured by Takara Shuzo Co., Ltd.) and 3 units of Klenow fragments, and make 37
After reacting at ℃ for 10 minutes and at 25℃ for 40 minutes, 10 m
2-M ATP and 300 units of T4 DNA ligase were added, and the binding reaction was carried out at 11°C for 18 hours. This reaction solution was subjected to phenol extraction and chloroform extraction, and then DNA fragments were recovered by ethanol precipitation. This DNA fragment was dissolved in a total volume of 30% Y-100 buffer, 12 units of EcoRI and 12 units of PstI were added, and a digestion reaction was performed at 37°C for 2 hours.

65℃、10分間の熱処理後、AFT法を用いて約60
0bpのPstI−EcoRI断片を精製した。
After heat treatment at 65℃ for 10 minutes, approximately 60℃ was applied using the AFT method.
A 0 bp PstI-EcoRI fragment was purified.

(C)変異を導入したDNA断片のベクターへの組み込
み 参考例3で得られたpUK11プラスミドDNA約3g
を30戚のY−50緩衝液に溶かし、10単位のAat
ll(東洋紡績社製)と8単位のPstrを加え、37
℃で2時間消化反応を行った。65℃、10分間の熱処
理後、AFT法を用いて約1. OKbのAatI[−
PstI断片を精製した。別に参考例12で得られたp
UKB101プラスミドDNA’約3塊を304のY−
50緩衝液に溶かし、10単位のAatIIと10単位
のEcoRIを加え、37℃で2時間消化反応を行った
。65℃、10分間の熱処理後、AFT法を用い、約2
.9にbのAatlI−EcoRI断片を精製した。
(C) Integration of the DNA fragment into which the mutation has been introduced into the vector Approximately 3 g of pUK11 plasmid DNA obtained in Reference Example 3
was dissolved in Y-50 buffer of 30% and 10 units of Aat
ll (manufactured by Toyobo Co., Ltd.) and 8 units of Pstr, 37
Digestion reaction was carried out at ℃ for 2 hours. After heat treatment at 65°C for 10 minutes, approximately 1. OKb AatI[-
The PstI fragment was purified. Separately, p obtained in Reference Example 12
Approximately 3 blocks of UKB101 plasmid DNA' were converted to 304 Y-
50 units of AatII and 10 units of EcoRI were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, approximately 2
.. In step 9, the AatlI-EcoRI fragment of b was purified.

このようにして得られたpUK11由来のAa t I
I−Ps t I断片(約0.05g)とpUKBl 
01由来のAatI[−EcoRI断片(約0.lq)
と変異を導入した約600bpのPstl−EC9RI
断片とを20dのT4リガーゼ緩衡液に溶かし、300
単位のT4DNAリガーゼを加え、4℃で18時間結合
反応を行った。
Aa t I derived from pUK11 thus obtained
I-Ps t I fragment (approximately 0.05 g) and pUKBl
AatI[-EcoRI fragment (approximately 0.1q) derived from 01
Pstl-EC9RI of approximately 600 bp with mutations introduced.
Dissolve the fragments in 20 d of T4 ligase buffer,
One unit of T4 DNA ligase was added, and the ligation reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
C6005F8株〔プロシーディング・才ブ・ザ・ナシ
ョ・ナル・アカデミイ・オン・サイエンス(Proc、
 Natl、^cad、Sci、)US^72゜341
6 (1975) 3を形質転換し、Ap耐性株を得た
Using the obtained mixture of recombinant plasmids, E. coli strain C6005F8 [Procedure of the National Academy of Sciences (Proc.
Natl, ^cad, sci,)US^72゜341
6 (1975) 3 to obtain an Ap-resistant strain.

この形質転換株からコロニーハイブリダイゼーション法
を用いて、変異導入用合成りNA (上述)の5′末端
を32Pで放射能標識したプローブとハイブリダイズす
る組換えプラスミドpUKS1を単離した。制限酵素消
化による構造解析およびM13ファージを用いたデイデ
オキシ・シーフェンス法により、pUKS 1が目的の
構造を有することを確認した(第10図参照)。
From this transformed strain, a recombinant plasmid pUKS1 was isolated using a colony hybridization method, which hybridizes with a probe in which the 5' end of the synthetic NA for mutation introduction (described above) was radiolabeled with 32P. It was confirmed that pUKS 1 had the desired structure by structural analysis by restriction enzyme digestion and the Deideoxy Seefens method using M13 phage (see Figure 10).

(3)UK−S1発現プラスミドpsEIUKs1−1
dの造成: 参考例9で得られたpsBIP^l5B1dhfrl−
!)^ プラスミドDNA約2gを304のy−oa衝
液に溶かし、lO単位のKpn Iを加え、37℃で2
時間消化反応を行った。続いて1.5mの2M  Na
C1と10単位のXholを加え、さらに37℃で1時
間消化反応を行った。65℃、10分間の熱処理後、A
FT法を用いて約8、6 KbのDNA断片を精製した
。また、pset口にprol−1人プラスミドDNA
約3ggを30dのY−100緩衝液に溶かし、12単
位のBglIIと12単位のXholを加え、37℃で
2時間消化反応を行った。65℃、10分間の熱処理後
、AFT法を用いて約0.75にbのDNA断片を精製
した。一方、上で得られたpUKslプラスミドDNA
約3gを304のY−0緩衝液に溶かし、15単位のK
pn Iを加え、37℃で2時間消化反応を行った。続
いて1.54の2M  NaC1と12単位の13g1
Uを加え、さらに37℃で1時間消化反応を行った。
(3) UK-S1 expression plasmid psEIUKs1-1
Creation of d: psBIP^l5B1dhfrl- obtained in Reference Example 9
! )^ Dissolve approximately 2 g of plasmid DNA in 304 y-oa buffer, add 10 units of Kpn I, and incubate at 37°C for 2
A time digestion reaction was performed. followed by 1.5 m of 2M Na
C1 and 10 units of Xhol were added, and the digestion reaction was further carried out at 37°C for 1 hour. After heat treatment at 65°C for 10 minutes, A
A DNA fragment of approximately 8.6 Kb was purified using the FT method. In addition, prol-1 plasmid DNA was added to the pset mouth.
Approximately 3 gg was dissolved in 30 d of Y-100 buffer, 12 units of BglII and 12 units of Xhol were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65° C. for 10 minutes, the DNA fragment b was purified to approximately 0.75 using the AFT method. On the other hand, the pUKsl plasmid DNA obtained above
Dissolve approximately 3 g in 304 Y-0 buffer and add 15 units of K.
pn I was added and the digestion reaction was carried out at 37°C for 2 hours. followed by 1.54 units of 2M NaCl and 12 units of 13g1
U was added, and the digestion reaction was further carried out at 37°C for 1 hour.

65℃、10分間の熱処理後、AFT法を用いて約1.
15にbのDNA断片を精製した。
After heat treatment at 65°C for 10 minutes, approximately 1.
15, the DNA fragment b was purified.

このよう1こして得られたpsEIP^l5E1dhf
rl−9A由来の約8.6KbのDNA断片(約0.1
Jig)、psE1UKproll^由来の約0.75
KbのDNA断片(約0.02gg)、およびpUKS
I由来の約1、 l 5 KbのDNA断片(約0.0
2■)を全量204のT4リガーゼ緩衝液に溶かし、1
00単位のT4DNA!lガーゼを加え、4℃で18時
間結合反応を行った。
psEIP^l5E1dhf obtained by straining in this way
Approximately 8.6 Kb DNA fragment derived from rl-9A (approximately 0.1
Jig), approximately 0.75 derived from psE1UKproll^
Kb DNA fragment (approximately 0.02 gg), and pUKS
A DNA fragment of approximately 1,15 Kb derived from I (approximately 0.0
2■) in a total volume of 204 T4 ligase buffer,
00 units of T4DNA! l gauze was added, and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNA、psEIUKsl−1
dを単離し、制限酵素消化による構造解析を行ったとこ
ろ、psEIUKsl−1dは目的の構造を有すること
を確認した(第11図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA, psEIUKsl-1, was obtained from this transformed strain.
When psEIUKsl-1d was isolated and structurally analyzed by restriction enzyme digestion, it was confirmed that psEIUKsl-1d had the desired structure (see Figure 11).

プラスミドpsEIUKsl−1dを含む微生物は[!
5cherichia cali [1tlKS1−1
d FERM 8P−2072として昭和63年9月2
4日付で微工研に寄託しである。
Microorganisms containing plasmid psEIUKsl-1d are [!
5cherichia cali [1tlKS1-1
d September 2, 1986 as FERM 8P-2072
It was deposited with the Institute of Fine Technology on the 4th.

実施例7゜ UK−31およびpro−UKポリペプチドの動物細胞
による生産: (1)  psEIUKsl−1dを保有するCH○細
胞によるUK−51ポリペプチドの生産ご実施例6で得
られたpsEIUKsl−1dのdhfr欠損CHO株
への導入はリン酸カルシウム法に準じて行った。すなわ
ち、FC3l/10量および7.5%N a HCO3
溶液(Flow Laboratories社製) 1
150量を加えたMEMα(非選択培地)5mlにI 
X 10 ’i[HIIa/mlになるように細胞を接
種し〔培養には直径6clIのデイツシュを使用した:
LUX社製(以下、培養にはLUX社のデイツシュを用
いた)]、37℃、Co2インキコベーターにて1日間
培養した。一方、pSEIUKSI−1d  DNA 
 10■を450戚の10mM  Tris−HCl(
pH7,5)溶液に溶解し、この溶液に500dの28
0mMNaCj!、1.5 mM  N a 2HP 
O4,50mMHEPES (N−2−ヒドロキシエチ
ルピペラジン−N’ −2−エタンスルフォン酸)  
(pH7,1)を含む溶液を加えて混合した。さらに5
0Mの2.5M  CaC1x溶液を加えて混合し、室
温で5分間静置した。このDNA溶液全量を、培地を除
き新しいMEMα(非選択培地)10mlを加えてさら
1時間培養したdhfr欠損CHO株に添加し、8時間
インキュベートした。
Example 7 Production of UK-31 and pro-UK polypeptides by animal cells: (1) Production of UK-51 polypeptide by CH○ cells harboring psEIUKsl-1d psEIUKsl-1d obtained in Example 6 was introduced into the dhfr-deficient CHO strain according to the calcium phosphate method. That is, the amount of FC3l/10 and 7.5% Na HCO3
Solution (manufactured by Flow Laboratories) 1
I to 5 ml of MEMα (non-selective medium) to which 150 volumes were added.
Cells were inoculated at a concentration of X 10'i [HIIa/ml] [a 6clI diameter plate was used for culturing].
(manufactured by LUX Co., Ltd. (hereinafter, a LUX Dish was used for culturing)] and cultured at 37° C. for 1 day in a Co2 incubator. On the other hand, pSEIUKSI-1d DNA
10 μm of 450% of 10 mM Tris-HCl (
pH 7,5) solution and add 500d of 28 to this solution.
0mM NaCj! , 1.5mM N a 2HP
O4, 50mM HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)
(pH 7.1) was added and mixed. 5 more
A 0M 2.5M CaClx solution was added, mixed, and allowed to stand at room temperature for 5 minutes. The entire amount of this DNA solution was added to the dhfr-deficient CHO strain, which had been cultured for an additional hour after removing the medium and adding 10 ml of fresh MEMα (non-selective medium), and incubated for 8 hours.

PBSで細胞を洗浄し、5mlのMEMα(非選択培地
)を加えて16時間培養した。細胞をPBS  CNa
C18g/j!、KCj!  0.2g/(1゜Na*
HPOn(無水)1.15 g/It、KH2P0゜0
.2g/j!]で洗浄し、0.05%トリプシン、0.
2%EDTA (エチレンジアミン四酢酸)を含む溶液
3mlを加え、余分の溶液を除いた後、37℃に5分間
インキュベートした(トリプシン処理)。透析FC3(
ギブコ・オリエンタル社製)を10%、7.5%NaH
CO,溶液・を1150量、100×非必須アミノ酸溶
液を1/100量、0418(ギブコ・オリエンタル社
製)を0、3 mg/m+になるように加えたMEMα
(選択培地)を加えてよく細胞を懸濁し、直径locm
のデイツシュを用い、37℃、CO2インキューベータ
ーにて5日間培養した。PBSで細胞を洗浄し、MEM
α(選択培地)を加えて5日間培養した。同様の操作を
して、さらに5日間培養した。PBSで細胞を洗浄した
後、トリプシン処理し、10m1のMEMα(選択培地
)を加えて細胞を懸濁し、直径6cmのデイツシュを用
い、37℃、CO,インキュベーターにて3〜7日間培
養した。出現してきたコロニーをトリプシン処理した後
、50nMのMTXを含む10m1のMEMα(選択培
地)を用いて細胞濃度5 X 10 ’/a+1になる
ように直径10cIIのデイツシュ1枚に植え込んだ。
The cells were washed with PBS, 5 ml of MEMα (non-selective medium) was added, and cultured for 16 hours. Cells in PBS CNa
C18g/j! , KCj! 0.2g/(1°Na*
HPOn (anhydrous) 1.15 g/It, KH2P0゜0
.. 2g/j! ], 0.05% trypsin, 0.05% trypsin.
After adding 3 ml of a solution containing 2% EDTA (ethylenediaminetetraacetic acid) and removing the excess solution, the mixture was incubated at 37° C. for 5 minutes (trypsin treatment). Dialysis FC3 (
Gibco Oriental) 10%, 7.5% NaH
MEMα containing 1150 volumes of CO, solution, 1/100 volume of 100× non-essential amino acid solution, and 0418 (manufactured by Gibco Oriental) added to 0.3 mg/m+
(selective medium) to suspend the cells well, and
The cells were cultured for 5 days at 37°C in a CO2 incubator. Wash cells with PBS and MEM
α (selective medium) was added and cultured for 5 days. The same operation was performed and the cells were cultured for an additional 5 days. After washing the cells with PBS, they were treated with trypsin, and 10 ml of MEMα (selective medium) was added to suspend the cells, and cultured in a 6 cm diameter dish in an incubator at 37° C. and CO for 3 to 7 days. After the colonies that appeared were treated with trypsin, they were implanted into a 10 cII diameter dateschew using 10 ml of MEMα (selective medium) containing 50 nM MTX at a cell concentration of 5 x 10'/a+1.

5日おきに上記培地を用いて培地の交換を計3回行った
。出現してきたMTX耐性のコロニーを単コロニー分離
し、各々直径6c■のデイツシュを用い、コンフルエン
トになるまで培養した。5mlの50nMMTXを含む
MEMα(選択培地)に交換し、1日後培養液中のUK
−31の活性をフィブリン・プレート・アッセイ法(G
ranalli−Pipern。
The medium was replaced every 5 days using the above medium three times in total. The MTX-resistant colonies that appeared were isolated as single colonies, and each colony was cultured using a 6 cm diameter potato plate until confluent. The UK in the culture medium was changed to MEMα (selective medium) containing 5 ml of 50 nMMTX after 1 day.
-31 activity using fibrin plate assay (G
ranalli-Pipern.

とRe1ch :ジャーナル・オン・エクスペリメンタ
ル・メディシン(J、Exp9Med、) 148.2
33(1978) )を用いて調べた。その結果、クロ
ーン漱12の活性が最も高く、そのUK−31の生産量
は5尾/106細胞・日であった。このクローンを10
0m1の50nM  MTXを含むMEMα(選択培地
)を含むファルコン(Falcon) 3027型ロー
ラー・ボトルで培養し、コンフルエントになった後、F
CSを除去した10に1117mlアプロチニン(ペー
リンガー・マンハイム社)を含む上記培地を用い、3日
間培養した。このloOmlの培養液は実施例8で用い
た。
and Re1ch: Journal on Experimental Medicine (J, Exp9Med,) 148.2
33 (1978)). As a result, clone Sou 12 had the highest activity, and its UK-31 production amount was 5 fish/106 cells/day. 10 clones of this
Culture in a Falcon 3027 roller bottle containing 0 ml of MEMα (selective medium) containing 50 nM MTX, and after reaching confluence,
The cells were cultured for 3 days using the above medium containing 1117 ml of aprotinin (Pellinger Mannheim) in 10 ml from which CS had been removed. This loOml culture solution was used in Example 8.

(2)  psEIUKprol−IAを保有する動物
細胞によるpro−UKポリペプチドの生産:参考例1
3で得られた組換え体ブラヌミドpsEIUKprol
−IAとpSV2−dhfrおよびdhfr欠損CHO
細胞株を用いて、上で述べた手順と同様の手順でpro
−UKを生産する細胞株を得た。この中でクローンNα
5の活性が最も高く、そのpro−UKの生産量は3■
/lO@細胞・日であった。このクローンを、100m
1の50nM  MTXを含むMEMα(選択培地)を
含むファルコン3027型ローラー・ボトルで培養し、
コンフルエントになった後、FCSを除去した10にI
II/mlアプロチニン(ベーリンガー・マンハイム社
)ヲ含ム上記培地を用い、3日間培養した。この100
1の培養液は実施例8で用いた。
(2) Production of pro-UK polypeptide by animal cells harboring psEIUKprol-IA: Reference Example 1
Recombinant branumid psEIUKprol obtained in 3.
-IA and pSV2-dhfr and dhfr-deficient CHO
Using cell lines, pro
- A cell line producing UK was obtained. Among these, clone Nα
The activity of 5 is the highest, and the production amount of pro-UK is 3■
/lO@cell/day. This clone is 100m
Cultured in a Falcon 3027 roller bottle containing MEMα (selective medium) containing 50 nM MTX of
After reaching confluence, I removed the FCS.
The cells were cultured for 3 days using the above medium containing II/ml aprotinin (Boehringer Mannheim). This 100
The culture solution of No. 1 was used in Example 8.

実施例8゜ 天然型pro−UKと糖鎖付加型修飾UK−81のトロ
ンビンに対する感受性の比較:(1)  pro−UK
とUK−3LのCHO細胞培養液からの精製: 実施例7で得た天然型のpro−UKあるいは糖鎖付加
型修飾UK−31を含有する無血清培養液それぞれ10
0m1に対して0.05%5%ライ−/ (Tween
) 80と0.05%Na N sを含む50mMリン
酸緩衝液(pH7,5)C以下PBS−TAと略す〕で
平衡化した5mlのジンク(Zn)−キレート−セファ
ロース(Sepharose) (ファルマシア・ジャ
パン株式会社(Pharmacia FinaChem
icals)製〕を添加し、4℃で1時間以上穏やかに
混合した。この混合液をバイオラッド(Bio Rad
)社製のエコツカラムにつめた。
Example 8 Comparison of sensitivity to thrombin between natural pro-UK and glycosylated modified UK-81: (1) pro-UK
Purification of UK-3L and UK-3L from CHO cell culture medium: 10% each of serum-free culture medium containing natural pro-UK or glycosylated modified UK-31 obtained in Example 7
0.05% 5% lie/(Tween
) 5 ml of zinc (Zn)-chelate-Sepharose (Pharmacia) equilibrated with 50 mM phosphate buffer (pH 7,5) containing 80 and 0.05% NaNs (hereinafter abbreviated as PBS-TA). Japan Co., Ltd. (Pharmacia FinaChem
icals) was added thereto and mixed gently at 4° C. for over 1 hour. This mixture was mixed with Bio-Rad (Bio-Rad).
) was packed in an ecotu column made by the company.

各カラムをlOベツド体積の10に10/mlアプロチ
ニンを含むPBS−TAで洗浄した後、10 KID/
mlアプロチニンと50mMイミダゾール(imida
zole)を含むPBS−TAで溶出を行った。この溶
出画分について上述のフィブリン・プレート・アッセイ
法によりウロキナーゼ蛋白質の有無を調べ、ウロキナー
ゼ蛋白質を含む両分を集めた。この溶液に対して、P 
B S −TAで平衡化した5a+1のSP−セファデ
ックス(Sephadex) C50(ファルマシア・
ジャパン株式会社(Pharmacia Fine C
hemicals)製〕を添加し、4℃で1時間以上穏
やかに混合した。この混合液をミニカラム(生化学工業
社製 セパコール・ミニ)に充填した。カラムを10ベ
ツド体積のPBS−TAで洗浄した後、3ベツド体積の
500mM  NaC1を含むPBS−TAで溶出した
After washing each column with PBS-TA containing 10 KID/ml aprotinin in 10 lO bed volumes,
ml aprotinin and 50mM imidazole (imida
Elution was performed with PBS-TA containing zole). This elution fraction was examined for the presence of urokinase protein by the fibrin plate assay method described above, and both fractions containing urokinase protein were collected. For this solution, P
5a+1 SP-Sephadex C50 (Pharmacia) equilibrated with B S-TA
Japan Co., Ltd. (Pharmacia Fine C
Chemicals) was added thereto, and the mixture was gently mixed at 4° C. for over 1 hour. This mixed solution was packed into a mini column (Sepacol Mini, manufactured by Seikagaku Corporation). The column was washed with 10 bed volumes of PBS-TA and then eluted with 3 bed volumes of PBS-TA containing 500 mM NaCl.

次に、直ちにこの溶出液に対して、PBS−TAで平衡
化した1mlのベンザミジン(Benzamidine
)−セファ0−ス(Sepharose) 6 B (
ファルマシア・ジャパン株式会社製)を添加し、4℃で
1時間以上、穏やかに混合した。この混合液をミニカラ
ム(生化学工業社製 セパコールミニ)につめ、素通り
画分を集めた。この素通り両分には、1本鎖の天然型p
ro−UKあるいは1本鎖のUK−3Lが含まれていた
This eluate was then immediately treated with 1 ml of Benzamidine equilibrated with PBS-TA.
)-Sepharose 6 B (
(manufactured by Pharmacia Japan Co., Ltd.) was added thereto and gently mixed at 4° C. for 1 hour or more. This mixture was packed into a mini column (Sepacol Mini, manufactured by Seikagaku Corporation), and the flow-through fraction was collected. In this two-way flow, a single-stranded natural p
ro-UK or single-chain UK-3L was included.

UK−51に新たなN−グリコシド結合型糖鎖が付加し
ていることは、5DS−ポリアクリルアミドゲル電気泳
動を用いて天然型pro−tJKとUK−31を解析し
たときに、tJK−31の方が天然型p r o−UK
よりも分子量が大きいこと、および天然型pro−UK
とUK−81をN−グリカナーゼで処理することにより
、両者の分子量が減少しほぼ同一になることにより確1
忍した。
The addition of a new N-glycoside-linked sugar chain to UK-51 was demonstrated when tJK-31 was analyzed using 5DS-polyacrylamide gel electrophoresis to analyze natural pro-tJK and UK-31. Natural type pro-UK
and that the molecular weight is larger than that of natural pro-UK.
By treating UK-81 and UK-81 with N-glycanase, the molecular weights of both decrease and become almost the same, making it certain that
I endured it.

(2)精製した天然型pro−UKおよびUK−81の
トロンビン感受性テスト: 上で得られた天然型pro−UKおよびUK−3lを含
む溶液をフィブリン・プレート・アッセイ法を用いてウ
ロキナーゼ活性として100011/+nlとなるよう
に300mM  NaC1を含むPBS−TAで希釈し
た。この希釈液216dに24μMヒト・トロンビンを
36g添加し、37℃に保温した。ヒト・トロンビンは
シグマロンビンは2981Uのトロンビンに対して10
0IUのアプロチニンを加え、37℃で一時間反応させ
た標品を用いた。トロンビンを添加した後、15.30
.60.120分後に63謔ずつサンプリングし、24
μMのトロンビン阻害剤(Thromstop IAm
erican口iagnost +ca社製)を94加
え、反応を停止させた。また、トロンビン添加後、直ち
にトロンビン阻害剤を加えたサンプルも調製した(これ
をトロンビン添加後0分のサンプルとした)。また、対
照群としてトロンビンを添加していないものを37℃で
保温した。
(2) Thrombin sensitivity test of purified natural pro-UK and UK-81: The solution containing the natural pro-UK and UK-3l obtained above was tested for urokinase activity using a fibrin plate assay method. /+nl diluted with PBS-TA containing 300mM NaCl. 36 g of 24 μM human thrombin was added to this diluted solution 216d, and the mixture was kept at 37°C. Human thrombin is sigma thrombin, 2981U thrombin is 10
A preparation prepared by adding 0 IU of aprotinin and reacting at 37° C. for 1 hour was used. After adding thrombin, 15.30
.. 60. After 120 minutes, 63 songs were sampled, and 24 songs were sampled.
μM thrombin inhibitor (Thromstop IAm
The reaction was stopped by adding 94 g of Erican's Iagnost (manufactured by CA). A sample was also prepared in which a thrombin inhibitor was added immediately after the addition of thrombin (this was used as a sample 0 minutes after the addition of thrombin). In addition, as a control group, a sample to which no thrombin was added was kept at 37°C.

次に、各試料22.5 aを5DS−ポリアクリルアミ
ドゲル電気泳動〔レムリ (Laemmli) :ネイ
イチ+ −(Nature) 227.680(197
0) 〕に供することにより、1本鎖のウロキナーゼ(
誘導体)が2本鎖になったかどうか調べた。その結果、
天然型pro−UKに比べてUK−31の方が2本鎖に
なる割合が少ないことが判明したく第12図参照)。こ
の結果はUK−31の方がトロンビンに対する感受性が
低いことを示す。
Next, each sample 22.5a was subjected to 5DS-polyacrylamide gel electrophoresis [Laemmli:Nature 227.680 (197
0) ], single-chain urokinase (
Derivative) was investigated to see if it became double-stranded. the result,
(See Figure 12 to find out that UK-31 has a lower double-stranded ratio than natural pro-UK). This result indicates that UK-31 is less sensitive to thrombin.

さらに、この結果を確認するため、S −2444アミ
ドリテイツク(amidolytic)活性の測定を行
った。すなわち、上記の試料をTNT緩衡液[:0.5
M  Tris−HCI (pH7,4)、0.38M
  Na(J、0.1% Tween80)で5倍希釈
したもの50頭に、10μMヒト・プラスミン(Pla
smin)を50m加え、37℃で30分間反応させた
。ヒト・プラスミンはべ一リンガー・マンハイム社製の
ものを用いた。次に、発色性基質S−2444(1,2
mM;カビ(にabi  Vitrum)社製〕を50
4添加し、さらに37℃で90分間反応させた後、40
5nmの吸光度を測定し、アミドリティック活性を算出
した。その結果を第13図に示す。
Furthermore, in order to confirm this result, the S-2444 amidolytic activity was measured. That is, the above sample was mixed with TNT buffer [:0.5
M Tris-HCI (pH 7,4), 0.38M
10 μM human plasmin (Pla
smin) was added thereto and reacted for 30 minutes at 37°C. Human plasmin manufactured by Boehringer Mannheim was used. Next, the chromogenic substrate S-2444 (1,2
50 mM; manufactured by abi Vitrum Co., Ltd.
4 was added and further reacted at 37°C for 90 minutes, then 40
The absorbance at 5 nm was measured and the amidolytic activity was calculated. The results are shown in FIG.

第13図に示したように、UK−31は天然型pro−
UKに比べ、トロンビンに対する感受性が低いことが判
明した。
As shown in Figure 13, UK-31 is a natural pro-
It was found that the sensitivity to thrombin was lower than that in the UK.

実施例9゜ 天然型pro−UKと糖鎖付加型修飾UK−3lのin
  vivo  評価: (1)持続注入((nfusion)による実験:生後
4〜6ケ月の雄ビーグル犬(体重5.5〜11.5kg
)を用いたa 39 mg/kgのベントパルビタール
ナトリウムの静脈内投与により麻酔し、室内空気による
人工呼吸を施した。実施例8−(1)の方法で得た天然
型pro−UKおよび糖鎖付加型修飾UK−S 1を大
腿静脈より30分間(2000U/kg/分)持続注入
し、投与前(0分)、投与開始後15.30.45.6
0.90分の各時点において大腿動脈より採血した。
Example 9 In of natural pro-UK and glycosylated modified UK-3l
Vivo evaluation: (1) Continuous infusion experiment: 4-6 month old male beagle dogs (body weight 5.5-11.5 kg)
The mice were anesthetized by intravenous administration of sodium bentoparbital (a 39 mg/kg), and artificial respiration with room air was performed. Natural pro-UK and glycosylated modified UK-S 1 obtained by the method of Example 8-(1) were continuously injected into the femoral vein for 30 minutes (2000 U/kg/min), and before administration (0 minutes) , 15.30.45.6 after the start of administration
Blood was collected from the femoral artery at each time point of 0.90 minutes.

採血した血液は直ちに遠心分離して血漿を得、測定まで
一20℃で凍結保存した。得られた血漿を用い、実施例
9.−(3)に従い 全身線溶系因子の測定を行った。
The collected blood was immediately centrifuged to obtain plasma, which was stored frozen at -20°C until measurement. Using the obtained plasma, Example 9. - Whole body fibrinolytic factors were measured according to (3).

その結果、糖鎖付加型修飾UK−51は天然型pro−
UKと同様にほとんど全身線溶系因子を活性化しないこ
とがわかった(第45図参照)。また、ウロキナーゼに
対する抗体を用いたサンドイッチ型の酵素免疫測定法に
より、天然型pro−UKおよびa鎮付加型修飾UK−
31の血漿中濃度の測定を行ったところ、天然型pro
−UKの血漿中からの消失半減期が12.0分であった
のに対し、糖鎖付加型修飾UK−31では24.2分で
あり、消失半減期の延長が認められた。また、このとき
の血漿中濃度−時間曲線下面積 (AUC)については
wt鎖付加型修飾UK−31のAUCま天然型pro−
UKのAUGの約3.6倍であった〔第8表−(A)参
照〕。
As a result, the glycosylated modified UK-51 was found to be similar to the native pro-
Similar to UK, it was found that systemic fibrinolytic factors were hardly activated (see Figure 45). In addition, using a sandwich-type enzyme immunoassay using an antibody against urokinase, we detected natural pro-UK and α-modified pro-UK-.
When the plasma concentration of 31 was measured, it was found that the natural pro
The elimination half-life of -UK from plasma was 12.0 minutes, while that of glycosylated modified UK-31 was 24.2 minutes, indicating an extended elimination half-life. In addition, regarding the area under the plasma concentration-time curve (AUC) at this time, the AUC of the wt chain-added modified UK-31 and the natural pro-
It was about 3.6 times the UK AUG [see Table 8-(A)].

(2)急速静注(bolus)投与による実験:雌雄の
雑種犬(体重4.6〜13.0 kg)を用いた。上と
同様にして準備した犬の大腿動脈を約5cmにわたって
露出し、その最も中枢に近い所に電磁血流計を装着した
。分岐を含む動脈の一部(約1cm)の前後を結紮して
血流のない小部分を作り、分岐から100OU/−のト
ロンビン(ミドリ十字)を0.2〜0.4 m12注入
してこの部分に血栓を作製した。血栓生成の有無は血流
1時間(1〜1.5時間)放置し、自然溶解が起こらな
いことを確認した。天然型pro−UKおよび糖鎖付加
型修飾UK−31(0,6mg/kg)は3分間の急速
静注とし、投与前(0分)、投与開始後15.30.4
5.60.90.120分の各時点において採血した。
(2) Experiment using bolus administration: Male and female mongrel dogs (body weight 4.6 to 13.0 kg) were used. Approximately 5 cm of the dog's femoral artery prepared in the same manner as above was exposed, and an electromagnetic blood flow meter was attached to the point closest to the center of the artery. Ligate the front and back of a part (approximately 1 cm) of the artery including the branch to create a small part without blood flow, and inject 0.2 to 0.4 m12 of 100 OU/- thrombin (Green Cross) through the branch. A thrombus was created in the area. The presence or absence of thrombus formation was determined by allowing blood flow to continue for 1 hour (1 to 1.5 hours) and confirming that spontaneous dissolution did not occur. Natural pro-UK and glycosylated modified UK-31 (0.6 mg/kg) were given as a rapid intravenous injection over 3 minutes, before administration (0 minutes) and after the start of administration on 15.30.4.
Blood was drawn at each time point of 5, 60, 90, and 120 minutes.

その結果、天然型pr○−〇にでは調べた2例について
血栓の再開通が認められなかったのに対し、糖鎖付加型
修飾UK−31を投与した犬3例全てに再開通が認めら
れた。このときの全身線溶系因子の測定を行ったところ
、天然型p r o −UKでは全身線溶系因子の活性
化傾向が見られたのに対し、Ii鎮付加型修飾UK−3
1では、1nfusionの場合と同様に全身線溶系因
子の活性化は認められなかった(第46図参照)。
As a result, recanalization of the thrombus was not observed in the two dogs examined using the natural pr○-○, whereas recanalization was observed in all three dogs treated with the glycosylated modified UK-31. Ta. When we measured the whole body fibrinolytic factors at this time, we found that the native pro-UK showed a tendency to activate the whole body fibrinolytic factors, whereas the Ii anti-modified UK-3
1, no activation of systemic fibrinolytic factors was observed as in the case of 1nfusion (see Fig. 46).

また同時に、天然型pro−UKおよび糖鎖付加型修飾
UK−31の血漿中濃度の測定を行ったところ、天然型
pro−UKの血漿中からの消失半減期が30.3分で
あったのに対し、糖鎖付加型修飾UK−51では48.
1分であり、消失半減期の延長が認められた。さらにこ
のときのA U Gは天然型pro−UKの約5.6倍
であった〔第8表−(B)参照〕。
At the same time, we measured the plasma concentrations of native pro-UK and glycosylated modified UK-31, and found that the elimination half-life of native pro-UK from plasma was 30.3 minutes. In contrast, the glycosylated modified UK-51 was 48.
1 minute, indicating an extension of the elimination half-life. Furthermore, the AUG at this time was about 5.6 times that of the natural pro-UK [see Table 8-(B)].

(3)全身線溶系因子への影響の検討:全身線溶系因子
として、α2−プラスミンインヒビタ−、プラスミノー
ゲン、フィブリノーゲンの3項目について測定を行った
(3) Examination of effects on systemic fibrinolytic factors: Measurements were performed on three systemic fibrinolytic factors: α2-plasmin inhibitor, plasminogen, and fibrinogen.

すべての項目の被検血漿は、全血液9容に3.8%クエ
ン酸1容を加えたものを3000回転/分で10分間遠
心した上清として得た。これに加えて、α2−プラスミ
ン インヒビタープラスミノーゲン測定用血漿には最終
濃度12.5μMのPPACK  (ローphenyl
  alanyl−L−prolyl−L−argin
ine chloromethyl ketone%C
ALBIOC)IBM■、Lot#586042.1l
oechst)を、またフィブリノーゲン測定用血漿に
は250U/−のアプロチニン(トラジロール[相]、
バイエル)を添加した。
Test plasma for all items was obtained as a supernatant by centrifuging a mixture of 9 volumes of whole blood and 1 volume of 3.8% citric acid at 3000 rpm for 10 minutes. In addition to this, the final concentration of PPACK (low phenyl
alanyl-L-prolyl-L-argin
ine chloromethyl ketone%C
ALBIOC) IBM ■, Lot #586042.1l
oechst) and 250 U/- of aprotinin (trasylol [phase],
Bayer) was added.

測定はオリンパス社製、オートアナライザーAU510
を用いた。試薬はα2−プラスミンインヒビタ−、プラ
スミノーゲンの定量には三共のALPオートカラー三共
をそれぞれ用い、フィブリノーゲンの定量には国際試薬
のフィブリノーゲン試薬を用いた。
Measurement was done using Auto Analyzer AU510 manufactured by Olympus.
was used. The reagent used was α2-plasmin inhibitor, Sankyo's ALP Autocolor Sankyo was used for the quantification of plasminogen, and the fibrinogen reagent of International Reagent was used for the quantification of fibrinogen.

第   8   表 天然型p r o−UK右よびI!鎖付加型修飾UK−
3lの血中半減期 (A)持続注入(ピーグル犬) p r o−UK    12.0±1.9    6
0.2±13,4UK−3t     24.2±10
.0    214  ±57.6(B)急速静注(雑
犬) Tl/2(min) A[IC(鴻・制御7m1) ro−UK 30.3±8.9 98.8±38.1 UK−31 48,1±2.0 555 ± 118 実施例10゜ 糖鎖付加型修飾UK−33をコードする組換えプラスミ
ドpUKS3の造成: 実施例6の(2)−(C)で得られたpUKs1プラス
ミドDNA約2■を30dのY−100緩衝液に溶かし
、16単位の(frIとlO単位の)(indIIIを
加え、37℃で2時間消化反応を行った。65℃、10
分間の熱処理後、ATF法を用いて約0.75にbのD
NA断片を精製した。一方、参考例20で得られたph
PA2プラスミドDNA約2j1gを30−のY−10
0緩衝液に溶かし、10単位の)(indI[Iと1単
位のEcoRIを加え、37℃で2時間消化反応を行っ
た。65℃、10分間の熱処理後、ATF法を用いて約
3.4 KbのDNA断片を精製した。下記2種の合成
りNA(43塩基と43塩基)を実施例1に述べた方法
に従い、合成および5′末端のリン酸化を行った。
Table 8 Natural type pr o-UK right and I! Chain addition type modification UK-
Blood half-life (A) of 3l Continuous infusion (Peagle dog) p r o-UK 12.0±1.9 6
0.2±13,4UK-3t 24.2±10
.. 0 214 ±57.6 (B) Rapid intravenous injection (mongrel dog) Tl/2 (min) A[IC (Ko・Control 7ml) ro-UK 30.3±8.9 98.8±38.1 UK- 31 48,1 ± 2.0 555 ± 118 Example 10 Construction of recombinant plasmid pUKS3 encoding glycosylated modified UK-33: pUKs1 plasmid obtained in Example 6 (2)-(C) Approximately 2 cm of DNA was dissolved in 30 d of Y-100 buffer, 16 units (of frI and lO units) (indIII) were added, and the digestion reaction was performed at 37°C for 2 hours.
After heat treatment for a minute, the D of b was reduced to about 0.75 using the ATF method.
The NA fragment was purified. On the other hand, the pH obtained in Reference Example 20
Approximately 2j1 g of PA2 plasmid DNA was transferred to 30-Y-10
Digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, the ATF method was used to digest the mixture. A 4 Kb DNA fragment was purified.The following two synthetic NAs (43 bases and 43 bases) were synthesized and phosphorylated at the 5' end according to the method described in Example 1.

5’−GGCC^^AAG ACT ATT CGA 
ACG CGT TTT AAG ATT ATT G
GG GGA G−3’3’−TT TTCTGA T
AA GCT TGCGCA^^^TTCTAA TA
ACCCCCT CTT AA−5’このようにして得
られたpUKS 1由来の約0.75にbのDNA断片
(約0.1■)、phPA2由来の約3.4にbのDN
A断片(約0.1■)、および5′リン酸化された2種
の合成りNA (1ピコモルずつ)を全量20IJII
のT41Jガーゼ緩衝液に溶かし、300単位のT4リ
ガーゼを加え、4℃で18時間結合反応を行った。得ら
れた組換え体プラスミドの混合物を用いて、大腸菌MM
294株を形質転換し、Ap耐性株を得た。この形質転
換株からプラスミドDNAを単離し、制限酵素消化によ
る構造解析およびM13デイデオキシ・シーフェンス法
による塩基配列決定を行い、目的の構造を有し、Leu
153−+Asn、Pro155−Thrの塩基置換を
持つプラスミドDNAをpUKS3と命名した(第47
図参照)。本発明で得られたUK−33のアミノ酸配列
を第7表に示す。
5'-GGCC^^AAG ACT ATT CGA
ACG CGT TTT AAG ATT ATT G
GG GGA G-3'3'-TT TTCTGA T
AA GCT TGCGCA^^^TTCTAA TA
ACCCCCT CTT AA-5' DNA fragment of approximately 0.75 to b (approximately 0.1 ■) derived from pUKS 1 and approximately 3.4 to b DNA derived from phPA2 thus obtained.
A total amount of 20 IJII of the A fragment (approximately 0.1 ■) and two types of 5' phosphorylated synthetic NA (1 pmol each).
The mixture was dissolved in T41J gauze buffer, 300 units of T4 ligase was added, and the binding reaction was performed at 4°C for 18 hours. Using the obtained mixture of recombinant plasmids, E. coli MM
The 294 strain was transformed to obtain an Ap-resistant strain. Plasmid DNA was isolated from this transformed strain, and structural analysis by restriction enzyme digestion and nucleotide sequencing by the M13 deideoxy-Siefens method were performed.
The plasmid DNA with base substitutions of 153-+Asn and Pro155-Thr was named pUKS3 (47th
(see figure). Table 7 shows the amino acid sequence of UK-33 obtained in the present invention.

実施例11゜ UK−33発現プラスミドpSEUKS3の造成: 参考例9で得られたpSεIPAISE1dhfrl−
9AプラスミドDNA約2■を301JttのY−0!
衡液に溶かし、lO単位のKpn Iを加え、37℃で
2時間消化反応を行った。続いて1.5〃の2MNaC
1と10単位のXho lを加え、さらに37℃で1時
間消化反応を行った。65℃、10分間の熱処理後、A
FT法を用いて約8.6 KbのDNA断片を精製した
。また、psEIUKprol−LAプラスミドDNA
約3■を304のY−100緩衝液に溶かし、12単位
のBglnと12単位のXholを加え、37℃で2時
間消化反応を行った。65℃、10分間の熱処理後、A
FT法を用いて約0.75にbのDNA断片を精製した
。一方、上で得られたpUKs3プラスミドDNA約3
■を30dのY−0緩衝液に溶かし、15単位のKpn
 Iを加え、37℃で2時間消化反応を行った。続いて
1.54の2M  NaC1と12単位のBglnを加
え、さらに37℃で1時間消化反応を行った。65℃、
10分間の熱処理後、AFT法を用いて約1.15にb
のDNA断片を精製した。
Example 11 Construction of UK-33 expression plasmid pSEUKS3: pSεIPAISE1dhfrl- obtained in Reference Example 9
Approximately 2 ■ of 9A plasmid DNA was transferred to Y-0 of 301Jtt!
The mixture was dissolved in an equilibrated solution, 10 units of Kpn I was added, and the digestion reaction was carried out at 37°C for 2 hours. followed by 1.5〃2MNaC
1 and 10 units of Xhol were added, and the digestion reaction was further carried out at 37°C for 1 hour. After heat treatment at 65°C for 10 minutes, A
A DNA fragment of approximately 8.6 Kb was purified using the FT method. In addition, psEIUKprol-LA plasmid DNA
Approximately 3 μm was dissolved in 304 Y-100 buffer, 12 units of Bgln and 12 units of Xhol were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, A
The DNA fragment of b was purified to approximately 0.75 using the FT method. On the other hand, about 3 pUKs3 plasmid DNA obtained above
Dissolve ■ in 30d of Y-0 buffer, 15 units of Kpn
I was added, and the digestion reaction was carried out at 37°C for 2 hours. Subsequently, 1.54 of 2M NaCl and 12 units of Bgln were added, and the digestion reaction was further carried out at 37°C for 1 hour. 65℃,
After heat treatment for 10 minutes, b was reduced to about 1.15 using AFT method.
The DNA fragment was purified.

このようにして得られたpsBIPAlsε1dhfr
l−9八由来の約8.6 KbのDNA断片(約0.1
■)、psEIUKprol−IA由来の約0.75 
Kb(7) D N A断片(約0.02.)、および
pUKs3由来の約1.15 KbノDNA断片(約0
.02.)を全量20dのT4リガーゼ緩衝液に溶かし
、100単位のT4DNAリガーゼを加え、4℃で18
時間結合反応を行った。
psBIPAlsε1dhfr obtained in this way
An approximately 8.6 Kb DNA fragment derived from l-98 (approximately 0.1
■), approximately 0.75 derived from psEIUKprol-IA
Kb(7) DNA fragment (approximately 0.02.
.. 02. ) was dissolved in a total volume of 20 d of T4 ligase buffer, 100 units of T4 DNA ligase was added, and the mixture was incubated at 4°C for 18
A time binding reaction was performed.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNA%pSEUKS3を単離
し、制限酵素消化による構造解析を行ったところ、I)
SEUS3は目的の構造を有することを確認した(第4
8図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA%pSEUKS3 was isolated from this transformed strain, and structural analysis by restriction enzyme digestion revealed that I)
It was confirmed that SEUS3 has the desired structure (4th
(See Figure 8).

プラスミドpSEUKS3を含む大腸菌菌株はEsch
erichia coli ESELIにS3 (FE
RM 0P−2478)として1989年6月15日付
で微工研にブダペスト条約のちとに寄託しである。
The E. coli strain containing plasmid pSEUKS3 is Esch
erichia coli ESELI to S3 (FE
RM 0P-2478) dated June 15, 1989, and was deposited with the Institute of Fine Technology under the Budapest Treaty.

実施例12゜ pSEUKS3を保有する動物細胞にょるUK−33ポ
リペプチドの生産: 実施例11で得られた組換え体プラスミドpSEUKS
3およびdhfr欠損CHO細胞株を用いて、上で述べ
た手順と同様の手順でUK−33を生産する細胞株を得
た。この中でクローン13の活性が最も高く、そのtJ
K−33の生産量は3./10”細胞・日であった。
Example 12 Production of UK-33 polypeptide in animal cells harboring pSEUKS3: Recombinant plasmid pSEUKS obtained in Example 11
A cell line producing UK-33 was obtained using a procedure similar to that described above using the 3 and dhfr-deficient CHO cell line. Among them, clone 13 has the highest activity, and its tJ
The production volume of K-33 is 3. /10” cells/day.

このクローンを、100m!の50nM  MTXを含
むMEMα(選択培地)を含むファルコン3027型ロ
ーラー・ボトルで培養し、コンフルエントになった後、
FC5を除去した10KIU/ml!アプロチニン (
ベーリンガー・マンハイム社)を含む上記培地を用い、
3日間培養した。この100m1の培養液は実施例13
で用いた。
This clone, 100m! After culturing in a Falcon 3027 roller bottle containing MEMα (selective medium) containing 50 nM MTX and reaching confluence,
10KIU/ml without FC5! Aprotinin (
Using the above medium containing Boehringer Mannheim,
It was cultured for 3 days. This 100 ml of culture solution was used in Example 13.
It was used in

実施例13゜ 糖鎖付加型修飾UK−33の熱安定性に対する検討: 実施例8−(1)と同様にしてCHO細胞培養液から糖
鎖付加型修飾UK−53を精製した。精製された天然型
pro−UKおよび糖鎖付加型修飾UK−33を50m
Mリン酸、200mMアルギニン、100mM  Na
C1,0,01%’l’ween80.0.05%アジ
化ナトリウムから成る緩衝液(p H7,5)に10■
/−になるように溶解し、70℃でインキユベートした
Example 13 Examination of thermal stability of glycosylated modified UK-33: Glycated modified UK-53 was purified from a CHO cell culture solution in the same manner as in Example 8-(1). Purified natural pro-UK and glycosylated modified UK-33 were added to 50 m
M phosphate, 200mM arginine, 100mM Na
C1, 0,01% 'l'ween 80. 10 μm in a buffer (pH 7,5) consisting of 0,05% sodium azide.
/- and incubated at 70°C.

インキュベート開始後、1.2.3.4時間目にサンプ
リングを行い、水中で冷却後直ちにフィブリン・プレー
ト・アッセイを行い、残存活性を測定した(第49図参
照)。
Sampling was performed at 1, 2, 3, and 4 hours after the start of incubation, and immediately after cooling in water, a fibrin plate assay was performed to measure the residual activity (see Figure 49).

糖鎖付加型修飾UK−53は天然型pro−UKよりも
熱に対して安定であることが明らかとなった。
It was revealed that the modified glycosylated UK-53 is more stable against heat than the natural pro-UK.

参考例1゜ ヒトt−PAcDNAを運ぶプラスミドptP^7の造
成: (1)  Detroit562細胞よりのポリ(A)
RNAの調製:ヒト咽頭ガン細胞株口etroit56
2より、チオシアン酸グアニジン−塩化リチウム法〔カ
サラ(Cathala・)ら:ディーエヌエイ (DN
A)2゜329(1983) ]に従い、ポリ(A)を
有するRNAを下記のごとく調製した。
Reference Example 1 Construction of plasmid ptP^7 carrying human t-PA cDNA: (1) Poly(A) from Detroit 562 cells
Preparation of RNA: human pharyngeal cancer cell line etroit56
2, the guanidine thiocyanate-lithium chloride method [Cathala et al.: DN
A) 2°329 (1983)], RNA having poly(A) was prepared as follows.

ヒト咽頭ガン口etroit562 Cピーターソン・
ダブリュ・デ4”ジコニア(Peterson、 W、
 D、、 Jr、)ら:プロシーディングス・オン・ザ
・ソサイアティ・フォア・エクスペリメンタル・バイオ
ロジー噛アンド嶺メディシン(Proc、Soc、 F
ixp、Rial。
Human pharyngeal cancer mouth etroit562 C Peterson
Double de 4” ziconia (Peterson, W,
D., Jr.) et al.: Proceedings on the Society for Experimental Biology and Medicine (Proc, Soc, F.
ixp, Rial.

Med、) 136 、1187(1971)]を、l
O%仔牛脂児血清、100×非必須アミノ酸溶液(Fl
ow Laboratories社製)を1/100量
、1mMピルビン酸ナトリウム、0.1%ラクトアルブ
ミン水化物(ギブコ・オリエンタル)を含む50m1の
MEM培地(日永製薬社製)を用い、ティシユ・カルチ
ャー・フラスコ(コーニング社製、150 (−Ill
>内で生育させた。
Med, ) 136, 1187 (1971)], l
O% calf fat serum, 100x non-essential amino acid solution (Fl
ow Laboratories, Inc.), 1 mM sodium pyruvate, and 0.1% lactalbumin hydrate (Gibco Oriental) using 50 ml of MEM medium (manufactured by Hinaga Pharmaceutical Co., Ltd.) in a tissue culture flask. (Manufactured by Corning, 150 (-Ill
>Grown inside.

37℃でコンフルエント(conf 1uent)にな
るまで培養した後、細胞をPBSで洗浄し、1100n
/m+のフォルボール・ミリステート・アセテート(P
 MA : Phorbol myristate a
cetate)を添加し、仔牛脂児血清を除いた上記培
地30m1を加え、さらに37℃で24時間培養した。
After culturing at 37°C until confluent, the cells were washed with PBS and incubated at 1100 nm.
/m+ phorbol myristate acetate (P
MA: Phorbol myristate a
cetate) and 30 ml of the above medium from which calf fat serum was removed were added, and the mixture was further cultured at 37°C for 24 hours.

続いて細胞を0.05%トリプシン、0.02%EDT
Aを含む溶液10m1で処理し、細胞懸濁液を取得した
。6本の上記ティッシュ・カルチャー・フラスコから総
計lXl0@の細胞を取得した。細胞懸濁液から、1.
100 Xg、 4℃、10分間の遠心によって細胞を
集め、80m1のリン酸塩バッファーで洗浄した後、5
Mチオシ了ン酸グ了ニシン、IQmM BOT^、50
mM Tris−HCj!  (pH7)および8%(
V/V)  2−メルカプトエタノールからなる溶液1
0m1中でポルテックス・ミキサーを用い可溶化した。
Cells were then treated with 0.05% trypsin, 0.02% EDT.
A cell suspension was obtained by treatment with 10 ml of a solution containing A. A total of 1X10@ cells were obtained from the six tissue culture flasks described above. From the cell suspension, 1.
Cells were collected by centrifugation at 100 × g for 10 min at 4°C, washed with 80 ml of phosphate buffer, and then incubated for 5 min.
M thiosinoic acid glutinous herring, IQmM BOT^, 50
mM Tris-HCj! (pH 7) and 8% (
V/V) Solution 1 consisting of 2-mercaptoethanol
Solubilization was carried out using a Portex mixer in 0ml.

この可溶化物を遠心管に移し、4MLiCj!溶液80
…1を加えて攪拌した後、4℃ 20時間静置した。
This lysate was transferred to a centrifuge tube and 4MLiCj! solution 80
...1 was added and stirred, and then allowed to stand at 4°C for 20 hours.

Hitachi RP R1Gローターにて9.00O
rpm、 90分間遠心機、RNAを沈澱として回収し
た。RNAの沈澱を4M尿素および2M塩化リチウムか
らなる溶液50m1に懸濁し、Hitachi RPR
IOローターにて9.00Orpm、 60分間遠心後
、再びRNAを沈澱として回収した。RNAの沈澱を0
.1%ラウリル硫酸ナトリウム、1mM  EDTA、
 10mMTris−HCj! (pH7,5)からな
る溶液10m1に溶解し、フェノール−クロロホルムで
抽出後、エタノール沈澱により回収した。得られたRN
A約2.5mgを10mM Tris−flcj! (
p)18.0)および1mMEDT^からなる溶液1m
lに溶かした。65℃、5分間インキュベートし、0.
1mMの5M  NaCl1を加えた。混合物をオリゴ
(dT)セルロース・カラム〔ヒー・エル・バイオケミ
カル(P−L f3iochemical)社製〕クロ
マトグラフィー(カラム体積0.5m1)にかけた。吸
着したポ!l  (A)を有するmRNAを10mM 
Tris−HCj! (p)17.5)および1 mM
 EDTAからなる溶液で溶出し、ポ’J (A)を有
するmRNA約90gを得た。
9.00O with Hitachi RP R1G rotor
rpm, centrifuge for 90 minutes, and RNA was collected as a precipitate. The RNA precipitate was suspended in 50 ml of a solution consisting of 4 M urea and 2 M lithium chloride, and
After centrifugation for 60 minutes at 9.00 rpm in an IO rotor, RNA was recovered as a precipitate. 0 RNA precipitation
.. 1% sodium lauryl sulfate, 1mM EDTA,
10mM Tris-HCj! (pH 7.5), extracted with phenol-chloroform, and recovered by ethanol precipitation. Obtained RN
About 2.5 mg of A is added to 10 mM Tris-flcj! (
1 ml of a solution consisting of p) 18.0) and 1 mM ED T^
Dissolved in l. Incubate at 65°C for 5 minutes,
1mM 5M NaCl1 was added. The mixture was subjected to oligo(dT) cellulose column chromatography (manufactured by PL f3iochemical) (column volume 0.5 ml). Adsorbed Po! l (A) at 10mM
Tris-HCj! (p)17.5) and 1 mM
Approximately 90 g of mRNA containing Po'J (A) was obtained by elution with a solution consisting of EDTA.

(2)  CD N A合成と該DNAのベクターへの
挿入:オカヤマーバーグ(Okayama−Be+’g
)の方法〔そレキコラ−・アンド・セルラー・バイオロ
ンイ(Mol、  Ce11.  Rial、) 、2
. 16H1982) ]に従い、cDNAの合成とそ
れを組み込んだ組換え体プラスミドの造成を行った。そ
の工程の概略を第14図に示す。
(2) CD DNA synthesis and insertion of the DNA into a vector: Okayama-Be+'g
) method [Sorechycolla and Cellular Biolony (Mol, Ce11. Rial, ), 2
.. 16H1982)], cDNA was synthesized and a recombinant plasmid incorporating it was constructed. An outline of the process is shown in FIG.

pcDVl (オカヤマ・アンド・バーブ(Okaya
ma & Berg) :モレキュラー・アンド・セル
ラー・バイオロンイ(Mo1. Ce1l、 Rial
、)、3゜280(1983) 1400Mgを10m
M Tris−HCj’ (pH7,5)、6 mM 
MgCJ 2および10n+M NaC1!からなる溶
液300通に加え、さらに500単位のKpn Tを加
えて、37℃、6時間反応させ、プラスミド中のKpn
1部位で切断した。フェノール−クロロホルム抽出後、
エタノール沈澱によりD N Aを回収した。
pcDVl (Okayama and Barb)
Ma & Berg): Molecular and Cellular Biolony (Mo1. Ce1l, Rial
, ), 3°280 (1983) 1400Mg in 10m
M Tris-HCj' (pH 7,5), 6 mM
MgCJ 2 and 10n+M NaC1! In addition to 300 units of a solution consisting of
It was cut at one site. After phenol-chloroform extraction,
DNA was recovered by ethanol precipitation.

Kpnl切断した該DNA約200■を40m肋コジル
酸ナトリウム、30mM Tris−HCj! (pH
6,8)、1mM CaCf 、および0.1mMジチ
オスレイトール(以下DTTと略記する)からなる緩衝
液(以下TdT緩衝液と略記する〕にdTTPを0,2
5mMとなるよう加えた溶液200dに加え、さらに8
1単位のターミナルデオキシヌクレオチジルトランスフ
ェラーゼ(以下TdTと略記する)(P−L Bioc
hemicals社製)を加えて、37℃、11分間反
応させた。ここで、pcDVlのKpnl切断部位の3
′末端にポ!J (dT)鎖が約67個付加された。該
溶液からフェノール−クロロホルム抽出、エタノール沈
澱により、ポIJ (dT)鎖の付加したpcDVID
N^約1100uを回収した。UDNAを10mM T
ris−H(J (pH7,5) 、6mM MgCj
! x 、100mMNaC1からなる緩衝液150d
に加え、さらに360単位のEcoRIを加え、37℃
21時間反応させた。該反応液をLGT法で処理後、約
3. lkbのDNA断片を回収し、約60gのポリ(
dT)鎮付加pcDVlを得た。該DNAをlomM 
Tris−1(C1!(pH8,0)および1mM E
DTAからなる溶液500dに溶解し、65℃5分間イ
ンキニベート後、氷冷して50mの5M Na1Jを加
えた。混合物をオリゴ(d^)セルロースカラム(コラ
ボレイティプリサーチ社製)クロマトグラフィーにかけ
た。ポリ(dT)鎖長が充分なものはカラムに吸着し、
これを10mM TrisJICj! (pH8,0)
および1mM E!DTAからなる溶液で溶出し、ポ!
I (dT)鎖の付加したpcDVl  (以下ベクタ
ーブライマーと略記する)27■を得た。
Approximately 200 μl of the Kpnl-cleaved DNA was mixed with 40mM sodium costocodylate, 30mM Tris-HCj! (pH
6,8), 0.2 dTTP was added to a buffer solution (hereinafter abbreviated as TdT buffer) consisting of 1mM CaCf, and 0.1mM dithiothreitol (hereinafter abbreviated as DTT).
In addition to 200d of the solution added to make it 5mM,
1 unit of terminal deoxynucleotidyl transferase (hereinafter abbreviated as TdT) (PL Bioc
Chemicals) was added thereto, and the mixture was reacted at 37°C for 11 minutes. Here, 3 of the Kpnl cleavage site of pcDVl
'Pop at the end! Approximately 67 J (dT) chains were added. From the solution, pcDVID with a poIJ (dT) chain was extracted by phenol-chloroform extraction and ethanol precipitation.
Approximately 1100 u of N^ was recovered. UDNA at 10mM T
ris-H(J (pH 7,5), 6mM MgCj
! x, 150d buffer consisting of 100mM NaCl
In addition, 360 units of EcoRI were added, and the mixture was heated at 37°C.
The reaction was allowed to proceed for 21 hours. After treating the reaction solution with the LGT method, approximately 3. The lkb DNA fragment was collected, and approximately 60 g of poly(
dT) Added pcDVl was obtained. The DNA was lomM
Tris-1 (C1! (pH 8,0) and 1mM E
It was dissolved in 500 d of a solution consisting of DTA, incubated at 65° C. for 5 minutes, cooled on ice, and 50 ml of 5M Na1J was added. The mixture was subjected to chromatography on an oligo(d^) cellulose column (manufactured by Collaborative Tip Research). Poly(dT) with sufficient chain length is adsorbed on the column,
Add this to 10mM TrisJICj! (pH8,0)
and 1mM E! Elute with a solution consisting of DTA and pop!
pcDVl (hereinafter abbreviated as vector primer) 27■ to which an I (dT) chain was added was obtained.

次にリンカ−DNAの調製を行った。Next, linker DNA was prepared.

pLI Cオカヤマ・アンド・バーブ(Okayama
& Berg) :モレキユラー・アンド・セルラー・
バイオロン40Jo1. Ce11.Rial、)、3
.280(1983) ]約14■を10mM Tri
s−HCj! <pH7,5) 、6mM Mg!J 
2および50mM  N aC11からなる緩衝液20
0mに加え、さらに50単位のPstIを加え、37℃
4時間反応させ、PLIDNA中のPstli1位で切
断させた。
pLI C Okayama & Barb
& Berg): Molecular & Cellular
Biolon 40Jo1. Ce11. Rial, ), 3
.. 280 (1983) ] about 14 μm to 10 mM Tri
s-HCj! <pH 7,5), 6mM Mg! J
Buffer 20 consisting of 2 and 50mM NaC11
0 m and additionally 50 units of PstI at 37°C.
After reacting for 4 hours, PLI DNA was cleaved at Pstli1 position.

該反応物をフェノール−クロロホルム抽出後、エタノー
ル沈澱を行い、PstIで切断したpLIDNA約13
.を回収した。該DNA約13■をTdT緩衝液に終濃
度0.25mMのdGTPを含む溶液50JdIに加え
、さらにT d T (P−L Bio−chemic
a11s社製)54単位を加えて37℃13分間インキ
ュベートし、pLlのPstl切断部位3′末端に(d
G>鎖を約14個付加した。フェノール−クロロホルム
抽出後エタノール沈澱にてDNAを回収した。M D 
N A 10mM Tris−HC1(pH7,5)、
6mM M g C122および60mM  N a 
C1からなる緩衝液100JJJlに加え、さらに80
単位のHindI[Iを加えて37℃3時間インキュベ
ートし、pLlollAのH+ndI[I部位で切断し
た。該反応物をアガロースゲル電気泳動にて分画し、約
0.5kbのDNA断片をDEAEペーパー法〔ドレツ
エン(Dretzen)ら:アナリティカル・バイオケ
ミストリイ(Anal、8iochem、)、112 
、295(1981) ]にて回収し、オリゴ(dG)
鎖付きのリンカアDNA(以下単にリンカ−DNAと略
記する)を得た。
After phenol-chloroform extraction of the reaction product, ethanol precipitation was performed, and about 13 pLIDNAs were cut with PstI.
.. was recovered. Approximately 13μ of the DNA was added to 50JdI of a solution containing dGTP at a final concentration of 0.25mM in TdT buffer, and further TdT (P-L Bio-chemical
a11s) was added and incubated at 37°C for 13 minutes to add (d
Approximately 14 G> chains were added. After phenol-chloroform extraction, DNA was recovered by ethanol precipitation. M.D.
NA 10mM Tris-HC1 (pH 7,5),
6mM M g C122 and 60mM Na
In addition to 100 JJJl of buffer consisting of C1, an additional 80
One unit of HindI[I was added, incubated at 37°C for 3 hours, and pLlollA was cleaved at the H+ndI[I site. The reaction product was fractionated by agarose gel electrophoresis, and a DNA fragment of approximately 0.5 kb was separated using the DEAE paper method [Dretzen et al.: Analytical Biochemistry (Anal, 8iochem), 112
, 295 (1981)] and oligo(dG)
A chained linker DNA (hereinafter simply referred to as linker DNA) was obtained.

上記で調製したポIJ (A)RNA約4■、ベクター
プライマー約1.4尾を50mM Tris−HCJ!
(p)18.3) 、8mM MgCL 、30mM 
 KCf。
Approximately 4 μm of the poIJ (A) RNA prepared above and approximately 1.4 tails of the vector primer were mixed with 50 mM Tris-HCJ!
(p)18.3), 8mM MgCL, 30mM
KCf.

OJmM DTT、 2mM d NTP (dATP
、 dTTP、 dGTPおよびdCTP)および10
単位のりポヌクレアーゼインヒビター(P−L Bio
chemicals社製)からなる溶液22.3dに溶
解し、10単位の逆転写酵素(生“イヒ学工業社製)を
加゛え、41t90分間インキコベートし、mRNAに
相補的なりNAを合成させた。該反応物をフェノール−
クロロホルム抽出、エタノール沈澱を行い、RNA−D
NA二重鎖の付加したベクターブライマーDNAを回収
した。該DNAを66pM dCTPおよび0.2■ポ
リ(A)を含むTdT緩衡液204に溶かし、14単位
のT d T (P−L Biochemicals社
製)を加えて37℃2分間インキコベートし、cDNA
3’末端に20個の(dC) 鎖を付加した。該反応物
をフェノール−クロロホルム抽出し、エタノール沈澱に
より(dC)鎖の付加したcDNA−ベクターブライマ
ーDNAを回収した。該DNAを10mMTris−H
Cj! (pH7,5) 、6mM M g C12お
よび60mMNac1からなる液4004に溶かし、2
0単位のHindI[[を加え、37℃2時間インキュ
ベートし、HindI[部位で切断した。該反応物をフ
ェノール−クロロホルム抽出、エタノール沈澱して0.
5ピコモルの(dC)鎮付加c D N A−ベクター
ブライマーDNAを得た。該D N A 0.2ピコモ
ルおよび前記のリンカ−D N A 0.4ピコモルを
10mM Tris−)ICj! (p)17.5) 
、0. I M  NaC1’および1mM  EDT
Aからなる溶液100mに溶かし、65℃、42℃、0
℃でそれぞれ10分、25分、30分間インキュベート
した。20mM Tris−)ICj!(pH7,5)
 、4mM M g Cl 2.10mM (NH4)
2SO4,0,1M  K(lおよび0.1mMβ−N
ADの組成で、全量1000dとなるよう反応液を調製
した。該反応液に25単位の大腸菌DNAIJガーゼに
ューイングランド・バイオラブズ社製)を加え、1lt
18時間インキュベートした。該反応液を各40μMの
dNTP、 0.15mM  β−NADとなるよう成
分を追加調製し、10単位の大腸菌DNAIJガーゼ、
20単位の大腸菌DNAポリメラーゼI(P−L Bi
ochemicals社製)およびlO単位の大腸菌リ
ボヌクレアーゼH(P−L Biochemicals
社製)を加え、12℃、25℃で順次1時間ずつインキ
ュベートした。上記反応で、cDNAを含む組換えDN
Aの環状化と、RNA−DNA二重鎖のRNA部分がD
NAに置換され、完全な二重鎖DNAの組換え体プラス
ミドが生成した。
OJmM DTT, 2mM dNTP (dATP
, dTTP, dGTP and dCTP) and 10
Unit glue ponuclease inhibitor (P-L Bio
10 units of reverse transcriptase (manufactured by Ihigaku Kogyo Co., Ltd.) was added thereto and incubated for 90 minutes to synthesize NA complementary to the mRNA. The reactant is converted into phenol-
After chloroform extraction and ethanol precipitation, RNA-D
Vector brimer DNA with an added NA double strand was recovered. The DNA was dissolved in TdT buffer 204 containing 66 pM dCTP and 0.2 μM poly(A), and 14 units of T d T (manufactured by P-L Biochemicals) was added and incubated at 37° C. for 2 minutes.
Twenty (dC) strands were added to the 3' end. The reaction product was extracted with phenol-chloroform, and the cDNA-vector primer DNA with the (dC) chain added was recovered by ethanol precipitation. The DNA was diluted with 10mM Tris-H.
Cj! (pH 7.5), dissolved in solution 4004 consisting of 6mM Mg C12 and 60mM Nacl, and
Added 0 units of HindI[[, incubated for 2 hours at 37°C, and cut at the HindI[[] site. The reaction product was extracted with phenol-chloroform and precipitated with ethanol.
Five pmoles of (dC)-adducted cDNA-vector primer DNA was obtained. 0.2 pmol of the D N A and 0.4 pmol of the linker D N A in 10 mM Tris-)ICj! (p)17.5)
,0. IM NaCl' and 1mM EDT
Dissolved in 100ml of solution consisting of A, 65℃, 42℃, 0
The cells were incubated at ℃ for 10 minutes, 25 minutes, and 30 minutes, respectively. 20mM Tris-)ICj! (pH 7,5)
, 4mM MgCl 2.10mM (NH4)
2SO4,0,1M K(l and 0.1mM β-N
A reaction solution was prepared with the composition of AD so that the total amount was 1000 d. Add 25 units of Escherichia coli DNAIJ gauze (manufactured by New England Biolabs) to the reaction solution, and add 1 lt.
Incubated for 18 hours. Components were added to the reaction solution to give 40 μM each of dNTP and 0.15 mM β-NAD, and 10 units of E. coli DNA IJ gauze,
20 units of E. coli DNA polymerase I (P-L Bi
(manufactured by P-L Biochemicals) and lO units of E. coli ribonuclease H (P-L Biochemicals)
(manufactured by Nippon Steel & Co., Ltd.) and incubated at 12°C and 25°C for 1 hour each. In the above reaction, recombinant DNA containing cDNA
Circularization of A and the RNA portion of the RNA-DNA duplex become D
A complete double-stranded DNA recombinant plasmid was generated by replacing the DNA with NA.

(3)  ヒトt−PA−cDNAを含む組換えDNA
の選択: 次に、コロニー・ハイブリダイゼーションを用い、ヒト
t−PA−cDNA (ペニカ(Pennicaら:ネ
イチ+−(Nature) 301.214(1983
) ]の]t−PAシグナルペプチド領の一部の塩基配
列と一致する塩基の合成りNA 5′−^TGGATGCAATGAAGAGAGGGC
TCTGCTGT−3’を32pで標識したプローブと
会合するクローンとして、t−PA−cDNAを以下の
ようにして選択した。
(3) Recombinant DNA containing human t-PA-cDNA
Selection of human t-PA-cDNA (Pennica et al.: Nature 301.214 (1983)) using colony hybridization.
)] Synthesis of a base that matches a part of the base sequence of the t-PA signal peptide region NA 5'-^TGGATGCAATGAAGAGAGGGC
t-PA-cDNA was selected as a clone that associates with the 32p-labeled probe of TCTGCTGT-3' in the following manner.

まず、(2)で得た組換え体プラスミドを用い、大腸菌
C6003F8株〔カメo ン(Cameron)ニプ
ロシーディング・オン・ザ・ナショナル・アカデミイ・
オン・サイエンス(Proc、 Natl。
First, using the recombinant plasmid obtained in (2), E. coli C6003F8 strain [Cameron Seeding on the National Academy]
On Science (Proc. Natl.

^cad、Sci、) USA 72.3416(19
75))をハナハンの方法01anahan:ジャーナ
ル・オン・モレキュラー・バイオロジー(JoMol、
Biol、) 、166.557(1983) )に従
い形質転換した。得られた約10、000個のコロニー
をハナハンとメセルソンの方法[Hanahan an
d Meselson :メソッド6イン・エンザイモ
ロン−(Methods in Enzymology
)100 、333(1983) )に従い、ニトロセ
ルロース・フィルター上に固定した。次に、フィルター
のプレハイブリダイゼーションは、6 XNETC1x
 NE!T=150mM N a C1、15mM T
ris−HIJ(pH7,5) 、1mM EDTAI
 、toxデンハルト(Denhardt)液、および
10hg/m+の断片化した大腸菌染色体DNAを含む
溶液中、65℃、4時間またはそれ以上の時間行った。
^cad, Sci,) USA 72.3416 (19
75)) Hanahan's method 01anahan: Journal on Molecular Biology (JoMol,
Biol, ), 166.557 (1983)). Approximately 10,000 colonies obtained were collected using the method of Hanahan and Meselson.
d Meselson: Methods in Enzymology
) 100, 333 (1983)) and fixed on nitrocellulose filters. Next, prehybridization of the filter was carried out using 6 XNETC1x
NE! T = 150mM N a C1, 15mM T
ris-HIJ (pH 7,5), 1mM EDTAI
, tox Denhardt solution, and 10 hg/m+ of fragmented E. coli chromosomal DNA at 65° C. for 4 hours or longer.

このプレハイブリダイゼーション溶液に上述の3.2P
で標識したプローブを加え、フィルター上のDNAと会
合させたく65℃、16時間以上)。次に、フィルター
を6xSSC(IXSSC=150mM NaC!!、
15mMクエン酸ナトリウム)で2回洗浄しく室温、5
分間ずつ)、65℃の2XSSCと0.1%SO8を含
む液で30分間洗浄した。さらに65℃の2xSSCと
0.1%SDSを含む液で15分間洗浄した後、6XS
SCで室温で2回洗浄した(5分間ずつ)。フィルター
を空気乾燥した後、オートラジオグラフィーにより陽性
クローン1個を同定した。この陽性クローンが持つプラ
スミドptPA7のcDNAの塩基配列を、M13ファ
ージを用いたデイデオキシ・シーフェンス法により決定
した。その結果、ptPA7のcDNAは、ペニカらが
報告したt−PAのアミノ酸配列[Penn1caら:
ネイチ+ −(Nature) 301゜214(19
83) ]と完全に一致するt−PAをコードしている
ことが判明した。ただし、成熟型t−PAの95番目の
アスパラギン酸のコドン(GAC)と51212番目レ
オニンのコドン(ACΔ)がそれぞれGAT%ACCに
なっていることがわかった。
Add the above 3.2P to this prehybridization solution.
(65°C for at least 16 hours) to allow it to associate with the DNA on the filter. Next, filter the filter with 6xSSC (IXSSC=150mM NaC!!,
Wash twice with 15mM sodium citrate) at room temperature for 5 minutes.
2×SSC and 0.1% SO8 at 65° C. for 30 minutes. After further washing for 15 minutes with a solution containing 2xSSC and 0.1% SDS at 65°C,
Washed twice (5 minutes each) with SC at room temperature. After air drying the filter, one positive clone was identified by autoradiography. The base sequence of the cDNA of plasmid ptPA7 possessed by this positive clone was determined by the deideoxy-Siefens method using M13 phage. As a result, the cDNA of ptPA7 was found to have the amino acid sequence of t-PA reported by Pennica et al.
Nature + - (Nature) 301°214 (19
83)] was found to encode t-PA, which completely matches t-PA. However, it was found that the 95th aspartic acid codon (GAC) and the 51212th leonine codon (ACΔ) of mature t-PA were each GAT%ACC.

この菌株は、Escherichia col iE 
t P A 7FERM  BP−1467として、微
工研に寄託されている。
This strain is Escherichia coliE
It has been deposited with the Institute of Fine Technology as tPA7FERM BP-1467.

参考例2゜ ヒトpro−UK c D N Aを運ぶプラスミドp
LIKlの造成: 参考例1で作成したDetroit 562細胞のcD
NAライブラリーをコロニー・ハイブリダイゼーション
法によりスクリーニングし、ヒトpro−UKcDNA
クローンを単離した。すなわち、まず、参考例1で得た
組換え体プラスミドを用い、大腸菌C600SF8株〔
カメロン(Camerom)  :プロシーディング・
オン・ザ・ナショナル・アカデミイ・オン・サイエンス
(Proc、 Natl、Acad。
Reference example 2゜Plasmid p carrying human pro-UK cDNA
Construction of LIKl: cD of Detroit 562 cells created in Reference Example 1
The NA library was screened by colony hybridization method and human pro-UK cDNA
A clone was isolated. That is, first, using the recombinant plasmid obtained in Reference Example 1, E. coli C600SF8 strain [
Cameron: Proceedings
On the National Academy of Sciences (Proc, Natl, Acad.

Sci、) LISA 72.3416(1975))
をハナハンの方法[)1anahan :ジャーナル・
オン・モレキュラー・バイオロジー(J8Mol、 B
iol、) 、166 、557(1983)]に従い
形質転換した。得られた約30.000個のコロニーを
ハナハンとメセルソンの方法CHanahan and
 Meselson :メソッド6イン1エンザイーT
−Clジー(Method in [inzymolo
gy) 100 。
Sci,) LISA 72.3416 (1975))
Hanahan's method [)1anahan: Journal
On Molecular Biology (J8Mol, B
iol, ), 166, 557 (1983)]. Approximately 30,000 colonies were obtained using the method of Hanahan and Meselson.
Meselson: Method 6-in-1 enzyme T
-Cl G (Method in [inzymolo
gy) 100.

333(1983) ]に従い、ニトロセルロース・フ
ィルター上に固定した。次に、フィルターのプレハイブ
リダイゼーションは、6xNET110xデンハルト(
口enhardt)液、および100 ag /ln 
lの断片化した大腸菌染色体DNAを含む溶液中、65
℃、4時間またはそれ以上の時間行った。
333 (1983)] on nitrocellulose filters. Next, prehybridization of the filter was carried out using 6x NET110x Denhardt (
oral enrichment) fluid, and 100 ag/ln
in a solution containing 65 l of fragmented E. coli chromosomal DNA.
℃ for 4 hours or longer.

次に、ヒトpro−LIKc DN A Cホルムズ(
Holmes)ら:バイオテクノロジー(Bio/Te
chnology) 3 。
Next, human pro-LIKc DNA Holmes (
Holmes et al.: Biotechnology (Bio/Te
chnology) 3.

923 (1985) )のクリングル領域の一部の塩
基配列と一致する41塩基の合成りNA 5’−GGGAATGGTCACTTTTACCGAG
GAAAGGCCAG(:ACTGACAC−3’(本
発明者らが単離したヒトpro−11Kc D N A
についていえば、第5表中の下線を付した塩基配列に相
当する)を32pで標識したプローブを、上のプレハイ
ブリダイゼーション溶液に加え、フィルター上のDNA
と会合させたく65℃、16時間以上)。次に、フィル
ターを6xSSCで2回洗浄した(室温、5分間ずつ)
後、1×SSCとO,1%SDSを含む57℃の液で3
0分間洗浄した。さらにlX5SCと0.1%SDSを
含む57℃の液で15分間洗浄した後、6XSSCで2
回洗浄した(室温、5分間ずつ)。フィルターを空気乾
燥した後、オートラジオグラフィーにより陽性クローン
1個を同定した。この陽性クローンが持つプラスミドp
UKlのc DNAの塩基配列を、M13ファージを用
いたデイデオキシ・シーフェンス法により決定した(第
5表)。
A 41-base synthetic NA 5'-GGGAATGGTCACTTTACCGAG that matches the base sequence of a part of the kringle region of 923 (1985))
GAAAGGCCAG(:ACTGACAC-3') Human pro-11Kc DNA isolated by the present inventors
Specifically, a probe labeled with 32p (corresponding to the underlined base sequence in Table 5) was added to the above prehybridization solution, and the DNA on the filter was added to the prehybridization solution.
(65℃ for 16 hours or more). The filters were then washed twice with 6x SSC (room temperature, 5 minutes each).
After that, incubate with a 57°C solution containing 1x SSC, O, and 1% SDS.
Washed for 0 minutes. After further washing with a 57°C solution containing 1X5SC and 0.1% SDS for 15 minutes, 2X with 6XSSC.
Washed twice (room temperature, 5 minutes each). After air drying the filter, one positive clone was identified by autoradiography. Plasmid p carried by this positive clone
The base sequence of UKl cDNA was determined by the deideoxy-Siefens method using M13 phage (Table 5).

その結果、pUKlのcDNAは第5表のpro−Uに
のアミノ酸残基の番号付けに従った場合、pr。
As a result, the cDNA of pUKl is pr when following the amino acid residue numbering for pro-U in Table 5.

−〇にの41番目のCys残基より下流のpro−uに
の翻訳領域および3′非翻訳領域をコードしていること
が明らかになった。pUKlのcDNAがコードしてい
るpro−LIKのアミノ酸配列は、ホルLX ラ[t
lolmesら:バイオテクノロジー(Bio/Tec
hnology)3.923(1985) ]の報告し
たものと一致していたが、以下に示す4つのアミノ酸の
コドンの3番目の塩基が異なっていた。
It was revealed that it encodes the pro-u translated region and 3' untranslated region downstream from the 41st Cys residue at -〇. The amino acid sequence of pro-LIK encoded by pUKl cDNA is
lolmes et al.: Biotechnology (Bio/Tec
hnology) 3.923 (1985)], but the third base of the four amino acid codons shown below was different.

254番目のアミノ酸Asn  : AAC−4AAT
340番目のアミノ酸Leu  :CTA−4CTG3
45番目のアミノ酸Pro  : CCC−CCA34
6番目のアミノ酸Gln  :CAA−CAGこの菌株
は、Escherichia coli  E U K
 IFERM  BP−1463)として、微工研に寄
託されている。
254th amino acid Asn: AAC-4AAT
340th amino acid Leu: CTA-4CTG3
45th amino acid Pro: CCC-CCA34
6th amino acid Gln: CAA-CAG This strain is Escherichia coli EUK
IFERM BP-1463) has been deposited with the Institute of Fine Technology.

参考例3゜ ヒトpro−IJK c D N Aを運ぶプラスミド
pUKIIの造成: 参考例2で得られたプラスミドpUK1がコードしてい
るpro−tlにcDNAはpro−Uにのシグナル領
域と成長因子メトイン領域を含んでいないので、以下に
示す手順を用いて、これらの領域を含むcDNAのクロ
ーン化を行った。
Reference Example 3 Construction of plasmid pUKII carrying human pro-IJK cDNA: The pro-tl cDNA encoded by the plasmid pUK1 obtained in Reference Example 2 contains the signal region of pro-U and the growth factor metoin. Since these regions were not included, cDNAs containing these regions were cloned using the procedure shown below.

まず、cDNAのクローン化に用いるベクターpCCK
2の造成を以下のようにして行った。
First, the vector pCCK used for cDNA cloning
2 was constructed as follows.

(1)  組換えプラスミドpCCK 1の造成:桑野
らが造成した、ラット脳コレシストキニン(CCK、前
駆体のcDNAを有するプラスミドpRc19[:桑野
ら:ジャーナル・オン・バイオケミストリー(J、Bi
ochem、) 96.923−926(1984))
を持つ大腸菌H8101株を培養し、培養菌体から常法
によりpRc19DNAを調製した。得られたpRc1
9DNA約3■を30頭のY−50緩衝液に溶かし、1
単位のpvuIIを加え、37℃で1時間消化反応を行
った。この反応により、DNAはPvuIIにより部分
的に消化された。
(1) Construction of recombinant plasmid pCCK 1: Plasmid pRc19 containing cDNA of rat brain cholecystokinin (CCK, precursor) constructed by Kuwano et al. [: Kuwano et al.: Journal on Biochemistry (J, Bi
ochem,) 96.923-926 (1984))
Escherichia coli H8101 strain having the following was cultured, and pRc19 DNA was prepared from the cultured cells by a conventional method. The obtained pRc1
Dissolve approximately 3 μ of 9 DNA in 30 Y-50 buffer solutions and add 1
One unit of pvuII was added and the digestion reaction was carried out at 37°C for 1 hour. This reaction resulted in partial digestion of DNA by PvuII.

65℃、10分間の熱処理後、AFT法を用い、約53
0bPのDNA断片を精製した。一方、ノルランダーら
が造成したプラスミドDNApUC19[Norran
der、 J、 ら:ジーン(Gene)26.10H
1983):pUC19プラスミドDNAは宝酒造社よ
り人手できる〕約1.を20mMK Clを含むy−o
a衝液液30JJJt溶かし、16単位のSmalを加
え、30℃で2時間消化反応を行った。65℃、10分
間の熱処理後、AFT法を用い、約2.7 KbのDN
A断片を精製した。
After heat treatment at 65°C for 10 minutes, approximately 53
A 0bP DNA fragment was purified. On the other hand, plasmid DNA pUC19 [Norran
der, J. et al.: Gene 26.10H
1983): pUC19 plasmid DNA can be obtained manually from Takara Shuzo Co., Ltd.] Approximately 1. yo containing 20mM KCl
30JJJt of a buffer solution was dissolved, 16 units of Smal was added, and the digestion reaction was performed at 30°C for 2 hours. After heat treatment at 65°C for 10 minutes, approximately 2.7 Kb DN was obtained using the AFT method.
The A fragment was purified.

このようにして得られたpRc19由来の約530bp
のDNA断片(約0.01Jig)とp U C19由
来(7)約2.7Kb17)DNA断片(約0.05N
)とを204のT4’Jガーゼ緩衝液に溶かし、200
単位のT4DNA!Jガーゼを加え、4℃で18時間結
合反応を行った。
Approximately 530 bp derived from pRc19 obtained in this way
DNA fragment (approximately 0.01Jig) and pU C19-derived (7) approximately 2.7Kb17) DNA fragment (approximately 0.05N
) in 204 T4'J gauze buffer,
Unit T4DNA! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNA。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA from this transformed strain.

pCCKlを単離し、制限酵素による構造解析を行った
ところ、目的の構造を有することを確認した(第15図
参照)。
When pCCKl was isolated and subjected to structural analysis using restriction enzymes, it was confirmed that it had the desired structure (see Figure 15).

(2)組換え体プラスミドpCCK2の造成二上で得ら
れたpCCK1プラスミドDNA約2■を30dのY−
0緩衝液に溶かし、12単位の5aclを加え、37℃
で2時間消化反応を行った。
(2) Construction of recombinant plasmid pCCK2 Approximately 2 cm of pCCK1 plasmid DNA obtained above
0 buffer, add 12 units of 5ACl, and incubate at 37°C.
Digestion reaction was carried out for 2 hours.

さらに、1.5犀の2M NaCj!と10単位のBa
mHIを加え、37℃で2時間消化反応を行った。65
℃、10分間の熱処理後、AFT法を用いて約0.55
KbのDNA断片を精製した。一方、後述の参考例5で
得られたpTrS33プラスミドDNA約2■を上と同
じ反応に供し、生じた約2.85Kbの5acl −B
amHI断片をAFT法を用いて精製した。
Furthermore, 2M NaCj of 1.5 rhinoceroses! and 10 units of Ba
mHI was added and the digestion reaction was carried out at 37°C for 2 hours. 65
After heat treatment at ℃ for 10 minutes, approximately 0.55 using AFT method.
The Kb DNA fragment was purified. On the other hand, approximately 2 cm of pTrS33 plasmid DNA obtained in Reference Example 5 described below was subjected to the same reaction as above, and the resulting approximately 2.85 Kb 5acl-B
The amHI fragment was purified using the AFT method.

このようにして得られたpCCKI由来の約0.55に
bのDNA断片(約0.024)とpTrS33由来の
約2.85にbのDNA断片(約0.1■)とを20d
のT4リガーゼ緩衡液に溶かし、50単位のT 4 D
NA !Jガーゼを加え、4℃で18時間結合反応を行
った。
The approximately 0.55-b DNA fragment (approximately 0.024) derived from pCCKI thus obtained and the approximately 2.85-b DNA fragment (approximately 0.1■) derived from pTrS33 were added for 20 d.
of T4 ligase buffer and 50 units of T4D
NA! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、^p耐性株を得た。この形
質転換株からプラスミドDNAIIICCに2を単離し
、制限酵素による構造解析を行ったところ、目的の構造
を有することを確認した(第16図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain a ^p-resistant strain. Plasmid DNAIIICC 2 was isolated from this transformed strain, and structural analysis using restriction enzymes confirmed that it had the desired structure (see Figure 16).

(3)  ヒトpro−LIKc D N Aを運ぶプ
ラスミドpUK11の単離: 参考例1で調製したDetroit 562細胞のポリ
(A)RNA (mRNA)約8# C’7dの10m
MTris−HCI (pH7,5)−0,5mM E
DTAに溶解されている〕を65℃で10分間加熱した
後、水中で急冷した。
(3) Isolation of plasmid pUK11 carrying human pro-LIKc DNA: Poly(A) RNA (mRNA) of approximately 8#C'7d 10m of Detroit 562 cells prepared in Reference Example 1
MTris-HCI (pH 7,5)-0,5mM E
[dissolved in DTA] was heated at 65° C. for 10 minutes and then rapidly cooled in water.

この溶液を、50mM  Tris−)1cJ! (p
H8,3) 、8mMMgC12,30o+MKC1,
5mM  DTT、lmMd N T P (dATP
 、 dTTPSdGTPおよびdCTP)、lO単位
のりボヌクレアーゼインヒビ9− (P−LBioch
emicals社製)、および5g/mlオリゴ(dT
)+2−1゜(コラボレーティブ社製) (全量80頭
)となるように調整した後、41℃で15分間保温した
。次いで、20単位の逆転写酵素(生化学工業社製)を
加え、4Fで90分間保温し、mRNAに相補的なcD
NAを合成した。該反応物をフェノール−クロロホルム
抽出、エタノール沈澱を行った後、404の0.3M 
 NaOHに溶かし、37℃に15時間放置することに
よって、mRNAを加水分解した。次に、lO−のIM
Tris−HCl(p!47.5)と40−の0.3N
  t((Jを加えて中和した後、1木調 cDNAを
エタノール沈澱によって回収し、28.5dのH2Cに
溶解した。
This solution was mixed with 50mM Tris-)1cJ! (p
H8,3), 8mM MgC12,30o+MKC1,
5mM DTT, lmMdNTP (dATP
, dTTPSdGTP and dCTP), lO units of bonuclease inhibitor 9- (P-LBioch
manufactured by chemicalls), and 5g/ml oligo (dT
)+2-1° (manufactured by Collaborative) (total amount: 80 animals), and then kept warm at 41° C. for 15 minutes. Next, 20 units of reverse transcriptase (manufactured by Seikagaku Corporation) was added and incubated at 4F for 90 minutes to extract cD complementary to mRNA.
NA was synthesized. After performing phenol-chloroform extraction and ethanol precipitation of the reaction product, 0.3M of 404
The mRNA was hydrolyzed by dissolving it in NaOH and standing at 37°C for 15 hours. Next, the IM of lO−
Tris-HCl (p! 47.5) and 0.3N of 40-
After neutralization by adding t((J), Ichiki-like cDNA was recovered by ethanol precipitation and dissolved in 28.5 d of H2C.

この溶液を、50+++M Tris−11cj! (
p)18.3) 、8mMMgC1,,30mM  K
Cj!、5mM  DTT、1mM  dNTP (d
ATP、dTTP、dGTPおよびdCTP) 、およ
び2.5■/m+合成りNAブライマーCATGAGA
GCCCTGCTGG (ヒトpro−ロにのシグナル
・ペプチド領域の一部の塩基配列と一致する) (全量
404)となるように調整した後、65℃で10分間、
続いて41℃で30分間保温した。
This solution was added to 50+++M Tris-11cj! (
p) 18.3) , 8mM MgC1,, 30mM K
Cj! , 5mM DTT, 1mM dNTP (d
ATP, dTTP, dGTP and dCTP), and 2.5/m+ synthetic NA primer CATGAGA
GCCCTGCTGG (matches the nucleotide sequence of part of the signal peptide region of human pro-ro) (total amount 404), and then incubated at 65°C for 10 minutes.
Subsequently, the mixture was kept at 41° C. for 30 minutes.

次いでlO単位の逆転写酵素を加え、41℃で60分間
保温することにより、1重鎮cDNAを2本jilcD
NAに変換した。該反応物をフェノール−クロロホルム
抽出、エタノール沈澱を行った後、25mM  NaC
1を含むY−011衡液30〃に溶かし、25単位のB
s5H■ に二−イングランドバイオラブズ社製)を加
え、50℃で2時間消化反応を行った。さらに、1.2
5−の2MNaC1と12単位のBamHIを加え、3
7℃で2時間消化反応を行った。65℃、10分間の加
熱後、AFT法を用いて約1.1〜1.4にbのcDN
A断片を精製した。
Next, by adding 10 units of reverse transcriptase and incubating at 41°C for 60 minutes, two single-layer cDNAs were isolated.
Converted to NA. The reaction product was subjected to phenol-chloroform extraction and ethanol precipitation, and then 25mM NaC
Dissolve 25 units of B in Y-011 equilibration solution containing 1.
(manufactured by England Biolabs) was added to s5H■, and a digestion reaction was carried out at 50°C for 2 hours. Furthermore, 1.2
Add 5-2M NaCl and 12 units of BamHI,
Digestion reaction was carried out at 7°C for 2 hours. After heating at 65°C for 10 minutes, the cDNA of b was approximately 1.1 to 1.4 using the AFT method.
The A fragment was purified.

一方、上で得られたpCCK2プラスミドDNA約2■
を上と同様にBs5HIIとBamHIで切断した後、
AFT法を用いて約2.9にbのBs5HII −Ba
mHI断片を精製した。
On the other hand, the pCCK2 plasmid DNA obtained above
After cutting with Bs5HII and BamHI in the same manner as above,
Bs5HII-Ba of about 2.9 b using the AFT method
The mHI fragment was purified.

このようにして得られた約1.1〜1.4にbのcDN
A断片(約0.02g)とpCCK2由来の約2.9に
bのDMA断片(約0.05■)とを20戚のT4リガ
ーゼ緩衡液に溶かし、200単位の74DNAIJガー
ゼを加え、4℃で18時間結合反応を行った。
The cDNA of approximately 1.1-1.4 b obtained in this way
Dissolve the A fragment (about 0.02 g) and the pCCK2-derived DMA fragment of about 2.9 and b (about 0.05 μg) in 20-family T4 ligase buffer, add 200 units of 74 DNA IJ gauze, and add 4 The binding reaction was carried out for 18 hours at °C.

得られた組換えプラスミド混合物を用いて、大腸菌C6
005F8株を形質転換することにより、約25.00
0個の^p耐性株を取得し、これらの^p耐性株の中か
ら、参考例2に述べたコロニ、ハイブリダイゼーション
法を用いて、参考例2でpro−UKcDNAの単離に
用いたプローブと同一のプローブと会合する陽性クロー
ンを約1000個取得した。なお、ハイブリダイゼーシ
ョンおよびフィルターの洗浄条件は参考例2と同様であ
った。このようにして得られた陽性クローン1株が持つ
プラスミドpUK11(第17図参照)を単離し、pr
o−11にのシグナル・ペプチド、成長因子ドメイン、
クリングル・ドメイン領域の塩基配列をM13ファージ
を用いたデイデオキシ・シーフェンス法により決定した
。その結果、その塩基配列は、ホルムズ(llolme
sら:バイオテクノロジー(Bio/Technolo
gy) 3 、923(1985) )の報告したもの
と一致していた。
Using the obtained recombinant plasmid mixture, E. coli C6
By transforming the 005F8 strain, approximately 25.00
0 ^p-resistant strains were obtained, and from among these ^p-resistant strains, the probe used in the isolation of pro-UK cDNA in Reference Example 2 was extracted using the colony hybridization method described in Reference Example 2. Approximately 1000 positive clones associated with the same probe were obtained. Note that the hybridization and filter washing conditions were the same as in Reference Example 2. Plasmid pUK11 (see Figure 17) carried by the 1 positive clone thus obtained was isolated, and pr
o-11 signal peptide, growth factor domain,
The nucleotide sequence of the kringle domain region was determined by the deideoxy-Siefens method using M13 phage. As a result, the base sequence was llolme
s et al.: Bio/Technolo
gy) 3, 923 (1985)).

参考例4゜ hG−CSFcDNAを運ぶプラスミドpcSFl−2
およびpCSF2の造成 (1)正常人末梢血マクロファージからのポリ(A)R
NAの調製: 正常人の末梢血より遠心分離して得た白血球をプラスチ
ックボトルで培養し、非接着性の細胞を洗浄・除去する
ことにより、接着性の細胞であるマクロファージを単離
した。このマクロファージより、チオシアン酸グアニジ
ン−塩化リチウム法〔カサラ(Cathala) らニ
ディーエヌエイ (DNA) 2.329 (1983
) )に従い、ポリ(A)を有するRNAを下記のごと
く調製した。
Reference example 4゜Plasmid pcSFl-2 carrying hG-CSF cDNA
and construction of pCSF2 (1) Poly(A)R from normal human peripheral blood macrophages
Preparation of NA: White blood cells obtained by centrifugation from the peripheral blood of a normal person were cultured in a plastic bottle, and macrophages, which are adhesive cells, were isolated by washing and removing non-adherent cells. From this macrophage, the guanidine thiocyanate-lithium chloride method [Cathala et al. DNA 2.329 (1983)
) RNA having poly(A) was prepared as follows.

正常人の末梢血400m1を)Iitachi RPR
IOローターにて1800rpm、20分間遠心して血
球を沈殿させ、これを50m1!Iン酸緩衝食塩水CN
aC18g/l、KCl 0.2g/l、無水NaaH
PO* 1.15g/L KH2PO40,2g/l 
(pH7,2);以下PBSと略記する〕に懸濁した。
400ml of peripheral blood from a normal person) Iitachi RPR
Centrifuge at 1800 rpm for 20 minutes in an IO rotor to precipitate blood cells, and collect 50ml of this! I phosphate buffered saline CN
aC18g/l, KCl 0.2g/l, anhydrous NaaH
PO* 1.15g/L KH2PO40.2g/L
(pH 7.2; hereinafter abbreviated as PBS)].

この懸濁液25m1をリンパ球分離液〔ピオネティクス
(81ON[!TlC5)社製〕25m1に重層し、H
itachi RPRIOo−ターにて180゜rpm
 、30分間遠心した。中間層の白血球を分取し、等量
のPBSで洗浄(Hitachi RPRIO。
25 ml of this suspension was layered on 25 ml of lymphocyte separation solution [manufactured by Pionetics (81ON [!TlC5)], and
180°rpm at itachi RPRIOo-ter
, and centrifuged for 30 minutes. Separate the white blood cells in the middle layer and wash with an equal volume of PBS (Hitachi RPRIO).

−ターにて150orpm、10分間)した後、5%の
仔牛脂児血清を含む20m1のRPM11640培地(
日永製薬社製)に、懸濁し培養した。
- 150 rpm for 10 minutes), then 20 ml of RPM11640 medium containing 5% calf fat serum (
(manufactured by Hinaga Pharmaceutical Co., Ltd.) and cultured.

培養には組織培養用フラスコ(コーニング社製)を用い
た。37℃で1.5時間培養した後、培養上清を非接着
性の細胞とともに除去した。新たに20m1の同培地と
大腸菌リポ多糖(LPS)を0.3 mg/m+となる
ように加え、さらに37℃で4時間培養した。次いで、
培養液より1.100X g、4℃、10分間の遠心に
よって細胞を集め、80m1のPBSで洗浄した後、5
Mチオシアン酸グアニジン、lomM  EDTA、 
50mM  Tr i 5−HCI (pH7>および
8%(v/v) 2−メルカプトエタノールからなる溶
液10m1中でポルテックス・ミキサーを用い可溶化し
た。この可溶化物を遠心管に移し4MLiCf溶液80
m1を加えて撹拌した後、4℃、20時間静置した。
A tissue culture flask (manufactured by Corning) was used for culture. After culturing at 37°C for 1.5 hours, the culture supernatant was removed together with non-adherent cells. Another 20 ml of the same medium and Escherichia coli lipopolysaccharide (LPS) were added at a concentration of 0.3 mg/m+, and the mixture was further cultured at 37°C for 4 hours. Then,
Cells were collected from the culture medium by centrifugation at 1.100 x g and 4°C for 10 minutes, washed with 80 ml of PBS, and then
M guanidine thiocyanate, lomM EDTA,
Solubilized in 10 ml of a solution consisting of 50 mM Tri 5-HCI (pH 7> and 8% (v/v) 2-mercaptoethanol) using a Portex mixer. The solubilized material was transferred to a centrifuge tube and 80 ml of 4 M LiCf solution was added.
After adding m1 and stirring, the mixture was allowed to stand at 4°C for 20 hours.

Hitachi RPRIOローターにて9.00 O
rpm 、 90分間遠心後、RNAを沈殿として回収
した。RNAの沈殿を4M尿素および2M塩化リチウム
からなる溶液50m1に懸濁し、flitachi R
PRIOローターにて9.00 Orpm、 60分間
遠心後、再びRNAを沈殿として回収した。
9.00 O with Hitachi RPRIO rotor
After centrifugation at rpm for 90 minutes, RNA was collected as a precipitate. The RNA precipitate was suspended in 50 ml of a solution consisting of 4 M urea and 2 M lithium chloride, and
After centrifugation in a PRIO rotor at 9.00 Orpm for 60 minutes, RNA was recovered as a precipitate.

RNAの沈殿を0.1%ラウリル硫酸ナトリウム、1m
M EDTA、10mM  Tr i 5−HCl (
pH7,5)からなる溶液10m1に溶解し、フェノー
ル−クロロホルムで抽出後、エタノール沈殿により回収
した。得られたRNA約0、8 mgを10mM  T
r i 5−HCl (pH8,0)および1mM  
EDTAからなる溶液1mlに溶かした。65℃、5分
間インキュベ〒トし、0.1mlの5M  NaCJを
加えた。混合物をオリゴ(dT)セルロース・カラム〔
ピー・エル・バイオケミカル(P−L Biochem
ica+)社製〕クロマトグラフィー(カラム体積0.
5m1)にかけた。吸着したポIJ(A)を有するmR
NAを10mM  Tr i 5−HCl(pH7,5
)および1mM  EDTAからなる溶液で溶出し、ポ
リ(A)を有するmRNA約30■を得た。
Precipitate the RNA with 0.1% sodium lauryl sulfate, 1 m
MEDTA, 10mM Tri5-HCl (
It was dissolved in 10 ml of a solution consisting of pH 7.5), extracted with phenol-chloroform, and recovered by ethanol precipitation. Approximately 0.8 mg of the resulting RNA was added to 10 mM T
r i 5-HCl (pH 8,0) and 1mM
It was dissolved in 1 ml of a solution consisting of EDTA. After incubating at 65°C for 5 minutes, 0.1 ml of 5M NaCJ was added. The mixture was applied to an oligo(dT) cellulose column [
P-L Biochem
ica+) chromatography (column volume 0.
5ml). mR with adsorbed poIJ(A)
NA was diluted with 10mM Tri 5-HCl (pH 7,5
) and 1 mM EDTA to obtain about 30 μm of mRNA containing poly(A).

(2)  c D N A合成と該cDNAのベクター
への挿入:オカヤマーバーグ(Okayama−Ber
g)の方法〔モレキュラー・アンド・セルラー・バイオ
ロンイ(Mol、Ce11.Bio+、)、  2.1
61 (1982))に従い、cDNAの合成とそれを
組み込んだ組換え体プラスミドの造成を行った。その工
程の概略を第14図に示す。
(2) cDNA synthesis and insertion of the cDNA into a vector: Okayama-Berg (Okayama-Berg)
Method g) [Molecular and Cellular Biolon (Mol, Ce11.Bio+,), 2.1
61 (1982)), cDNA was synthesized and a recombinant plasmid incorporating it was constructed. An outline of the process is shown in FIG.

上記で調製したポ!I (A)RNA約3μg、ベクタ
ーブライマー約1.4μgを50mM Tr i 5H
Cj2(pH8,3)、8mM MgCl12゜30m
M  KCj!、0.3mM  DTT、2mMaNT
P (dATP、dTTP、aGTPおよびdCTP)
および10単位のりボヌクレアーゼインヒビター(P−
L Biochemicals社製)からなる溶液22
.3 mに溶解し、10単位の逆転写酵素(生化学工業
社製)を加え、41℃90分間インキュベートし、mR
NAに相補的なりNAを合成させた。該反応物をフェノ
ール−クロロホルム抽出、エタノール沈殿を行い、RN
A−DNA二重鎮の付加したベクターブライマーDNA
を回収した。該DNAを66μM  dCTPおよび0
.2ggポリ(A)を含むTdT緩衝液20mに溶かし
、14単位のT d T (P−L Bio−chem
icals社製)を加えて37℃2分間インキコベート
し、cDNA3’末端に約20個の(dC)鎖を付加し
た。該反応物をフェノール−クロロホルム抽出し、エタ
ノール沈殿により(dC)鎖の付加したcDNA−ベク
タープライマーDNAを回収した。該DNAを10mM
  TrisHC1(pH7,5> 、 6 m M 
M g C1zおよび60mM  NaC1からなる液
4004に溶かし、20単位の)lindI[[を加え
、37℃2時間インキコベートし、)(i ndl11
部位で切断した。該反応物をフェノール−クロロホルム
抽出、エタノール沈殿して0.5ピコモルの(dC)鎖
付加cDNA−ベクターブライマーDNAを得た。該D
NA0.2ピコモルおよび前記のリンカ−DNA0.4
ピコモルを10mM Tr i 5−HCj!(pH7
,5)、0.1M  NaCAおよび1mM  EDT
Aからなる溶液100dに溶かし、65℃、42℃、0
℃でそれぞれ10分。
Po! prepared above! I (A) Approximately 3 μg of RNA and approximately 1.4 μg of vector primer were mixed in 50 mM Tri 5H.
Cj2 (pH 8,3), 8mM MgCl12°30m
MKCj! , 0.3mM DTT, 2mMaNT
P (dATP, dTTP, aGTP and dCTP)
and 10 units of glue bonuclease inhibitor (P-
Solution 22 consisting of L Biochemicals)
.. 3 m, add 10 units of reverse transcriptase (manufactured by Seikagaku Corporation), and incubate at 41°C for 90 minutes.
Complementary NA was synthesized. The reaction product was subjected to phenol-chloroform extraction, ethanol precipitation, and RN
Vector brimer DNA with A-DNA double molecule added
was recovered. The DNA was treated with 66 μM dCTP and 0
.. 14 units of T d T (P-L Bio-chem
icals) and incubate for 2 minutes at 37°C to add approximately 20 (dC) strands to the 3' end of the cDNA. The reaction product was extracted with phenol-chloroform, and the cDNA-vector primer DNA with the (dC) strand added was recovered by ethanol precipitation. The DNA was 10mM
TrisHC1 (pH 7,5>, 6mM
Dissolved in solution 4004 consisting of M g C1z and 60mM NaC1, added 20 units of )lindI[[, incubated at 37°C for 2 hours,
It was cut at the site. The reaction product was extracted with phenol-chloroform and precipitated with ethanol to obtain 0.5 pmol of (dC) chain-added cDNA-vector primer DNA. The D
0.2 pmol NA and 0.4 pmol of the linker-DNA described above.
picomole to 10mM Tri 5-HCj! (pH7
,5), 0.1M NaCA and 1mM EDT
Dissolved in 100d of solution consisting of A, 65℃, 42℃, 0
℃ for 10 minutes each.

25分、30分間インキコベートした。20mMTr 
i 5−HCI (pH7,5) 、  4mM  M
gCj!*。
Incubated for 25 and 30 minutes. 20mMTr
i 5-HCI (pH 7,5), 4mM M
gCj! *.

10 mM (NH4)Is 04.0.1 M  K
Clおよび0.1mM  β−NADの組成で、全量1
000dとなるよう反応液を調製した。該反応液に25
単位の大腸菌DNA!Jガーゼにューイングランド・バ
イオラブズ社製)を加え、11℃18時間インキュベー
トした。該反応液を各40μMのdNTP、0.15m
M β−NADとなるよう成分を追加調製し、lO単位
の大腸菌DNAIJガーゼ、20単位の大腸菌DNAポ
リメラーゼI  (P−L Biochemicals
社製)およびlO単位の大腸菌リボヌクレアーゼH(P
−L Bioche−micals社製)を加え、12
℃、25℃で順次1時間ずつインキユベートした。上記
反応で、cDNAを含む組換えDNAの環状化と、RN
A−DNA二重鎮のRNA部分がDNAに置換され、完
全な二重鎖DNAの組換え体プラスミドが生成した。
10mM (NH4)Is 04.0.1MK
Composition of Cl and 0.1mM β-NAD, total amount 1
A reaction solution was prepared so as to give a reaction temperature of 000d. 25 to the reaction solution
A unit of E. coli DNA! New England Biolabs) was added to J gauze and incubated at 11°C for 18 hours. The reaction solution was mixed with 40 μM each of dNTP, 0.15 m
Additional components were prepared to make M β-NAD, 10 units of E. coli DNA IJ gauze, 20 units of E. coli DNA polymerase I (P-L Biochemicals
) and 10 units of E. coli ribonuclease H (P
-L Bioche-micals) and 12
℃ and 25°C for 1 hour each. In the above reaction, circularization of recombinant DNA including cDNA and RN
The RNA portion of the A-DNA duplex was replaced with DNA, producing a complete double-stranded DNA recombinant plasmid.

(3)  hG−CSFcDNAを含む組換えDNAの
選択: (2)で得られた組換え体プラスミドを用い、大腸菌C
600SF8株をスコツト(Scott)らの方法[重
定勝哉:細胞工学2.616(1983)]に従い形質
転換した。得られた約9200個のコロニーヲニトロセ
ルロース・フィルター上に固定シた。長円ら〔長円(N
agata)ら:ネイチャー (liature)31
9 、415(1986)]が単離したh G−CS 
Fの成熟タンパク質のN末端9アミノ酸に相当する27
塩基の合成りNA 5′−^CCCCCCTGGGCCCTGCCAGCT
CCCT& −3’を3ffpで標識したプローブに6
0℃で強く会合した2菌株を選んだ〔グルンステイン・
ホグネス(Grunstein−Hogness)の方
法、プロシーディング・オン・ザ・ナショナル・アカデ
ミイ・オン・サイエンス(Proc、Natl、Aca
d、Sci、) USA ?2゜3961 (1975
) )。これらの菌株がもつプラスミドpcsF1−2
およびpcsF2が有するcDNAの全塩基配列を、M
13ファージを用いたデイデオキシ・シーフェンス法に
より決定した。
(3) Selection of recombinant DNA containing hG-CSF cDNA: Using the recombinant plasmid obtained in (2), E. coli C
The 600SF8 strain was transformed according to the method of Scott et al. [Katsuya Shigesada: Cell Engineering 2.616 (1983)]. The approximately 9,200 colonies obtained were immobilized on a nitrocellulose filter. Oval et al. [Oval (N
agata) et al.: Nature 31
9, 415 (1986)] isolated hG-CS.
27 corresponding to the N-terminal 9 amino acids of the mature protein of F.
Base synthesis NA 5'-^CCCCCCCTGGGCCCTGCCAGCT
CCCT&-3' to 3ffp-labeled probe 6
We selected two strains that strongly associated with each other at 0°C [Grunstein
Grunstein-Hogness Method, Proceedings on the National Academy of Sciences (Proc, Natl., Aca.
d, Sci,) USA? 2゜3961 (1975
) ). Plasmid pcsF1-2 carried by these strains
And the entire base sequence of cDNA possessed by pcsF2 was determined by M
It was determined by the Deideoxy Seefence method using phage No. 13.

その結果、pcsFl−2およびpCSF2が有するc
DNAは、hG−CSFをコードしていることが判明し
た。プラスミドpCSF1−2を含む微生物はEsch
erichia coli EC5FI−2[FERM
40P−12201、!−Lテ、マタフラスミトpcS
F2を含む微生物はBscherichia coli
E CS F 2 [FERM BP−20731とし
て微工研に寄託しである。
As a result, the c possessed by pcsFl-2 and pCSF2
The DNA was found to encode hG-CSF. The microorganism containing plasmid pCSF1-2 is Esch
erichia coli EC5FI-2 [FERM
40P-12201,! -L Te, Matafrasumito pcS
The microorganism containing F2 is Bscherichia coli
E CS F 2 [FERM BP-20731 has been deposited with the Institute of Fine Technology.

参考例5゜ 組換え体プラスミドpTrS33の造成:(1)ATG
ベクターpTrs2(18)造成:第18図に示した手
順に従い、SD配列とATG開始コドンの間の距離が1
4塩基で、かっATGコドンの直後に5aclサイトを
有するATGベクターpTrs20を造成した。
Reference Example 5 Construction of recombinant plasmid pTrS33: (1) ATG
Construction of vector pTrs2 (18): According to the procedure shown in Figure 18, the distance between the SD sequence and the ATG start codon is 1.
An ATG vector pTrs20 was constructed with 4 bases and a 5acl site immediately after the ka-ATG codon.

まず、特開昭58−110600号公報記載の方法で調
製したpKYPlo  3gをY−100緩衝液30d
に溶かし、制限酵素BanIIIと制限酵素Nrul 
 にューイングランド・パイオラブズ社製)をそれぞれ
6単位ずつ加え、37℃で3時間切断反応を行った。こ
の反応液からLGT法によりPtrpを含む約3.8に
bのDNA断片(BanI[I−Nrul断片)約0.
5.を得た。
First, 3 g of pKYPlo prepared by the method described in JP-A-58-110600 was added to 30 d of Y-100 buffer.
Dissolve restriction enzyme BanIII and restriction enzyme Nrul in
New England Piolabs Co., Ltd.) was added thereto in an amount of 6 units each, and a cleavage reaction was carried out at 37° C. for 3 hours. From this reaction solution, a DNA fragment of approximately 3.8 to 0.0 mm containing Ptrp (BanI [I-Nrul fragment)] was obtained by the LGT method.
5. I got it.

一方、Ptrpの下流にATG開始コドンを付与するた
めに下記のDNAIJンカーをトリエステル法により合
成した。
On the other hand, in order to provide an ATG initiation codon downstream of Ptrp, the following DNA IJ anchor was synthesized by the triester method.

19−marと17−marの合成りNA (各々10
ピコモルずつ)を50mM Tris−41C1(p)
17.5) 、 10mM  Mg Cl 2.51T
IMジチオスレイトール、0.1mM  EDTAおよ
び1mM  ATPを含む全量20−の溶液に溶かし、
T4ポリヌクレオチドキナーゼ3単位(宝酒造社製)を
加えて、37℃で60分間リン酸化反応を行った。
Synthetic NA of 19-mar and 17-mar (10 each
50mM Tris-41C1(p)
17.5), 10mM MgCl2.51T
Dissolved in a total volume of 20-mL solution containing IM dithiothreitol, 0.1mM EDTA and 1mM ATP,
Three units of T4 polynucleotide kinase (manufactured by Takara Shuzo Co., Ltd.) were added, and a phosphorylation reaction was carried out at 37°C for 60 minutes.

次に上記で得たpKYP10由来のBan[[−Nru
l断片(約3.8にb)0.1gと上記のDNAリンカ
−約0.5ピコモルをT4リガーゼ緩衝液20mに溶か
じ、さらにT4DNAリガーゼ2単位を加え、4℃で1
8時間結合反応を行った。
Next, the pKYP10-derived Ban[[-Nru
Dissolve 0.1 g of the l fragment (approximately 3.8 b) and approximately 0.5 picomole of the above DNA linker in 20 ml of T4 ligase buffer, add 2 units of T4 DNA ligase, and incubate at 4°C for 1 g.
The binding reaction was carried out for 8 hours.

得られた組換え体プラスミドの混合物を用いて大腸菌H
8101株〔ポリバー(Boliver)ら:ジーン(
Gene) 2 、75 (1977) )を形質転換
し、Aprのコロニーを得た。このコロニーの培養菌体
からプラスミドDNAを回収した。得られたプラスミド
の構造は制限酵素EcoRI、Ba nI[[、)(i
ndI[I、5acI、Nrulで切断後、アガロース
ゲル電気泳動により確認した。このプラスミドをpTr
s20と名付けた(第18図)a pTrs2(18)
Ban1II、HindDIサイト付近の塩基配列は下
記のとおりであることをM13ファージを用いたデイデ
オキシ・シーフェンス法を用い確認した。
Using the obtained mixture of recombinant plasmids, E. coli H.
8101 strain [Boliver et al.: Gene (
Gene) 2, 75 (1977)) was transformed to obtain Apr colonies. Plasmid DNA was recovered from the cultured cells of this colony. The structure of the obtained plasmid was constructed using the restriction enzymes EcoRI, BanI [[,) (i
After cleavage with ndI[I, 5acI, and Nrul, it was confirmed by agarose gel electrophoresis. This plasmid is pTr
Named s20 (Figure 18) a pTrs2 (18)
The nucleotide sequences near the Ban1II and HindDI sites were confirmed to be as shown below using the Deideoxy Seefence method using M13 phage.

(2) pTrS33の造成: 上で得られたpTrs20プラスミドDNA約3μgを
30〃のY−0緩衝液に溶かし、12単位の5aCIを
加え、37℃で2時間消化反応を行った。さらに1.5
mの2MNaC1と10単位のpstlを加え、37℃
で2時間消化反応を行った。65℃、10分間の熱処理
後、AFT法により約1.15 KbのDNA断片を精
製した。
(2) Construction of pTrS33: Approximately 3 μg of the pTrs20 plasmid DNA obtained above was dissolved in 30% Y-0 buffer, 12 units of 5aCI was added, and a digestion reaction was performed at 37° C. for 2 hours. Another 1.5
Add m of 2M NaCl and 10 units of pstl and incubate at 37°C.
Digestion reaction was carried out for 2 hours. After heat treatment at 65° C. for 10 minutes, a DNA fragment of about 1.15 Kb was purified by AFT method.

一方、特開昭62−48699号公報記載の方法で調製
したpKYP26 [pKYP26を含む大腸菌はEs
cherichia coli  I KYP26 (
FERM 0P−863)として微工研に寄託されてい
る〕2ggを30dのY−100緩衝液に溶かし、8単
位のPstlとlO単位のBamHIを加え、37℃で
2時間消化反応を行った。65℃、10分間の熱処理後
、AFT法により約1. ? KbのDNA断片を精製
した。また、M13mp18RF D N A (No
rrander。
On the other hand, pKYP26 prepared by the method described in JP-A No. 62-48699 [E. coli containing pKYP26 is Escherichia coli
cherichia coli I KYP26 (
FERM 0P-863)] was dissolved in 30 d of Y-100 buffer, 8 units of Pstl and 10 units of BamHI were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, approximately 1. ? The Kb DNA fragment was purified. Also, M13mp18RF DNA (No.
rrander.

J、ら:ジーン(Gene) 26 、101(198
3)  : M13mp18RF  011^は宝酒造
社より人手した)2■を30〃のY−0緩衝液に溶かし
、10単位の5ac Iを加え、37℃で2時間消化反
応を行った。さらに1.5〃のIM  Na(lと10
単位の01aIを加え、37℃で2時間消化反応を行っ
た。65℃、10分間)熱処理後、AFT法ニヨリ約0
. fi 5 KbのDNA断片を精製した。これらと
は別に、第19図に示す2種の合成りNA(43塩基と
45塩基)DNA合成機を用いて合成し、それぞれ別々
に上に述べた方法と同じ方法を用いて5′−リン酸化し
た。
J. et al.: Gene 26, 101 (198
3): M13mp18RF 011^ was prepared by Takara Shuzo Co., Ltd.) 2■ was dissolved in 30% Y-0 buffer, 10 units of 5ac I was added, and a digestion reaction was performed at 37°C for 2 hours. Furthermore, IM Na (l and 10
One unit of OlaI was added and the digestion reaction was carried out at 37°C for 2 hours. After heat treatment (65℃, 10 minutes), the AFT method yields approximately 0
.. A fi 5 Kb DNA fragment was purified. Separately, two types of synthetic NAs (43 bases and 45 bases) shown in Figure 19 were synthesized using a DNA synthesizer, and 5'-phosphorus was synthesized using the same method as described above. Oxidized.

このようにして得られたpTrs20由来の約1、15
にbのDNA断片(約0.1gg) 、pKYP26由
来の約1.7Kb(7)DNA断片(約0.1 ag)
、M13mpL8由来の約0.65にbのDNA断片(
約0.05■)、右よび5′−リン酸化された上記2種
の合成りNA (それぞれl pmoleずつ)を20
誠のT41Jガーゼ緩衝液に溶かし、50単位のT4D
NA!Iガーゼを加え、4℃で18時間結合反応を行っ
た。
Approximately 1,15 from pTrs20 obtained in this way
nib DNA fragment (approximately 0.1 gg), approximately 1.7 Kb (7) DNA fragment derived from pKYP26 (approximately 0.1 ag)
, approximately 0.65 b DNA fragment derived from M13mpL8 (
Approximately 0.05 μm), 20 ml of the above two types of synthetic NAs (1 pmole each), which were right- and 5'-phosphorylated.
Dissolve 50 units of T4D in Makoto's T41J gauze buffer.
NA! I gauze was added and the binding reaction was carried out at 4°C for 18 hours.

このようにして得られた組換え体プラスミドの混合物を
用いて、大腸菌MM294株を形質転換し、Ap耐性株
を得た。この形質転換株からプラスミドpTrS33を
単離し、制限酵素消化による構造解析ふよびM13ファ
ージを用いたデイデオキシ・シーフェンス法により、p
TrS33が目的の構造を有することを確認した(第1
9図参照)。
Using the mixture of recombinant plasmids thus obtained, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid pTrS33 was isolated from this transformed strain, and structural analysis using restriction enzyme digestion and Deideoxy Seefens method using M13 phage were performed to determine pTrS33.
It was confirmed that TrS33 has the desired structure (first
(See Figure 9).

参考例6゜ 組換えプラスミドp T e r m 2の造成:pK
YP26ブラスミドDNA〔特開昭62−48699号
公報〕約2.を10mM Tris−8C1(pH8,
0)、75mMNaC1、?mMMgCL、6o+M 
 2−メルカプトエタノールを含む溶液30〃に溶かし
、16単位の^5p718(ベーリンガー・マンハイム
社製)とlO単位のPstIを加え、37℃で2時間消
化反応を行った。65℃、10分間の熱処理後、AFT
法を用いて約1.7にbのDNA断片を精製した。一方
、参考例5の(1)で得られたpTr320プラスミド
DNA約2ggを3040Y−100緩衝液に溶かし、
8単位のPstIと10単位のNruI  (ベーリン
ガー・マンハイム社製)を加え、37℃で2時間消化反
応を行った。65℃、10分間の熱処理後、AFT法を
用いて約1.5kbのDNA断片を精製した。また、第
20図に示す2種の合成りNA (19塩基と23塩基
)をアプライド・バイオシステムズ社380^・DNA
合成機を用いて合成し、それぞれを別々に上で述べた方
法と同様の方法を用いて5′−リン酸化した。
Reference Example 6 Construction of recombinant plasmid pTerm2: pK
YP26 plasmid DNA [JP-A-62-48699] approx. 2. 10mM Tris-8C1 (pH 8,
0), 75mM NaCl, ? mMMgCL, 6o+M
It was dissolved in a solution containing 2-mercaptoethanol, 16 units of ^5p718 (manufactured by Boehringer Mannheim) and 10 units of PstI were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, AFT
A DNA fragment of approximately 1.7 b was purified using the method. On the other hand, about 2 gg of pTr320 plasmid DNA obtained in Reference Example 5 (1) was dissolved in 3040Y-100 buffer,
8 units of PstI and 10 units of NruI (manufactured by Boehringer Mannheim) were added, and a digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 1.5 kb was purified using the AFT method. In addition, two types of synthetic NA (19 bases and 23 bases) shown in Figure 20 were added to Applied Biosystems 380^ DNA.
They were synthesized using a synthesizer, and each was separately 5'-phosphorylated using a method similar to that described above.

このようにして得られたpKYP26由来の約1.7に
bのDNA断片(約0.1g) 、pTrs20由来の
約1.15KbのDNA断片および5′−リン酸化され
た2種の合成りNA (それぞれlpmoleずつ)を
20−のT4リガーゼ緩衡液に溶かし、50単位のT4
DNA!Jガーゼを加え、4℃で18時間結合反応を行
った。
The approximately 1.7 Kb DNA fragment derived from pKYP26 (approximately 0.1 g) obtained in this manner, the approximately 1.15 Kb DNA fragment derived from pTrs20, and two 5'-phosphorylated synthetic DNA fragments. (lpmole of each) in 20 - T4 ligase buffer and 50 units of T4
DNA! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、^ρ耐性株を得た。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain a ^ρ-resistant strain.

この形質転換株からプラスミドDNA、pTerm2を
単離し、制限酵素消化による構造解析およびM13ファ
ージを用いたデイデオキシ・シーフェンス法により、p
Term2が目的の構造を有することを確認した(第2
0図参照)。
Plasmid DNA, pTerm2, was isolated from this transformed strain, and structural analysis by restriction enzyme digestion and Deideoxy Seefens method using M13 phage were performed to determine pTerm2.
It was confirmed that Term2 had the desired structure (Second
(See figure 0).

参考例7゜ 組換え体プラスミドpTsF1(18)造成:参考例1
で得られたヒ)t−PAcDNAを運ぶプラスミドpt
PA7を持つ大腸菌C600SF8株の培養菌体から常
法によりptPA?DNAを調製した。得られたptP
A7  DNA約2縄をY−100緩衝液304に溶か
し、制限酵素Bgl■8単位を加え37℃で2時間消化
反応を行った。
Reference example 7゜Recombinant plasmid pTsF1 (18) construction: Reference example 1
Plasmid pt carrying the human) t-PA cDNA obtained in
ptPA? from cultured cells of Escherichia coli C600SF8 strain carrying PA7 using a conventional method. DNA was prepared. Obtained ptP
Approximately 2 strands of A7 DNA were dissolved in Y-100 buffer 304, 8 units of restriction enzyme Bgl were added, and a digestion reaction was carried out at 37°C for 2 hours.

65℃、10分間の熱処理後、AFT法を用い、約2.
0にbのDNA断片を精製した。次に pTrS33D
NA(参考例5)約2■を304のY−100緩衝液中
で10単位の制限酵素BamHIを加え、37℃で2時
間消化反応を行った。65℃、10分間の熱処理後、A
FT法を用い、約2.8にbのDNA断片を精製した。
After heat treatment at 65°C for 10 minutes, approximately 2.
A DNA fragment of 0.b was purified. Next pTrS33D
About 2 μ of NA (Reference Example 5) was mixed with 10 units of restriction enzyme BamHI in 304 Y-100 buffer, and a digestion reaction was carried out at 37° C. for 2 hours. After heat treatment at 65°C for 10 minutes, A
The DNA fragment of approximately 2.8 b was purified using the FT method.

このようにして得られたptPA7由来の約2.0にb
(7)DNA断片(約0.14)とpTrS33由来の
約2.8にbのDNA断片(約0.1g)を、全量20
dのT41Jガーゼ緩衝液に溶かし、T4DNAIJガ
ーゼ50単位を加え、4℃で18時間結合反応を行った
About 2.0 b from ptPA7 thus obtained
(7) DNA fragment (approximately 0.14) and pTrS33-derived approximately 2.8-b DNA fragment (approximately 0.1 g), total amount 20
d was dissolved in T41J gauze buffer, 50 units of T4DNAIJ gauze was added, and a binding reaction was performed at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM 294株を形質転換し、Ap耐性株を得た、この
形質転換株からプラスミドDNApTSFIOを単離し
、制限酵素消化による構造解析を行ったところ、目的の
構造を有することを確認した(第21図参照)。
E. coli MM 294 strain was transformed using the obtained mixture of recombinant plasmids to obtain an Ap-resistant strain. Plasmid DNA pTSFIO was isolated from this transformed strain and structurally analyzed by restriction enzyme digestion. , it was confirmed that it had the desired structure (see Figure 21).

参考例8゜ 組換え体プラスミドpTA4の造成: 実施例7より得られたpTsF10プラスミドDNA約
3■をY−0緩衡液30JJIlに溶かし、12単位の
制限酵素Kpn Iを加え、37℃で2時間消化反応を
行った後、1.5 JJiの3MNaClと12単位の
制限酵素BstEII(二二−イングランドバイオラブ
ス(New t!ngland Biolabs)社製
〕を加え、さらに60℃で2時間消化反応を行った。
Reference Example 8 Construction of recombinant plasmid pTA4: Approximately 3 cm of pTsF10 plasmid DNA obtained from Example 7 was dissolved in 30 JJIl of Y-0 buffer, 12 units of restriction enzyme Kpn I was added, and the mixture was incubated at 37°C for 2 hours. After performing the digestion reaction for 1.5 hours, 1.5 JJi of 3M NaCl and 12 units of the restriction enzyme BstEII (manufactured by New England Biolabs) were added, and the digestion reaction was further performed at 60°C for 2 hours. went.

続いてAFT法を用い、約0.3 KbのDNA断片を
精製した。
Subsequently, an approximately 0.3 Kb DNA fragment was purified using the AFT method.

これとは別に、大腸菌IGHA2 (微工研FBRMB
P−400)を培養し、培養菌体から常法によりPGH
^2プラスミドDN、A(特開昭6O−221091)
を調製した。得られたpGHA2DNA約2■を30d
のY−100緩衝液に溶かし、8単位のPstIと8単
位のBglUを加え、37℃で2時間消化反応を行った
。65℃、10分間の熱処理後、AFT法を用い、約0
.75KbのDNA断片を精製した。
Apart from this, Escherichia coli IGHA2 (Feikoken FBRMB
P-400) and extract PGH from the cultured cells using a conventional method.
^2 Plasmid DNA, A (JP-A-6O-221091)
was prepared. Approximately 2 cm of the obtained pGHA2 DNA was
8 units of PstI and 8 units of BglU were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, approximately 0
.. A 75 Kb DNA fragment was purified.

また、ptPA7DNA (参考例1)約3■を304
のY−150緩衝液に溶かし、10単位のBglUを加
え、37℃で2時間消化反応を行った後、12単位のB
stB IIを加え、さらに60℃で2時間消化反応を
行った。続いてAFT法を用い、約L 55 KbのD
NA断片を精製した。
In addition, approximately 3 ■ ptPA7 DNA (Reference Example 1) was added to 304
of Y-150 buffer, add 10 units of BglU, perform a digestion reaction at 37°C for 2 hours, and then add 12 units of BglU.
stB II was added, and the digestion reaction was further carried out at 60°C for 2 hours. Subsequently, using the AFT method, D of about L 55 Kb
The NA fragment was purified.

また、参考例6で得られたpTerm2DNA約2■を
30dのY−0緩衝液中で12単位のKpn Iを加え
、37℃で2時間消化反応を行った後、1.5誠の2M
NaCj!と8単位のPstIを加え、さらに37℃で
2時間消化反応を行った。
In addition, about 2 μm of pTerm2 DNA obtained in Reference Example 6 was added with 12 units of Kpn I in 30 days of Y-0 buffer, and the digestion reaction was performed at 37°C for 2 hours.
NaCj! and 8 units of PstI were added, and the digestion reaction was further carried out at 37°C for 2 hours.

続いてAFT法を用い、約1.7 KbのDNA断片を
精製した。
Subsequently, an approximately 1.7 Kb DNA fragment was purified using the AFT method.

このようにして得られた4種類のDNA断片(pTsF
10由来の断片0.03J1gSpGHA2由来の断片
0.05肩、ptPA7由来の断片0.1肩、およびp
Tarm2由来の断片0.1.)を204のT4リガー
ゼ緩衝液に溶かし、200単位のT4DNA!Iガーゼ
を加え、4℃で18時間結合反応を行った。
Four types of DNA fragments (pTsF
10-derived fragment 0.03J1gSpGHA2-derived fragment 0.05 shoulder, ptPA7-derived fragment 0.1 shoulder, and p
Fragment 0.1 from Tarm2. ) in 204 T4 ligase buffer and 200 units of T4 DNA! I gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸1
1MM294株を形質転換し、Afl耐性株を得た。こ
の形質転換株からプラスミドDNApTA4を単離し、
制限酵素消化による構造解析を行ったところ、目的の構
造を有することを確認した(第22図参照)。
Using the obtained mixture of recombinant plasmids, large intestine 1
The 1MM294 strain was transformed to obtain an Afl-resistant strain. Plasmid DNA pTA4 was isolated from this transformed strain,
Structural analysis by restriction enzyme digestion confirmed that it had the desired structure (see Figure 22).

参考例9゜ t−P^発現プラスミドpsEIP^ISε1dhfr
l−9^の造成: (1)組換え体プラスミドp A G E 105Mの
造成:本発明者らによって造成されたプラスミドpAG
E28:水上ら:ジャーナル・オン・バイオケミストリ
ー(J、Biochem、) 101 、1307−1
310(1987))を持つ大腸菌88101株を培養
し、培養菌体から常法によりpAGE28DNAを調製
した。得られたpAGE28DNA約2■を30域のy
−too緩衝液に溶かし、8単位のXholと12単位
のSca lを加え、37℃で2時間消化反応を行った
。65℃、10分間の熱処理後、AFT法を用いて約2
.8 KbのDNA断片を精製した。一方、本発明者ら
によって造成されたプラスミドpAGE103 〔水上
ら:ジャーナル・オン・バイオケミストリー(J、 B
iochem、)101 、1307−1310(19
87))を持つ大腸菌H8101株を培養し、培養菌体
から常法によりpAGEi103DNAを調製した。得
られたPAGE!103ON^約3gを30dのY−1
00緩衝液に溶かし、10単位のEcoRIを加え、3
7℃で2時間消化反応を行った。フェノール抽出とクロ
ロホルム抽出の後、エタノール沈澱によってDNA断片
を回収した。このDNA断片を全量404のポリメラー
ゼ緩衝液に溶かし、6単位のクレノー断片を加え、15
℃で1時間反応させることにより、EcoRI突出末端
を平坦末端に変えた。反応をフェノール抽出によって止
め、クロロホルム抽出を行った後、エタノール沈澱によ
ってDNA断片を回収した。このDNA断片を30mの
Y−100緩衝液に溶かし、12単位のXholを加え
、37℃で2時間消化反応を行った。65℃、10分間
の熱処理後、AFT法を用いて約0.4にbのDNA断
片を精製した。また、0’ Haraらによって造成さ
れたプラスミドpKCR〔0°Haraら:プロシーデ
ィング・オン・ザ・ナショナル・アカデミイ・オン・サ
イエンス(Proc。
Reference example 9゜t-P^ expression plasmid psEIP^ISε1dhfr
Construction of l-9^: (1) Construction of recombinant plasmid pAG E 105M: Plasmid pAG constructed by the present inventors
E28: Mizukami et al.: Journal on Biochemistry (J, Biochem,) 101, 1307-1
310 (1987)) was cultured, and pAGE28 DNA was prepared from the cultured cells by a conventional method. Approximately 2 cm of the obtained pAGE28 DNA was added to 30 y
-Too buffer was added, 8 units of Xhol and 12 units of Scal were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65℃ for 10 minutes, approximately 2
.. An 8 Kb DNA fragment was purified. On the other hand, plasmid pAGE103 constructed by the present inventors [Mizukami et al.: Journal on Biochemistry (J, B
iochem, ) 101, 1307-1310 (19
E. coli H8101 strain harboring 87)) was cultured, and pAGEi103 DNA was prepared from the cultured cells by a conventional method. Obtained PAGE! 103ON^ Approximately 3g in 30d Y-1
00 buffer, add 10 units of EcoRI,
Digestion reaction was carried out at 7°C for 2 hours. After phenol extraction and chloroform extraction, DNA fragments were recovered by ethanol precipitation. Dissolve this DNA fragment in a total volume of 404 polymerase buffer, add 6 units of Klenow fragment, and add 15 units of Klenow fragment.
The EcoRI protruding end was changed to a flat end by reacting at ℃ for 1 hour. The reaction was stopped by phenol extraction, followed by chloroform extraction, and then DNA fragments were recovered by ethanol precipitation. This DNA fragment was dissolved in 30 m Y-100 buffer, 12 units of Xhol was added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 0.4 b was purified using the AFT method. In addition, plasmid pKCR constructed by 0' Hara et al. [0' Hara et al.: Proceedings of the National Academy of Sciences (Proc.

Natl、^cad、 Sci、) LIS^78.1
527(1981))を持つ大腸菌88101株を培養
し、培養菌体から常法によりpKCR−DNAを調製し
た。得られたpKCR−DNA約2gを30u1のY−
150緩衝液に溶かし、12単位のRam旧と16単位
の5afIを加え、37℃で2時間消化反応を行った。
Natl, ^cad, Sci,) LIS^78.1
527 (1981)) was cultured, and pKCR-DNA was prepared from the cultured cells by a conventional method. Approximately 2 g of the obtained pKCR-DNA was added to 30 u1 of Y-
150 buffer, 12 units of Ram old and 16 units of 5afI were added, and a digestion reaction was performed at 37°C for 2 hours.

フェノール抽出とクロロホルム抽出の後、エタノール沈
澱によってDNA断片を回収した。
After phenol extraction and chloroform extraction, DNA fragments were recovered by ethanol precipitation.

このDNA断片を全量40mのポリメラーゼ緩衝液に溶
かし、6単位のクレノー断片を加え、15℃で1時間反
応させることにより、BamHI突出末端と5aIll
突出末端を平坦末端に変えた。65℃、10分間の熱処
理の後、AFT法を用いて約1.85 KbのDNA断
片を精製した。
This DNA fragment was dissolved in a total volume of 40 mL of polymerase buffer, 6 units of Klenow fragment was added, and the mixture was reacted at 15°C for 1 hour.
The protruding end was changed to a flat end. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 1.85 Kb was purified using the AFT method.

このようにして得られたpAGE28由来の約2、8 
KbのDNA断片(約0.05■) 、pAG8103
由来の約0.4 KbのDNA断片(約0.03■)、
およびpKCR由来の約1.85 KbのDNA断片(
約0.2g)を20戚のT4リガーゼ緩衝液に溶かし、
300単位のT 4 DNA !Jガーゼを加え、4℃
で18時間結合反応を行った。
Approximately 2,8 from pAGE28 obtained in this way
Kb DNA fragment (approximately 0.05■), pAG8103
An approximately 0.4 Kb DNA fragment (approximately 0.03■) derived from
and an approximately 1.85 Kb DNA fragment derived from pKCR (
Approximately 0.2 g) was dissolved in 20-related T4 ligase buffer,
300 units of T4 DNA! Add J gauze and heat at 4°C.
The binding reaction was carried out for 18 hours.

このようにして得られた組換え体プラスミドの混合物を
用いて、大腸菌MM294株を形質転換し、カナマイシ
ン(以下、KIllと略記する)耐性株を得た。この形
質転換株からプラスミドpAGE105Mを単離し、制
限酵素消化による構造解析を行ったところ、目的の構造
を有することを確認した(第23図参照)。
Using the mixture of recombinant plasmids thus obtained, Escherichia coli strain MM294 was transformed to obtain a kanamycin (hereinafter abbreviated as KIll) resistant strain. Plasmid pAGE105M was isolated from this transformed strain and structurally analyzed by restriction enzyme digestion, and it was confirmed that it had the desired structure (see Figure 23).

(2)組換え体プラスミドpAGE106の造成:上で
得られたpAGE105M−DNA約2■を304のy
−too緩衡液に溶かし、12単位のSca lを加え
、37℃で2時間消化反応を行った。65℃、10分間
の熱処理後、AFT法を用いて約5. OKbのDNA
断片を精製した。
(2) Construction of recombinant plasmid pAGE106: Approximately 2 cm of pAGE105M-DNA obtained above was added to 304 y
-too buffer, added 12 units of Scal, and performed a digestion reaction at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, about 5. OKb's DNA
The fragment was purified.

方、実施例1と同様の方法で、5′−リン酸化されたE
coRI!Iンカーを調製した。
On the other hand, in the same manner as in Example 1, 5'-phosphorylated E
coRI! An I-linker was prepared.

このようにして得られたpAGE 105M由来の約5
.0にbのDNA断片(約0.1 g)と1ピコモルの
5′−リン酸化されたEcoRIリンカ−を2b12の
T4リガーゼ緩衝液に溶かし、100単位のT4DNA
!Jガーゼを加え、4℃で18時間結合反応を行った。
Approx.
.. Dissolve the 0 to b DNA fragment (approximately 0.1 g) and 1 pmol of 5'-phosphorylated EcoRI linker in 2b12 T4 ligase buffer and add 100 units of T4 DNA.
! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Km耐性株を得た。この形
質転換株からプラスミドDN^pAGE106を単離し
、制限酵素消化による構造解析を行ったところ、pAG
El 06は目的の構造を有することを確認した(第2
4図参照)(3)  t−PA発現プラスミドpsBI
P^1−5の造成:上で得られたpAGEl 06DN
A約2■を304のY−0緩衝液に溶かし、12単位の
にpn[を加え、37℃で2時間消化反応を行った。さ
らに、1.5mの2M  NaC1と10単位のBam
旧を加え、37℃で2時間消化反応を行った。65℃、
10分間の熱処理後、AFT法を用いて約5. OKb
のDNA断片を精製した。一方、参考例1で得られたp
tPA7プラスミドDNA約3.を75mMNaC1を
含むY−0緩衝液30gに溶かし、12単位のFokl
と、12単位のEcoRIを加え、37℃で2時間消化
反応を行った。65℃、10分間の熱処理後、AFT法
を用いて約0.7 KbのDNA断片を精製した。また
、第25図に示す2種の合成りNA (21塩基と21
塩基) をアプライド・バイオシステムズ社380A・DNA合
成機を用いて合成し、それぞれ別々に実施例1で述べた
方法と同様の方法を用いて5′−リン酸化した。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain a Km-resistant strain. Plasmid DN^pAGE106 was isolated from this transformed strain, and structural analysis by restriction enzyme digestion revealed that pAG
It was confirmed that El 06 has the desired structure (second
(See Figure 4) (3) t-PA expression plasmid psBI
Construction of P^1-5: pAGEl 06DN obtained above
Approximately 2 μm of A was dissolved in 304 Y-0 buffer, 12 units of pn[ was added thereto, and the digestion reaction was carried out at 37° C. for 2 hours. Additionally, 1.5 m of 2M NaCl and 10 units of Bam
Digestion reaction was carried out at 37°C for 2 hours. 65℃,
After heat treatment for 10 minutes, approximately 5. OKb
The DNA fragment was purified. On the other hand, p obtained in Reference Example 1
tPA7 plasmid DNA approx. was dissolved in 30 g of Y-0 buffer containing 75 mM NaCl, and 12 units of Fokl
Then, 12 units of EcoRI were added, and the digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, a DNA fragment of approximately 0.7 Kb was purified using the AFT method. In addition, two types of synthetic NAs (21 bases and 21 bases) shown in Figure 25
The bases) were synthesized using an Applied Biosystems 380A DNA synthesizer, and each was 5'-phosphorylated using the same method as described in Example 1.

このようにして得られたpAGE 106由来の約5.
 OKbのDNA断片(約0.1■)とptPA7由来
の約0.7 KbのDNA断片(約0.1鴻)、参考例
8で調製されたpTA4由来の約1.4にbのEcoR
I−KpnI断片(約0.05g)、および上で得られ
た5′−リン酸化された2種の合成りNA (それぞれ
l pmoleずつ)を20mのT4リガーゼ緩衡液に
溶かし、50単位のT4DNA IJガーゼを加え、4
℃で18時間結合反応を行った。
Approximately 5.
OKb DNA fragment (approximately 0.1 Kb), approximately 0.7 Kb DNA fragment derived from ptPA7 (approximately 0.1 Kb), and EcoR of approximately 1.4 Kb derived from pTA4 prepared in Reference Example 8.
The I-KpnI fragment (approximately 0.05 g) and the two 5'-phosphorylated synthetic NAs obtained above (1 pmole each) were dissolved in 20 m T4 ligase buffer, and 50 units of Add T4 DNA IJ gauze, 4
The binding reaction was carried out for 18 hours at °C.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、にm耐性株を得た。この形
質転換株からプラスミドDNApsEIPA1−5を単
離し、制限酵素□消化による構造解析およびM13ファ
ージを用いたデイデオキシ・シークキンス法により、p
sEIPAl−5が目的の構造を有することを確認した
(第25図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an m-resistant strain. Plasmid DNA psEIPA1-5 was isolated from this transformed strain, and structural analysis by restriction enzyme □ digestion and Deideoxy-Sequkins method using M13 phage were performed to p
It was confirmed that sEIPAl-5 had the desired structure (see Figure 25).

(4) t−p^発現プラスミドpsatp^1−9の
造成:上で得られたpsEIPA、1−5DNA約2埒
を304のY−0緩衝液に溶かし、12単位のKpnl
を加え、37℃で2時間消化反応を行った。さらに、1
.5戚の2M  NaC1と8単位のHindmを加え
、37℃で2時間消化反応を行った。65℃、10分間
の熱処理後、AFT法を用いて約5. OKbのDNA
断片を精製した。一方、psEIPAl−5DNA約2
■を301JiノY−〇緩衝液に溶かし、12単位のK
pnlを加え、37℃で2時間消化反応を行った。さら
に、1.04の2M  NaC1とlO単位のNcoI
を加え、37℃で2時間消化反応を行った。65℃、1
g分間の熱処理後、AFT法を用いて約4.9にbのD
NA断片を精製した。また第26図に示す4種の合成り
NA(47塩基、49塩基、49塩基および47塩基:
これらの合成りNAはt−PAcDNAの5′(47塩
基) をアプライド・バイオシステムズ社380A・DNA合
成機を用いて合成し、それぞれ別々に実施例1で述べた
方法と同様の方法を用いて5′−リン酸化した。
(4) Construction of t-p^ expression plasmid psatp^1-9: Dissolve approximately 2 g of the psEIPA, 1-5 DNA obtained above in 304 Y-0 buffer, and add 12 units of Kpnl.
was added, and the digestion reaction was carried out at 37°C for 2 hours. Furthermore, 1
.. 2M NaCl and 8 units of Hindm were added, and a digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, about 5. OKb's DNA
The fragment was purified. On the other hand, psEIPAl-5 DNA approx.
Dissolve ■ in 301Ji-Y-〇 buffer and add 12 units of K.
pnl was added and the digestion reaction was carried out at 37°C for 2 hours. Additionally, 1.04 of 2M NaCl and 10 units of NcoI
was added, and the digestion reaction was carried out at 37°C for 2 hours. 65℃, 1
After heat treatment for g minutes, the D of b was reduced to about 4.9 using the AFT method.
The NA fragment was purified. In addition, four types of synthetic NAs (47 bases, 49 bases, 49 bases and 47 bases:
These synthetic DNAs were synthesized from 5' (47 bases) of t-PAcDNA using an Applied Biosystems 380A DNA synthesizer, and each was separately synthesized using the same method as described in Example 1. 5'-phosphorylated.

このようにして得られたpsEIPAl−5由来の約5
. OKbのDNA断片(約0.1g)とpsEIPA
l−5由来の約4.9 KbのDNA断片(約0.1g
)と5′−リン酸化された4種の合成りNA (それぞ
れl pmoleずつ)を20mのT4リガーゼ緩衝液
に溶かし、50単位のT 4 ON^リガーゼを加え、
4℃で18時間結合反応を行った。
About 5 from psEIPAl-5 thus obtained
.. OKb DNA fragment (approximately 0.1 g) and psEIPA
Approximately 4.9 Kb DNA fragment (approximately 0.1 g
) and four 5'-phosphorylated synthetic NAs (1 pmole each) were dissolved in 20 m T4 ligase buffer, 50 units of T4ON^ligase was added,
The binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Km耐性株を得た。この形
質転換株からプラスミドON^psEIPA1−9を単
離し、制限酵素消化による構造解析およびM13ファー
ジを用いたデイデオキシ・シーフェンス法により、ps
BIPAl−9が目的の構造を有することを確認した(
第26図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain a Km-resistant strain. Plasmid ON^psEIPA1-9 was isolated from this transformed strain, and ps
It was confirmed that BIPAl-9 has the desired structure (
(See Figure 26).

(5)組換えプラスミドpIJ C19Hの造成(Ap
耐性遺伝子のポータプル化) : ノルランダーらが造成したプラスミドDNApUC19
(Norrander、 J、ら:ジーン(Gene)
26、 10H1983)  ; p UC19プラス
ミドDNAは宝酒造社より入手できる〕を持つ大腸菌8
111101株を培養し、培養菌体から常法によりpU
c19[]NAを調製した。得られたpUc19DNA
約2■を30JdIのY−50緩衝液に溶かし、lO単
位のHindl[[と1単位のDraIを加え、37℃
で1時間消化反応を行った。この反応により、DNAは
Hindmで完全に、Dralで部分的に消化された。
(5) Construction of recombinant plasmid pIJ C19H (Ap
Portapling of resistance genes): Plasmid DNA pUC19 created by Norlander et al.
(Norrander, J. et al.: Gene)
26, 10H1983); pUC19 plasmid DNA is available from Takara Shuzo Co., Ltd.].
111101 strain was cultured, and pU was extracted from the cultured cells by a conventional method.
c19[]NA was prepared. Obtained pUc19DNA
Dissolve approximately 2 μm in 30 JdI of Y-50 buffer, add 10 units of Hindl and 1 unit of DraI, and incubate at 37°C.
The digestion reaction was carried out for 1 hour. This reaction resulted in complete digestion of DNA with Hindm and partial digestion with Dral.

65℃、10分間の熱処理後、AFT法を用い、約1.
55にbのHindnl−Dral断片と約1.IKb
のDrar−Hindlf[断片の2種のDNA断片を
精製した。別に、20ピコモル(pmo 1es)の・
HindllIりンカー(C^^GCTTG ;コラポ
レイティブ・リサーチ社製)を実施例1で述べた方法と
同様の方法を用いて5′−リン酸化した。
After heat treatment at 65°C for 10 minutes, approximately 1.
55 and the Hindnl-Dral fragment of b and approx. IKb
Two DNA fragments of the Drar-Hindlf [fragment] were purified. Separately, 20 pmol (pmo 1es) of
HindllI linker (C^^GCTTG; manufactured by Collaborative Research) was 5'-phosphorylated using a method similar to that described in Example 1.

このようにして得られたpUc19由来の約1.55に
bのDNA断片(0,0a ug)と約1.1にbのD
NA断片(0,03g)および1ピコモルの5′−リン
酸化されたHindlllリンカ−を204のT4リガ
ーゼ緩衝液に溶かし、50単位のT4DNA!Jガーゼ
を加え、4℃で18時間結合反応を行った。
The approximately 1.55-b DNA fragment (0.0a ug) derived from pUc19 obtained in this manner and the approximately 1.1-b DNA fragment (0.0a ug)
The NA fragment (0.03 g) and 1 pmol of 5'-phosphorylated Hindll linker were dissolved in 204 g of T4 ligase buffer and 50 units of T4 DNA! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDN A p U C19Hを
単離し、制限酵素消化による構造解析を行ったところ、
目的の構造を有することを確認した(第27図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA A p U C19H was isolated from this transformed strain and structurally analyzed by restriction enzyme digestion.
It was confirmed that it had the desired structure (see Figure 27).

(6)組換え体プラスミドps[!IPAI−9^の造
成(psBIPAl−9へのAp耐性遺伝子の挿入) 
:上で得られたpUc19HプラスミドDNA約2肩を
30dのY−50緩衝液に溶かし、8単位の)(ind
I[[と8単位のPrullを加え、37℃で2時間消
化反応を行った。フェノール抽出とクロロホルム抽出の
後、エタノール沈澱によってDNA断片を回収した。こ
のDNA断片を全量40gのポリメラーゼ緩衝液に溶か
し、6単位のクレノー断片を加え、15℃で1時間反応
させることにより、HindDI突出末端を平坦末端に
変えた。65℃、10分間の熱処理後、AFT法を用い
て約1.4にbのDNA断片を精製した。
(6) Recombinant plasmid ps[! Construction of IPAI-9^ (insertion of Ap resistance gene into psBIPAl-9)
: About 2 shoulders of the pUc19H plasmid DNA obtained above was dissolved in 30 d of Y-50 buffer, and 8 units of
I[[] and 8 units of Prull were added, and the digestion reaction was carried out at 37°C for 2 hours. After phenol extraction and chloroform extraction, DNA fragments were recovered by ethanol precipitation. This DNA fragment was dissolved in a total amount of 40 g of polymerase buffer, 6 units of Klenow fragment was added, and the HindDI protruding ends were changed to flat ends by reacting at 15° C. for 1 hour. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 1.4 b was purified using the AFT method.

一方、上で得られたt−PA発現プラスミドpsEIP
A1−9約2塊を30dのY−150緩衝液に溶かし、
8単位のXhoIと8単位のEcoRVを加え、37℃
で2時間消化反応を行った。65℃、10分間の熱処理
後、AFT法を用いて約5.9にbのDNA断片を精製
した。また、上で調製したpAGE28プラスミMDN
A約3■を30dのY−150緩衝液に溶かし、10単
位のXhoIと10単位のEcoRVを加え、37℃で
2時間消化反応を行った。65℃、10分間の熱処理後
、AFT法を用いて約0.85 KbのDNA断片を精
製した。
On the other hand, the t-PA expression plasmid psEIP obtained above
Dissolve about 2 chunks of A1-9 in 30 d of Y-150 buffer,
Add 8 units of XhoI and 8 units of EcoRV and heat at 37°C.
Digestion reaction was carried out for 2 hours. After heat treatment at 65° C. for 10 minutes, the DNA fragment b was purified to approximately 5.9 using the AFT method. Additionally, the pAGE28 plasmid MDN prepared above
Approximately 3 ml of A was dissolved in 30 d of Y-150 buffer, 10 units of XhoI and 10 units of EcoRV were added, and a digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 0.85 Kb was purified using the AFT method.

このようにして得られたp U C198由来の約1.
4にbのDNA断片(約0.1g)とpsEIPAl−
9由来の約5.9にbのDNA断片(約0.1■)とp
AGE28由来の約0.85KbノロN^断片(約0.
05■)を20dのT4リガーゼ緩衡液に溶かし、10
0単位のT4DNA+Jガーゼを加え、4℃で18時間
結合反応を行った。
The thus obtained p U C198 derived approximately 1.
4. DNA fragment b (approximately 0.1 g) and psEIPAl-
About 5.9 b DNA fragment (about 0.1■) derived from 9 and p
Approximately 0.85 Kb NoroN^ fragment derived from AGE28 (approximately 0.
05 ■) in 20 d of T4 ligase buffer solution,
0 units of T4 DNA+J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、ApとKmの両方に耐性に
なった株を得た。この形質転flHikからプラスミ)
’DNApSEIPAI−9^を単離し、制限酵素消化
゛による構造解析を行ったところ、目的の構造を有する
ことを確認した(第28図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain a strain resistant to both Ap and Km. Plasmi from this transformed flHik)
'DNApSEIPAI-9^ was isolated and subjected to structural analysis by restriction enzyme digestion, and it was confirmed that it had the desired structure (see Figure 28).

プラスミドD N A psEIPAI−9Aを含む微
生物はEscherichia coli [1hPA
1−9^ FERM BP−1460として昭和62年
9月3日付で微工研に寄託しである。
The microorganism containing plasmid DNA psEIPAI-9A is Escherichia coli [1hPA
1-9^ Deposited as FERM BP-1460 at the Institute of Fine Technology on September 3, 1988.

(7)組換え体プラスミドρSε1clhfrlAの造
成:上で得られたpAGE 106プラスミドDNA約
2.を30d(7)Y−50緩衝液に溶かし、12単位
のAsp718(ベーリンガー・マンハイム社製)を加
え、37℃で2時間消化反応ヲ行った。フェノール抽出
とクロロホルム抽出の後、エタノール沈殿によってDN
A断片を回収した。このDNA断片を全量40−のポリ
メラーゼ緩衝液に溶かし、6単位のクレノー断片を加え
、15℃で1時間反応させることにより、Asp718
突出末端を平坦末端に変えた。続いてフェノール抽出と
クロロホルム抽出の後、エタノール沈殿によって回収し
たDNA断片を全量304のY−150緩衝液に溶かし
、10単位のM 1 u Iを加え、37℃で2時間消
化反応を行った。65℃、10分間の熱処理後、AFT
法を用いて約3.3 KbのDNA断片を精製した。
(7) Construction of recombinant plasmid ρSε1clhfrlA: Approximately 2.0% of the pAGE 106 plasmid DNA obtained above. was dissolved in 30d(7)Y-50 buffer, 12 units of Asp718 (manufactured by Boehringer Mannheim) was added, and a digestion reaction was performed at 37°C for 2 hours. After phenol and chloroform extraction, DN was extracted by ethanol precipitation.
Fragment A was recovered. Asp718 was obtained by dissolving this DNA fragment in a total volume of 40-mL polymerase buffer, adding 6 units of Klenow fragment, and reacting at 15°C for 1 hour.
The protruding end was changed to a flat end. Subsequently, after phenol extraction and chloroform extraction, the DNA fragments recovered by ethanol precipitation were dissolved in a total volume of 304 Y-150 buffer, 10 units of M 1 u I was added, and a digestion reaction was performed at 37° C. for 2 hours. After heat treatment at 65°C for 10 minutes, AFT
A DNA fragment of approximately 3.3 Kb was purified using the method.

これとは別に、dhfr遺伝子を選ぶpSV2dhfr
プラスミドDNA Cスブラマニ(Subra−man
i) ラ:モレキコラー・セルラー・バイオロジー(M
o1. Cel 1. Biol、 ) 1 .854
 (1981)]約3■を304のy−too緩衝液に
溶かし、12単位のBgJ!Ifを加え、37℃で2時
間消化反応を行った。フェノール抽出とクロロホルム抽
出の後、エタノール沈殿によってDNA断片を回収した
。このDNA断片を全量40頭のポリメラーゼ緩衝液に
溶かし、6単位のクレノー断片を加え、15℃で1時間
反応させることにより、BglU突出末端を平坦末端に
変えた。
Separately, pSV2dhfr which selects the dhfr gene
Plasmid DNA C Subra-man
i) La: Molecule Cellular Biology (M
o1. Cell 1. Biol, ) 1. 854
(1981)] is dissolved in 304 y-too buffer to give 12 units of BgJ! If was added, and the digestion reaction was carried out at 37°C for 2 hours. After phenol extraction and chloroform extraction, DNA fragments were recovered by ethanol precipitation. This DNA fragment was dissolved in a total of 40 polymerase buffer solutions, 6 units of Klenow fragment was added, and the BglU protruding ends were changed to flat ends by reacting at 15° C. for 1 hour.

続イテ、フェノール抽出とクロロホルム抽出の後、エタ
ノール沈殿によって回収したDNA断片を全量30dの
Y−100緩衝液に溶かし、12単位のHindlI[
を加え°、°37℃で2時間消化反応を行った。65℃
、10分間の熱処理後、AFT法を用いて約0.75 
KbのDNA断片を精製した。また、上で得られたps
EIPAl−9AプラスミドDNA約3■を30AIの
Y−100緩衝液に溶かし、12単位のHind■を加
え、37℃で2時間消化反応を行った。
Subsequently, after phenol extraction and chloroform extraction, the DNA fragments recovered by ethanol precipitation were dissolved in a total volume of 30 d of Y-100 buffer, and 12 units of HindlI [
The digestion reaction was carried out at 37°C for 2 hours. 65℃
, about 0.75 using AFT method after 10 minutes of heat treatment.
The Kb DNA fragment was purified. Also, the ps obtained above
Approximately 3 µm of EIP Al-9A plasmid DNA was dissolved in 30 AI Y-100 buffer, 12 units of Hind µ was added, and a digestion reaction was carried out at 37°C for 2 hours.

さらに、1.5dのIMNaCj!と12単位のMiu
lを加え、37℃で2時間消化反応を行った。65℃、
10分間の熱処理後、AFT法を用いて約2.9 Kb
のDNA断片を精製した。
Furthermore, 1.5d IMNaCj! and 12 units of Miu
1 was added, and the digestion reaction was carried out at 37°C for 2 hours. 65℃,
After heat treatment for 10 minutes, approximately 2.9 Kb was obtained using the AFT method.
The DNA fragment was purified.

このようにして得られたpAGE106由来のDNA断
片(約0.1g)とpSV2dh f r由来のDNA
断片(約0.03■)とpsEIPAl−9A由来のD
NA断片(約0.IN>を204のT4DNAリガーゼ
緩衝液に溶かし、100単位のT 4 DNA リガー
ゼを加え、4℃で18時間結合反応を行った。
The thus obtained pAGE106-derived DNA fragment (approximately 0.1 g) and pSV2dh f r-derived DNA
fragment (approximately 0.03■) and D from psEIPAl-9A.
The NA fragment (approximately 0.IN) was dissolved in 204 T4 DNA ligase buffer, 100 units of T4 DNA ligase was added, and the ligation reaction was performed at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、AI)耐性株を得た。この
形質転換株からプラスミドDNApSE1dhf rl
Aを単離し、制限酵素消化による構造解析を行ったとこ
ろ、目的の構造を有することを確認した(第29図参照
)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an AI) resistant strain. From this transformed strain, plasmid DNA pSE1dhf rl
When A was isolated and structurally analyzed by restriction enzyme digestion, it was confirmed that it had the desired structure (see Figure 29).

(8)組換え体プラスミドpsEIP^ISε1dhf
rl−9Aの造成: 上で得られたpSE1dhfrlAプラスミドDNA約
3gを30頭のY−100緩衝液に溶かし、1g単位の
XhoIを加え、37℃で2時間消化反応を行った。フ
ェノール抽出とクロロホルム抽出の後、エタノール沈殿
によってDNA断片を回収した。このDNA断片を全量
40gのポリメラーゼ緩衝液に溶かし、6単位のクレノ
ー断片を加え、15℃で1時間反応させることにより、
Xhol突出末端を平坦末端に変えた。続いて、フェノ
ール抽出とクロロホルム抽出の後、エタノール沈殿によ
って回収したDNA断片を全量30頭のY−150緩衝
液に溶かし、1g単位のMfulを加え、37℃で2時
間消化反応を行った。65℃、10分間の熱処理後、A
FT法を用いて約4.4 KbのDNA断片を精製した
(8) Recombinant plasmid psEIP^ISε1dhf
Construction of rl-9A: Approximately 3 g of the pSE1dhfrlA plasmid DNA obtained above was dissolved in 30 volumes of Y-100 buffer, 1 g of XhoI was added, and a digestion reaction was performed at 37°C for 2 hours. After phenol extraction and chloroform extraction, DNA fragments were recovered by ethanol precipitation. By dissolving this DNA fragment in a total amount of 40 g of polymerase buffer, adding 6 units of Klenow fragment, and reacting at 15°C for 1 hour,
The Xhol protruding end was changed to a flat end. Subsequently, after phenol extraction and chloroform extraction, the DNA fragments recovered by ethanol precipitation were dissolved in a total amount of 30 Y-150 buffer, 1 g of Mful was added, and a digestion reaction was performed at 37° C. for 2 hours. After heat treatment at 65°C for 10 minutes, A
A DNA fragment of approximately 4.4 Kb was purified using the FT method.

これとは別に、上で得られたpsEIPAl−9Aプラ
スミドDNA約3ugを304のY50緩衝液に溶かし
、1g単位のC1alを加え、37℃で2時間消化反応
を行った。フェノール抽出とクロロホルム抽出の後、エ
タノール沈殿によってDNA断片を回収した。このDN
A断片を全量404のポリメラーゼ緩衝液に溶かし、6
単位のクレノー断片を加え、15℃で1時間反応させる
ことにより、C1aI突出末端を平坦末端に変えた。続
いて、フェノール抽出とクロロホルム抽出の後、エタノ
ール沈殿によって回収したDNA断片を全量30dのY
−150緩衝液に溶かし、1g単位のMj!ulを加え
、37℃で2時間消化反応を行った。65℃、10分間
の熱処理後、AFT法を用いて約6.75にbのDNA
断片を精製した。
Separately, about 3 ug of the psEIPAl-9A plasmid DNA obtained above was dissolved in 304 Y50 buffer, 1 g of C1al was added, and a digestion reaction was performed at 37° C. for 2 hours. After phenol extraction and chloroform extraction, DNA fragments were recovered by ethanol precipitation. This DN
Dissolve the A fragment in a total volume of 404 polymerase buffer, and
The C1aI protruding end was changed to a flat end by adding a unit of Klenow fragment and reacting at 15°C for 1 hour. Subsequently, after phenol extraction and chloroform extraction, the DNA fragments recovered by ethanol precipitation were mixed with a total amount of 30 d of Y.
-150 buffer solution, Mj in units of 1 g! ul was added and the digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, the DNA of b was reduced to approximately 6.75 using the AFT method.
The fragment was purified.

このようにして得られたpSE1dhfrlA由来のD
NA断片(約0.1■)とpSEIPAl−9A由来の
DNA断片(約0.1■)を204のT4リガーゼ緩衝
液に溶かし、100単位のT4DNAIJガーゼを加え
、4℃で18時間結合反応を行った。
The thus obtained pSE1dhfrlA-derived D
Dissolve the NA fragment (approximately 0.1 µ) and the DNA fragment derived from pSEIPAl-9A (approximately 0.1 µ) in 204 T4 ligase buffer, add 100 units of T4 DNA IJ gauze, and perform the ligation reaction at 4°C for 18 hours. went.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNApSEIPAISE1d
hfrl−9Aを単離し、制限酵素消化による構造解析
を行ったところ、目的の構造を有することを確認した(
第29図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. From this transformed strain, plasmid DNA pSEIPAISE1d
When hfrl-9A was isolated and structurally analyzed by restriction enzyme digestion, it was confirmed that it had the desired structure (
(See Figure 29).

参考例10゜ hG−CSF発現プラスミドpAS3−3の造成= (
第30および31図参照)。
Reference Example 10 Construction of hG-CSF expression plasmid pAS3-3 = (
(See Figures 30 and 31).

(1)組換え体プラスミドpC5F3−3の造成:参考
例4で得たpCSF2.2■を20dのY−150緩衝
液に溶かし、制限酵素Sad IをIO単位加え、37
℃で2時間消化反応を行った。その後、制限酵素Apa
LIを5単位加え、37℃でさらに10分間部分切断反
応を行った。この反応液からLGT法により、約4.0
にbのDNA断片(Sail−ApaLI断片)約1.
5.を得た。
(1) Construction of recombinant plasmid pC5F3-3: Dissolve pCSF2.2■ obtained in Reference Example 4 in 20 d of Y-150 buffer, add IO units of restriction enzyme Sad I,
Digestion reaction was carried out at ℃ for 2 hours. Then, the restriction enzyme Apa
Five units of LI was added, and the partial cleavage reaction was further carried out at 37°C for 10 minutes. From this reaction solution, approximately 4.0
The DNA fragment of b (Sail-ApaLI fragment) is approximately 1.
5. I got it.

一方、hG−CSFの翻訳領域を完全に含むcDNAを
得るために、下記に示した3つのDNAリンカ−を合成
した。
On the other hand, in order to obtain cDNA completely containing the translated region of hG-CSF, three DNA linkers shown below were synthesized.

上に示した2 9mar’、 31mer s 32m
er 。
2 9mar', 31mer s 32m shown above
Er.

30merおよび39mer(2種)の−本鎖DNAは
、アプライド・バイオシステムズ社380A −DNA
合成機を用いて合成した。
30mer and 39mer (2 types) double-stranded DNA is Applied Biosystems 380A-DNA.
Synthesized using a synthesizer.

互いに相補的な29merと31marは各々20ピコ
モルずつを40dのT4キナーゼ緩衝液に溶かし、T4
ポリヌクレオチドキナーゼ6単位を加えて、37℃で6
0分間リン酸化反応を行った。互いに相補的な32ma
rと3Qmerおよび39mer同志についても同様に
してリン酸化反応を行った。
20 pmol each of 29mer and 31mar, which are complementary to each other, was dissolved in 40d T4 kinase buffer, and T4
Add 6 units of polynucleotide kinase and 6 units at 37°C.
The phosphorylation reaction was performed for 0 minutes. 32ma complementary to each other
Phosphorylation reactions of r, 3Qmer, and 39mer were similarly performed.

上記で得られたpCSF2由来のSaj!I−ApaL
I断片(約4.0Kb)0.1gをT4DNAリガーゼ
緩衝液30gI2に溶かした後、上記3組のDNA!l
ンカーを2ピコモルずつ加えた。
Saj! derived from pCSF2 obtained above! I-ApaL
After dissolving 0.1 g of I fragment (approximately 4.0 Kb) in 30 g of T4 DNA ligase buffer, the above three sets of DNA! l
Addition of 2 pmoles of linker was carried out.

さらにT4DNA!Jガーゼ400単位を加え、4℃で
18時間結合反応を行った。
More T4DNA! 400 units of J gauze were added and the binding reaction was carried out at 4°C for 18 hours.

該反応液を用いて大11111HB101株を形質転換
し、Ap耐性株を取得した。該形質転換株よりプラスミ
ドDNAを単離し、制限酵素切断による構造解析を行っ
た結果、目的とするプラスミドDNA%pCSF3−3
であることを確認した。
The O11111HB101 strain was transformed using the reaction solution to obtain an Ap-resistant strain. Plasmid DNA was isolated from the transformed strain, and structural analysis by restriction enzyme digestion revealed that the target plasmid DNA% pCSF3-3
It was confirmed that

(2) hG−CSF発現プラスミドpsEIGc3−
3の造成: 前項で得たpCSF3−3.3gを40dのY−0緩衝
液に溶かし制限酵素Dra I 10単位を加えて、3
7℃で2時間消化反応を行った。
(2) hG-CSF expression plasmid psEIGc3-
Construction of 3: Dissolve 3.3 g of pCSF3 obtained in the previous section in 40 d of Y-0 buffer and add 10 units of restriction enzyme Dra I.
Digestion reaction was carried out at 7°C for 2 hours.

NaCl1g度が150mMになるようにNaCj!を
添加し、制限酵素5alIをlO単位加えて、37℃で
さらに2時間切断反応を行った。この反応液からLGT
法により約0.7 KbのDNA断片(Dral−3a
j!I断片)約0.6.を得た。
NaCj so that 1g of NaCl becomes 150mM! was added, 10 units of restriction enzyme 5alI was added, and the cleavage reaction was further carried out at 37°C for 2 hours. From this reaction solution, LGT
A DNA fragment of approximately 0.7 Kb (Dral-3a
j! I fragment) about 0.6. I got it.

これとは別に、参考例9で得たp A G E 106
.2ggを30dのY−0緩衝液に溶かし制限酵素Sm
a 110単位を加え、37℃で2時間切断反応を行っ
た。その後、NaC1濃度が150mMになるようにN
aCj!を添加し、制限酵素5allを、lO単位加え
て、37℃でさらに2時間切断反応を行った。この反応
液からLGT法により約5.0にbのDNA断片(Sm
al−3aj!I断片)約1.5ggを得た。
Apart from this, p A G E 106 obtained in Reference Example 9
.. Dissolve 2gg in 30d Y-0 buffer and add restriction enzyme Sm.
110 units of a were added and the cleavage reaction was carried out at 37°C for 2 hours. After that, N was added so that the NaCl concentration was 150mM.
aCj! was added, 10 units of restriction enzyme was added, and the cleavage reaction was further carried out at 37°C for 2 hours. From this reaction solution, a DNA fragment of approximately 5.0 b (Sm
al-3aj! I fragment) About 1.5 gg was obtained.

次に上記で得た、pCSF3−3由来のDral−5a
i断片(約0.7にb)約0.6■とpAGE106由
来のSmaI−5alI断片(約5.0Kb)約1.0
gをT4DNAリガーゼ緩衝液25威に溶かし、400
単位のT 4 DNA !Jガーゼを加え、4℃18時
間結合反応を行った。
Next, Dral-5a derived from pCSF3-3 obtained above
i fragment (approximately 0.7 to b) approximately 0.6■ and SmaI-5alI fragment derived from pAGE106 (approximately 5.0 Kb) approximately 1.0
Dissolve 25g of T4 DNA ligase buffer in 400 g of T4 DNA ligase buffer.
Unit of T4 DNA! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

該反応液を用いて大腸菌H8101株を形質転換し、A
p耐性株を取得した。該形質転換株よりプラスミドを単
離し、制限酵素切断による構造解析を行った結果、目的
とするプラスミドDNA%psEIGc3−3であるこ
とを確g忍した。
E. coli H8101 strain was transformed using the reaction solution, and A
A p-resistant strain was obtained. A plasmid was isolated from the transformed strain, and structural analysis by restriction enzyme digestion confirmed that the plasmid DNA was the desired plasmid DNA% psEIGc3-3.

(3)  II G −CS F発現プラスミドpAS
3−3の造成: pcfTAl  (参考例15参照)5■を50頭のY
−100緩衝液に溶かし、制限酵素HindIIIおよ
びBamHIを各々lO単位加え、37℃で2時間消化
反応を行った。この反応液からLGT法により約1.6
にbのDNA断片(HindIII−BamHI断片)
 1■を得た。
(3) IIG-CSF expression plasmid pAS
Creation of 3-3: pcfTAL (see Reference Example 15) 5■
-100 buffer solution, 10 units of each of restriction enzymes HindIII and BamHI were added, and a digestion reaction was performed at 37°C for 2 hours. From this reaction solution, approximately 1.6
Nib DNA fragment (HindIII-BamHI fragment)
I got 1■.

この約1.6 KbのDNA断片lAgを504のY−
100緩衝液に溶かし、制限酵素Ddel(東洋紡績社
製)を10単位加え37℃で2時間消化反応を行った。
This approximately 1.6 Kb DNA fragment lAg was converted into 504 Y-
100 buffer solution, 10 units of restriction enzyme Ddel (manufactured by Toyobo Co., Ltd.) was added, and a digestion reaction was performed at 37°C for 2 hours.

フェノール・クロロホルム抽出およびエタノール沈殿で
DNAを回収し、304のクレノー緩衝液に溶かし、D
NAポリメラーゼ■・クレノー断片を2単位加えて37
℃で1時間反応を行った。68℃で10分間処理しDN
Aポリメラーゼ■・クレノー断片を失活させた後、エタ
ノール沈殿でDNAを回収した。回収したDNAは20
dのに一50緩衝液に溶かし制限酵素AatI[(東洋
紡績社製)lO単位を加えて37℃2時間切断反応を行
った。この反応液よりLGT法により約0.2 Kbの
DNA断片CDdel(平坦末端)−AatII断片〕
約0.1.を得た。
DNA was recovered by phenol-chloroform extraction and ethanol precipitation, dissolved in 304 Klenow buffer, and D
Add 2 units of NA polymerase ■/Klenow fragment to 37
The reaction was carried out at ℃ for 1 hour. DN treated at 68℃ for 10 minutes
After inactivating the A polymerase (■)/Klenow fragment, the DNA was recovered by ethanol precipitation. The DNA recovered was 20
d), 10 units of restriction enzyme AatI (manufactured by Toyobo Co., Ltd.) was added to the mixture dissolved in 50% buffer solution, and a cleavage reaction was carried out at 37°C for 2 hours. From this reaction solution, an approximately 0.2 Kb DNA fragment CDdel (flat end)-AatII fragment was obtained by the LGT method.
Approximately 0.1. I got it.

別に前項で得たpSEIGC3−3の2gを204のに
一50緩衝液に溶かし、制限酵素Aat■(東洋紡績社
製) 10単位を加え、37℃で2時間消化反応を行っ
た。その後、制限酵素XhoIを10単位加え、37℃
でさらに2時間消化反応を行った。この反応液よりLG
T法により約0.8 KbのDNA断片(AatU−)
(hol断片)約0.1■を得た。
Separately, 2 g of pSEIGC3-3 obtained in the previous section was dissolved in 204-150 buffer, 10 units of restriction enzyme Aat (manufactured by Toyobo Co., Ltd.) was added, and a digestion reaction was carried out at 37°C for 2 hours. Then, add 10 units of restriction enzyme XhoI and
The digestion reaction was carried out for an additional 2 hours. From this reaction solution, LG
Approximately 0.8 Kb DNA fragment (AatU-) was obtained by the T method.
(hol fragment) approximately 0.1 .mu. was obtained.

一方、参考例9で得たpsεIP^l5E1dhfrl
−9Aの2gを204のY−0緩衝液に溶かし、制限酵
素Sma IをlO単位加え、37℃で2時間消化反応
を行った。その後、NaC1濃度が100mMになるよ
うにNaC1を添加し、制限酵素XhoIを10単位加
え、37℃でさらに2時間消化反応を行った。この反応
液からLGT法により約8.7に七のDNA断片(Sm
a I −Xho I断片)約1ugを得た。
On the other hand, psεIP^l5E1dhfrl obtained in Reference Example 9
2 g of -9A was dissolved in 204 Y-0 buffer, 10 units of restriction enzyme Sma I was added, and a digestion reaction was performed at 37°C for 2 hours. Thereafter, NaCl was added so that the NaCl concentration was 100 mM, 10 units of restriction enzyme XhoI was added, and the digestion reaction was further performed at 37° C. for 2 hours. About 8.7 to 7 DNA fragments (Sm
About 1 ug of a I-Xho I fragment) was obtained.

上記のようにして得たpCfTA1由来のDdel(平
坦末端)、Aatn断片(約0.2Kb)約0.1g、
psEIGc3−3由来のAatU−XhoI断片(約
0.8 Kb)約o、tJJg、pSEIPAISEl
dhfrl−9A由来のSmal−Xhol断片(約&
 7 Kb)約1■を304の74DNAIJガーゼ緩
衝液に溶かし400単位のT4DNAIJガーゼを加え
、4℃で18時間結合反応を行った。該反応液を用いて
大腸菌H8101株を形質転換し、Ap耐性株を得た。
Approximately 0.1 g of Ddel (flat end) and Aatn fragment (approximately 0.2 Kb) derived from pCfTA1 obtained as above,
AatU-XhoI fragment derived from psEIGc3-3 (approximately 0.8 Kb) approximately o, tJJg, pSEIPAISEI
Small-Xhol fragment derived from dhfrl-9A (approximately &
7 Kb) was dissolved in 304 74 DNA IJ gauze buffer, 400 units of T4 DNA IJ gauze was added, and a binding reaction was performed at 4°C for 18 hours. E. coli strain H8101 was transformed using the reaction solution to obtain an Ap-resistant strain.

該形質転換株よりプラスミドを単離し、制限酵素切断に
よる構造解析を行った結果、目的の構造を有するプラス
ミドDNA、 pAS3−3であることを確認した。
A plasmid was isolated from the transformed strain, and structural analysis by restriction enzyme digestion confirmed that the plasmid DNA was pAS3-3 having the desired structure.

参考例11゜ 組換え体プラスミドpUKA2の造成:参考例2で得ら
れたヒ) pro−UKcDN^を運ぶプラスミドpU
K1を持つ大腸菌C600SF8株から常法によりpU
KION^を調製した。得られたpUK1ON^約2塊
をY−100緩衝液30ρに溶かし、8単位の制限酵素
Nco Iと8単位のStu Iを加え、37℃で2時
間消化反応を行った。65℃、10分間の熱処理後、A
FT法を用いて約1.2にbのDNA断片を精製した。
Reference Example 11 Construction of recombinant plasmid pUKA2: Plasmid pU carrying the pro-UK cDN^ obtained in Reference Example 2
pU was obtained from Escherichia coli C600SF8 strain carrying K1 by a conventional method.
KION^ was prepared. Approximately 2 blocks of the obtained pUK1ON^ were dissolved in 30 ρ of Y-100 buffer, 8 units of restriction enzyme Nco I and 8 units of Stu I were added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, A
The DNA fragment of approximately 1.2 b was purified using the FT method.

一方、参考例5で得られたpTrS33プラスミドDN
A約2縄を10mM  Tris−HCI(pH7,5
)、25mM KCI、 7mM MgC1a 、6m
M 2−メルカプトエタノールを含む溶液(以下、“K
−25緩衝液”と略称する) 30ulに溶かし、16
単位の制限酵素Sna Iを加え、30℃で2時間消化
反応を行った。
On the other hand, pTrS33 plasmid DNA obtained in Reference Example 5
About 2 ropes of A were mixed with 10mM Tris-HCI (pH 7,5
), 25mM KCI, 7mM MgC1a, 6m
M A solution containing 2-mercaptoethanol (hereinafter referred to as “K
-25 buffer”) Dissolve in 30 ul, 16
One unit of restriction enzyme Sna I was added, and the digestion reaction was carried out at 30°C for 2 hours.

続いて1.5 dのI M NaC1と10単位のNc
o Iを加え、さらに37℃で2時間消化反応を行った
。65℃、10分間の熱処理後、AFT法を用いて約2
.85 KbのDNA断片を精製した。
followed by 1.5 d of I M NaCl and 10 units of Nc
oI was added, and the digestion reaction was further carried out at 37°C for 2 hours. After heat treatment at 65℃ for 10 minutes, approximately 2
.. An 85 Kb DNA fragment was purified.

このようにして得られたpUK1由来の約1.2にbの
DNA断片(約0.05ug)とpTrS33由来の約
2.85にbのDNA断片(約0.1gg)を、全量2
0dのT4リガーゼ緩衝液に溶かし、T4DN/MJガ
ーゼ100単位を加え、4℃で18時間結合反応を行っ
た。
The thus obtained approximately 1.2-b DNA fragment derived from pUK1 (approximately 0.05 ug) and the approximately 2.85-b DNA fragment derived from pTrS33 (approximately 0.1 gg) were combined in a total amount of 2.
It was dissolved in 0 d of T4 ligase buffer, 100 units of T4DN/MJ gauze was added, and the binding reaction was performed at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNA、 pUKA2を単離し
、制限酵素消化による構造解析を行ったところ、目的の
構造を有することを確認した(第32図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA, pUKA2, was isolated from this transformed strain and structurally analyzed by restriction enzyme digestion, and it was confirmed that it had the desired structure (see Figure 32).

参考例12゜ 組換え体プラスミドpUKB101の造成:上で得られ
たpUKA2プラスミドDNA約2■をY−0緩衡液3
0誠に溶かし、12単位の制限酵素Kpn Iを加え、
37℃で2時間消化反応を行った。
Reference Example 12 Construction of recombinant plasmid pUKB101: Approximately 2 cm of pUKA2 plasmid DNA obtained above was added to Y-0 buffer 3
0, add 12 units of restriction enzyme Kpn I,
Digestion reaction was carried out at 37°C for 2 hours.

続いて1.54の2MNaC1と10単位のNco I
を加え、さらに37℃で2時間消化反応を行った。65
℃、10分間の熱処理後、AFT法を用いて約1.2 
KbのDNA断片を精製した。一方、参考例5で得られ
たpTrS33プラスミドDNA約2■を304のに一
25緩衝液に溶かし、16単位のSma Iを加え、3
0℃で2時間消化反応を行った。続いて1.54の2M
NaC1と10単位のPst Iを加え、さらに37℃
で2時間消化反応を行った。65℃、10分間の熱処理
後、AFT法を用いて約1.15KbのDNA断片を精
製した。
followed by 1.54 of 2M NaCl and 10 units of Nco I
was added, and the digestion reaction was further carried out at 37°C for 2 hours. 65
After heat treatment at ℃ for 10 minutes, approximately 1.2
The Kb DNA fragment was purified. On the other hand, approximately 2 μm of pTrS33 plasmid DNA obtained in Reference Example 5 was dissolved in 304-25 buffer solution, 16 units of Sma I was added, and 3.
Digestion reaction was carried out at 0°C for 2 hours. followed by 2M of 1.54
Add 1 NaCl and 10 units of Pst I and heat to 37°C.
Digestion reaction was carried out for 2 hours. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 1.15 Kb was purified using the AFT method.

また、参考例6で得られたpTerm2プラスミドON
^約2■を304のY−O緩衝液に溶かし、12単位の
にpnlを加え、37で2時間消化反応を行った。
In addition, pTerm2 plasmid ON obtained in Reference Example 6
Approximately 2 ml of the solution was dissolved in 304 Y-O buffer, 12 units of pnl was added, and the digestion reaction was carried out at 37 for 2 hours.

続いて1.!In+の2M NaC1と10単位のPs
t Iを加え、さらに37℃で2時間消化反応を行った
。65℃、10分間の熱処理後、AFT法を用いて約1
.7にbのDNA断片を精製した。また、下記2種の合
成りNA (41merと45mar)をアプライド・
/ツイオシステムズ社380A−DNA合成機を用いて
合成した。
Next is 1. ! In+ 2M NaCl and 10 units Ps
tI was added, and the digestion reaction was further carried out at 37°C for 2 hours. After heat treatment at 65℃ for 10 minutes, approximately 1
.. In step 7, the DNA fragment b was purified. In addition, the following two types of synthetic NA (41mer and 45mar) are applied and
/Synthesized using a Tsuio Systems 380A-DNA synthesizer.

5’ −GGG^^TGGTCACTTTTACCGA
GG^^^GGCCAGCACTGACAC−3’ (
41mer)−CCCTTAC[:AGTG^^AAT
GGCTCCTTTCCGGTCGTGACTGTGG
TAC−5’ (45mer)これらの合成りNAを2
0ピコモル(pmoles)ずつ別々に、20dのT4
キナーゼ緩衝液中で5単位のT4ポリヌクレオチドキナ
ーゼを加え、37℃で30分間反応させることにより、
合成りNAの5′末端をリン酸化した。
5' -GGG^^TGGTCACTTTACCGA
GG^^^GGCCAGCACTGACAC-3' (
41mer)-CCCTTAC[:AGTG^^AAT
GGCTCCTTTCCGGTCGTGACTGTGG
TAC-5' (45mer) These synthetic NAs were
0 pmoles (pmoles) of 20d T4 separately
By adding 5 units of T4 polynucleotide kinase in kinase buffer and reacting for 30 minutes at 37°C.
The 5' end of the synthetic NA was phosphorylated.

このようにして得られたpUKA2由来の約1、2 K
bのDNA断片(約0.054) 、pTr333由来
の約L 15 KbのDNA断片(約0.05 g)、
p7erm2由来の約1.7にbのDNA断片(約0.
05■)、および5′リン酸化された2種の合成ON^
 (1ピコモルずつ)を全量20gのT4リガーゼ緩衝
液に溶かし、300単位のT4DNAリガーゼを加え、
4℃で18時間結合反応を行った。
Approximately 1,2 K derived from pUKA2 thus obtained
b DNA fragment (approximately 0.054), approximately L 15 Kb DNA fragment derived from pTr333 (approximately 0.05 g),
Approximately 1.7 b DNA fragment derived from p7erm2 (approximately 0.
05■), and two 5′-phosphorylated synthetic ON^
(1 pmol each) was dissolved in a total amount of 20 g of T4 ligase buffer, and 300 units of T4 DNA ligase was added.
The binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、^p耐性株を得た。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain a ^p-resistant strain.

この形質転換株からプラスミドDNA、I)UKBlo
lを単離し、制限酵素消化による構造解析およびM13
デイデオキシ・シーフェンス法による塩基配列決定を行
ったところ、pUに8101は目的の構造を有すること
をVIi認した(第33図参照)。
Plasmid DNA from this transformed strain, I) UKBlo
M13 was isolated, and structural analysis by restriction enzyme digestion and M13
When the base sequence was determined by the deideoxy-Siefens method, it was confirmed that pU 8101 had the desired structure (see Figure 33).

参考例13゜ ヒトpro−11に発現プラスミドpsεIUKpro
l−IAの造成:(1)組換えプラスミドpUKF2の
造成:参考例3で得られたpUKIIプラスミドDNA
約3■を30dのY−100緩衝液に溶かし、12単位
のNcolと12単位のHi ndI[[を加え、37
℃で2時間消化反応を行った。65℃、10分間の熱処
理後、AFT法を用いて約0.45KbのDNA断片を
精製した。一方、実施例11の(1)で得られたpUK
A2プラスミドDNA約2■を30u1のY−0!衝液
に溶かし、10単位のKpnIを加え、37℃で2時間
消化反応を行った。続いて1.5犀の2M  NaC1
と10単位のNdolを加え、さらに37℃で2時間消
化反応を行った。65℃、10分間の熱処理後、AFT
法を用いて約1.2にbのDNA断片を精製した。また
、参考例6で得られたpTerm2プラスミドDNA約
2.を30dのY−011衝液に溶かし、lO単位のに
pnlを加え、37℃で2時間消化反応を行った。続い
て1.5 dの2M  NaC1と8単位のHindI
[[を加え、さらに37℃で2時間消化反応を行った。
Reference Example 13゜Human pro-11 expression plasmid psεIUKpro
Construction of l-IA: (1) Construction of recombinant plasmid pUKF2: pUKII plasmid DNA obtained in Reference Example 3
Dissolve about 3 μm in 30 d of Y-100 buffer, add 12 units of Ncol and 12 units of HindI, and add 37
Digestion reaction was carried out at ℃ for 2 hours. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 0.45 Kb was purified using the AFT method. On the other hand, pUK obtained in Example 11 (1)
Approximately 2cm of A2 plasmid DNA was transferred to 30u1 of Y-0! The mixture was dissolved in a buffer solution, 10 units of KpnI was added, and a digestion reaction was performed at 37°C for 2 hours. Next, 1.5 rhino 2M NaC1
and 10 units of Ndol were added, and the digestion reaction was further carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, AFT
A DNA fragment of approximately 1.2 b was purified using the method. In addition, approximately 2.0% of the pTerm2 plasmid DNA obtained in Reference Example 6 was used. was dissolved in 30 d of Y-011 buffer solution, 10 units of pnl was added, and the digestion reaction was carried out at 37°C for 2 hours. followed by 1.5 d of 2M NaCl and 8 units of HindI
[[] was added, and the digestion reaction was further carried out at 37°C for 2 hours.

65℃、10分間の熱処理後、AFT法を用いて約2.
85にbのDNA断片を精製した。
After heat treatment at 65°C for 10 minutes, about 2.
85, the DNA fragment of b was purified.

このようにして得られたpUK11由来の約0.45K
bのDNA断片(約0.02■)、pLJKA2由来の
約1.2にbのDNA断片(約0.05■)、およびp
Te rm2由来の2.85にbのDNA断片(約0.
05■)を全量20u1のT4リガーゼ緩衝液に溶かし
、50単位のT4DNAリガーゼを加え、4℃で18時
間結合反応を行った。
Approximately 0.45K derived from pUK11 thus obtained
b DNA fragment (approximately 0.02■), approximately 1.2b DNA fragment derived from pLJKA2 (approximately 0.05■), and pLJKA2-derived DNA fragment (approximately 0.05■).
A 2.85-b DNA fragment derived from Term2 (approx.
05■) was dissolved in a total volume of 20 μl of T4 ligase buffer, 50 units of T4 DNA ligase was added, and a binding reaction was performed at 4° C. for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸1
1M11294株を形質転換し、Ap耐性株を得た。
Using the obtained mixture of recombinant plasmids, large intestine 1
The 1M11294 strain was transformed to obtain an Ap-resistant strain.

この形質転換株からプラスミドDNA、pUKF2を単
離し、制限酵素消化による構造解析を行ったところ、p
UKF2は目的の構造を有することを確認した(第34
図参照)。
Plasmid DNA, pUKF2, was isolated from this transformed strain, and structural analysis by restriction enzyme digestion revealed that p
It was confirmed that UKF2 has the desired structure (34th
(see figure).

(2)  組換えプラスミドpUKFproの造成:上
で得られたpUKF2プラスミドDNA約2、を30u
1の25mMNaC1を含むy−o緩衝液に溶かし、1
0単位のBs5HII にニーイングランド・バイオラ
ブズ社製)を加え、50℃で2時間消化反応を行った。
(2) Construction of recombinant plasmid pUKFpro: Approximately 2 μl of the pUKF2 plasmid DNA obtained above was added to 30 μl.
1 in yo buffer containing 25mM NaC1,
(manufactured by Ny England Biolabs) was added to 0 units of Bs5HII, and a digestion reaction was performed at 50°C for 2 hours.

続いてt、oJIiの2M NaC1と10単位のHi
nd[[Iを加え、さらに37℃で2時間消化反応を行
った。65℃、10分間の熱処理後、AFT法を用いて
約4.3 KbのDNA断片を精製した。一方、下記6
種の合成りNA (39mer、41mer、  41
mer。
followed by t, oJIi 2M NaCl and 10 units Hi
nd[[I was added, and the digestion reaction was further carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, a DNA fragment of approximately 4.3 Kb was purified using the AFT method. On the other hand, the following 6
Species synthesis NA (39mer, 41mer, 41
mer.

39mer、  17mer、 17mer)を上で述
べた方法に従い、合成重よび5′−末端のリン酸化を行
った。
39mer, 17mer, 17mer) were synthesized and 5'-terminally phosphorylated according to the method described above.

5′−^GCTTGTCCCCGCAGCGCCGTC
GCGCCCTCCTGCCGCAG−3’(39ma
r)3’−TCT CGG GACGACCGCGC−
5’  (17+net)このようにして得られたpU
KF2由来の約4、3 KbのDNA断片(約0.1■
)と5′−リン酸化された6種の合成りNA (1ピコ
モルずつ)を全1204のT4リガーゼ緩衝液に溶かし
、300単位の74DNAIJガーゼを加え、4℃で1
8時間結合反応を行った。
5'-^GCTTGTCCCCGCAGCGCCGTC
GCGCCCTCCTGCCGCAG-3' (39ma
r) 3'-TCT CGG GACGACCGCGC-
5' (17+net) pU thus obtained
A DNA fragment of approximately 4.3 Kb derived from KF2 (approximately 0.1
) and 6 types of 5'-phosphorylated synthetic NA (1 pmol each) were dissolved in total 1204 T4 ligase buffer, 300 units of 74 DNA IJ gauze was added, and the solution was incubated at 4°C for 1 pmol each.
The binding reaction was carried out for 8 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、^p耐性株を得た。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain a ^p-resistant strain.

この形質転換株からプラスミドDNA、I)UKFpr
oを単離し、制限酵素消化による構造解析およびM13
デイデオキシ・シーフェンス法による塩基配列決定を行
ったところ、ρUにFproは目的の構造を有すること
を確認した(第35図参照)。
Plasmid DNA from this transformed strain, I) UKFpr
M13 was isolated and structurally analyzed by restriction enzyme digestion and M13
When the base sequence was determined by the Deideoxy Seefens method, it was confirmed that Fpro had the desired structure at ρU (see Figure 35).

(3)組換え体プラスミドρ5EIUにprol−1^
の造成:参考例9で得られたpslEIPAl−9^プ
ラスミドDNA約2gを304のY−0緩衝液に溶かし
、lO単位のKpn Iを加え、37℃で2時間消化反
応を行った。続いて1.5−の2M  NaCJと10
単位の)lindInを加え、さらに37℃で2時間消
化反応を行った。65℃、10分間の熱処理後、AFT
法を用いて約6.3 KbのDNA断片を精製した。一
方、上で得られたpUKFp roプラスミドDNA約
augを30dのY−0緩衡液に溶かし、15単位のK
pn Iを加え、37℃で2時間消化反応を行った。
(3) Prol-1^ to the recombinant plasmid ρ5EIU
Construction: Approximately 2 g of pslEIPAl-9^ plasmid DNA obtained in Reference Example 9 was dissolved in 304 Y-0 buffer, 10 units of Kpn I was added, and a digestion reaction was performed at 37°C for 2 hours. followed by 1.5-2M NaCJ and 10
) lindIn was added, and the digestion reaction was further carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, AFT
A DNA fragment of approximately 6.3 Kb was purified using the method. On the other hand, about aug of the pUKFpro plasmid DNA obtained above was dissolved in 30 d of Y-0 buffer, and 15 units of K
pn I was added and the digestion reaction was carried out at 37°C for 2 hours.

続いて1.5mの2M NaClと10単位のHi n
dII[を加え、さらに37℃で2時間消化反応を行っ
た。
followed by 1.5 m of 2M NaCl and 10 units of Hin
dII[ was added, and the digestion reaction was further carried out at 37°C for 2 hours.

65℃、10分間の熱処理後、AFT法を用いて約1.
55にbのDNA断片を精製した。
After heat treatment at 65°C for 10 minutes, approximately 1.
55, the DNA fragment b was purified.

このようにして得られたpsBIPAl−9A由来の約
6.3にbのDNA断片(約0.1.)とpUKFpr
o由来の1.55 KbのDNA断片(約0.05g)
を全量20誠のT4+Jガーゼ緩衝液に溶かし、100
単位のT4DN八リガーゼを加え、4℃で18時間結合
反応を行った。
The approximately 6.3-b DNA fragment (approximately 0.1.) derived from psBIPAl-9A thus obtained and pUKFpr
1.55 Kb DNA fragment (approximately 0.05 g) derived from
Dissolve the total amount in 20 Makoto's T4+J gauze buffer and add 100
One unit of T4DN ligase was added and the ligation reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、^p耐性株を得た。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain a ^p-resistant strain.

この形質転換株からプラスミドDNAPSεIUKpr
From this transformed strain, plasmid DNAPSεIUKpr
.

1−IAを単離し、制限酵素消化による構造解析を行っ
たところ、psEIUにprol−IAは目的の構造を
有することを確認した(第36図参照)。
When 1-IA was isolated and subjected to structural analysis by restriction enzyme digestion, it was confirmed that prol-IA had the desired structure in psEIU (see Figure 36).

参考例14゜ l)ヒトLTcDNAを運ぶプラスミドpLT1の単離
: (1)Luk■細胞よりのポリ(A)、RNAの調製: ヒトリンパ芽球様細胞株LukIIより、チオシアン酸
グアニジン−塩化リチウム法〔カサラ(Cathala
)ら:ディーエヌエイ (DNA)2゜329 (19
83)]に従い、ポリ (A)を有するRNAを下記の
ごとく調製した。
Reference Example 14゜l) Isolation of plasmid pLT1 carrying human LT cDNA: (1) Preparation of poly(A) and RNA from Luk II cells: From human lymphoblastoid cell line Luk II, guanidine thiocyanate-lithium chloride method [ Cathala
) et al: DeNA (DNA) 2゜329 (19
[83)], RNA having poly(A) was prepared as follows.

ヒ) IJンパ芽球様細胞株LuklICベリッシ二・
ワイ・ルピン(Berish Y、Rubin)ら:プ
ロシーディング・オン・ザ・ナショナル・アカデミイ・
オン・サイエンス(Proc、 Natl、 Acad
h) IJ lymphoblastoid cell line LuklIC Bellissini.
Berish Y. Rubin et al.: Proceedings on the National Academy
On Science (Proc, Natl, Acad
.

Sci、) USA82.6637 (1985) )
を、5%の仔牛脂児血清と1mMN−2−ヒドロキシエ
チルピペラジン−N’ −2−エタンスルフォン酸(H
EPES)を含む11のRPM11640培地(日永製
薬社製)に、llx 10’cells/ mlとなる
ように接種し、増殖させた。培養にはスピンナー・カル
チャー・ボトルを用いた。37℃で48時間培養した後
、遠心によって細胞を集め、long/mlの7オルボ
ール・ミリステート・アセテート (PMA ; Ph
orbol myristate acetate)と
5%の仔牛脂児血清と1mM  HEPESを含む、新
しい11のRPM11640培地に移し、さらに37℃
で48時間培養した。続いて、この細胞懸濁液の一部(
25(lnl)から1.1100X、4℃、10分間の
遠心によって細胞を集め、80m1のリン酸塩バッファ
ーで洗浄した後、5Mチオシアン酸グアニジン、  1
0mM  EOTA 。
Sci,) USA82.6637 (1985))
was mixed with 5% calf fat serum and 1mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (H
The cells were inoculated into 11 RPM11640 medium (manufactured by Hinaga Pharmaceutical Co., Ltd.) containing EPES) at a concentration of 10' cells/ml and allowed to proliferate. A spinner culture bottle was used for culture. After culturing at 37°C for 48 hours, cells were collected by centrifugation and treated with long/ml 7olbol myristate acetate (PMA; Ph
transferred to fresh RPM 11640 medium containing 5% calf fat serum and 1 mM HEPES and further incubated at 37°C.
The cells were cultured for 48 hours. Subsequently, a portion of this cell suspension (
Cells were collected from 25 (lnl) by centrifugation at 1100X for 10 minutes at 4°C, washed with 80 ml of phosphate buffer, and then washed with 5 M guanidine thiocyanate, 1
0mM EOTA.

50mM  Tr i 5−HCl (pH7)および
8%(V/V)  2−メルカプトエタノールからなる
溶液10m1中でポルテックス・ミキサーを用い可溶化
した。この可溶化物を遠心管に移し、4M  LiCj
!溶液80m1を加えて撹拌した後、4℃、20時間静
置した。Hitachi RP R10ローターにて9
,000rpm、90分間遠心後、RN Aを沈殿とし
て回収した。RNAの沈殿を4M尿素および2M塩化リ
チウムからなる溶液50m1に懸濁し、Hitachi
 RP R10ローターにて9.00 Orpm、 6
0分間遠心後、再びRNAを沈殿として回収した。RN
Aの沈殿を0.1%ラウリル硫酸ナトリウム、1m1v
lEDTA。
Solubilization was carried out using a portex mixer in 10 ml of a solution consisting of 50 mM Tri 5-HCl (pH 7) and 8% (V/V) 2-mercaptoethanol. Transfer this lysate to a centrifuge tube and add 4M LiCj
! After adding 80 ml of the solution and stirring, the mixture was allowed to stand at 4°C for 20 hours. Hitachi RP R10 rotor 9
After centrifugation at ,000 rpm for 90 minutes, RNA was collected as a precipitate. The RNA precipitate was suspended in 50 ml of a solution consisting of 4 M urea and 2 M lithium chloride, and
9.00 Orpm with RP R10 rotor, 6
After centrifugation for 0 minutes, RNA was again collected as a precipitate. R.N.
Add the precipitate of A to 0.1% sodium lauryl sulfate, 1 ml.
lEDTA.

10mMTr i 5−HCl(pH7,5)からなる
溶液10m1に溶解し、フェノール−クロロホルムで抽
出後、エタノール沈殿により回収した。
It was dissolved in 10 ml of a solution consisting of 10 mM Tri 5-HCl (pH 7.5), extracted with phenol-chloroform, and then recovered by ethanol precipitation.

得られたR N A約2.5 mgを10mMTris
−HCR(pH8,0>および1mM  EDTAから
なる溶液1mlに溶かした。65℃、5分間インキコペ
ートし、0.1mlの5MNaCj!を加えた。混合物
をオリゴ(dT)セルロース・カラム〔ピー・エル・パ
イチオケミカル(P−LB iochem ica 1
)社製〕り07トグラフイー(カラム体積0.5m1)
にかけた。吸着したポ!J  (A)を有するmRNA
を10mM Tr i 5−HCj!(pH7,5)お
よび1mM EDTAからなる溶液で溶出し、ポリ(A
)を有するmRNA約100gを得た。
Approximately 2.5 mg of the obtained RNA was added to 10mM Tris.
-HCR (pH 8.0> and 1mM EDTA) was inkopated for 5 minutes at 65°C, and 0.1ml of 5M NaCj! was added. The mixture was coated on an oligo(dT) cellulose column [P.L. P-LB iochem ica 1
) Ri07 Tographie (column volume 0.5m1)
I put it on. Adsorbed Po! mRNA with J (A)
10mM Tri 5-HCj! (pH 7.5) and 1mM EDTA.
) was obtained.

(2)  c D N A合成と該DNAのベクターへ
の挿入: オカヤマーバーグ(Okayama−Berg)の方法
〔モレキュラー・アンド・セルラー・バイオロンイ(M
o1.Ce11.Rial、)、  2.161 (1
982) ]に従い、cDNAの合成とそれを組み込ん
だ組換え体プラスミドの造成を行った。その工程の概略
を第14図に示す。
(2) cDNA synthesis and insertion of the DNA into a vector: Okayama-Berg method [Molecular and Cellular Biol.
o1. Ce11. Rial, ), 2.161 (1
982)], cDNA was synthesized and a recombinant plasmid incorporating it was constructed. An outline of the process is shown in FIG.

上記で調製したポリ (A)RNA約2ag。Approximately 2 ag of poly(A) RNA prepared above.

ベクターブライマー約1.4■を50mMT’r i 
5−HCj!(pH8,3)、  8mM  MgCj
!2゜30mM  KCl、0.3mM  DTT、2
mMdNTP (dATP、dTTP、dGTPおよび
dcTP)および10単位のりボヌクレアーゼインヒビ
ター(P−L Biochen+1cals社製)から
なる溶液22.3 dに溶解し、10単位の逆転写酵素
(生化学工業社製)を加え、41℃90分間インキコベ
ー)L、mRNAに相補的なりNAを合成させた。該反
応物をフェノール−クロロホルム抽出、エタノール沈殿
を行い、RNA−DNA二重二重材加したベクタープラ
イマーDNAを回収した。該DNAを66μM  dC
TPおよび0.2雌ポリ(A)を含むTdT緩衝液20
−に溶かし、14単位のTdT(P−LBiochem
icals社製)を加えて37℃2分間インキコベート
し、cDNA3’末端に20個の(dC)鎮を付加した
。該反応物をフェノール−クロロホルム抽出し、エタノ
ール沈殿により(dC)鎖の付加したcDNA−ベクタ
ープライマーDNAを回収した。該DNAを10mMT
r i 5−HCj!(pH7,5)、6mM  Mg
Cβ2および60mMNaCj!からなる液400dに
溶かし、20単位の HindII[を加え、37℃2
時間インキュベートし、Hind[[部位で切断した。
Approximately 1.4 μ of Vector Brimer was added to 50 mMT'ri.
5-HCj! (pH 8,3), 8mM MgCj
! 2゜30mM KCl, 0.3mM DTT, 2
Dissolved in 22.3 d of a solution consisting of mM dNTPs (dATP, dTTP, dGTP and dcTP) and 10 units of bonuclease inhibitor (manufactured by P-L Biochen+1cals), and added 10 units of reverse transcriptase (manufactured by Seikagaku Corporation). In addition, the mixture was incubated at 41°C for 90 minutes to synthesize NA complementary to the mRNA. The reaction product was subjected to phenol-chloroform extraction and ethanol precipitation, and vector primer DNA added with the RNA-DNA double layer was recovered. The DNA was added to 66 μM dC
TdT buffer containing TP and 0.2 female poly(A) 20
- dissolved in 14 units of TdT (P-LBiochem
icals) and incubate at 37°C for 2 minutes to add 20 (dC) chains to the 3' end of the cDNA. The reaction product was extracted with phenol-chloroform, and the cDNA-vector primer DNA with the (dC) strand added was recovered by ethanol precipitation. 10mMT of the DNA
r i 5-HCj! (pH 7,5), 6mM Mg
Cβ2 and 60mM NaCj! Dissolved in 400d of a solution consisting of
Incubate for an hour and cut at the Hind[[ site.

該反応物をフェノール−クロロホルム抽出、エタノール
沈殿して0.5ピコモルの(dC)鎮付加cDNA−ベ
クタープライマーDNAを得た。該DNA0.2ピコモ
ルおよび前記のリンカ−DNAO14ピコモルを10m
MTr i 5−HCI!(pH7,5)、0.1M 
 NaCl1および1mMEDTAからなる溶液100
μeに溶かし、65℃、42℃、0℃でそれぞれ10分
、25分、30分間インキュベートした。20mM T
r i 5−HCj! (p)17.5)、4mMMg
C11,10mM (NHl)2sO,,0,IM  
KCj!および0.1 mM  β−NADの組成で、
全量too uttとなるよう反応液を調製した。該反
応液に25単位の大腸菌DNA’Jガーゼにューイング
ランド・バイオラブズ社製)を加え、11℃18時間イ
ンキュベートした。該反応液を各40μMのdNTP、
0.15mM  β−NADとなるよう成分を追加調製
し、10単位の大腸菌DNAIJガーゼ、20単位の大
腸菌DNAポリメラーゼI  (P−L Bioche
micals社製)および10単位の大腸菌リボヌクレ
アーゼH(P−L  Biochemicals社製)
を加え、12℃、25℃で順次1時間ずつインキユベー
トした。上記反応で、cDNAを含む組換えDNAの環
状化と、RNA−DNA二重鎮のRNA部分がDNAに
置換され、完全な二重鎖DNAの組換え体プラスミドが
生成した。
The reaction product was extracted with phenol-chloroform and precipitated with ethanol to obtain 0.5 pmol of (dC)-adducted cDNA-vector primer DNA. 0.2 pmol of the DNA and 14 pmol of the linker DNAO were added in 10 m
MTr i 5-HCI! (pH 7.5), 0.1M
Solution 100 consisting of NaCl1 and 1mM EDTA
μe and incubated at 65°C, 42°C, and 0°C for 10 minutes, 25 minutes, and 30 minutes, respectively. 20mM T
r i 5-HCj! (p)17.5), 4mMMg
C11,10mM (NHl)2sO,,0,IM
KCj! and with a composition of 0.1 mM β-NAD,
The reaction solution was prepared so that the total amount was too utt. 25 units of Escherichia coli DNA'J gauze (manufactured by New England Biolabs) was added to the reaction solution and incubated at 11°C for 18 hours. The reaction solution was treated with 40 μM each of dNTP,
Additional ingredients were prepared to give 0.15mM β-NAD, and 10 units of E. coli DNA IJ gauze and 20 units of E. coli DNA polymerase I (P-L Bioche
micals) and 10 units of E. coli ribonuclease H (P-L Biochemicals).
was added and incubated at 12°C and 25°C for 1 hour each. In the above reaction, the recombinant DNA containing cDNA was circularized and the RNA portion of the RNA-DNA double strand was replaced with DNA, producing a complete double-stranded DNA recombinant plasmid.

(3)  ヒトLTcDNAを含む組換えDNAの選択
: (2)で得た組換え体プラスミドを用い、大腸菌C60
0SF8株〔カメロン(CamBron) :プロシー
ディング・オン・ザ・ナショナル・アカデミ4’オブ・
サイエンス(Proc、 Natl、 AcadSci
、) USA 72.3416 (1975) ]を5
cottらの方法〔重定勝哉:細胞工学2.616 (
1983)]に従い形質転換した。得られた約30,0
00個のコロニーをニトロセルロース・フィルター上に
固定した。ジェネンテク(Genentech)社が単
離したヒトLTcDNA Cパトリック・ダブりニー・
グレイ (Patrick Il、Gray)+ら:ネ
イチャー(Nature) 312.721 (198
4) )の5′非翻訳領域の一部の塩基配列と一致する
1?marの合成りNA5’−GATCCCCGGCC
TGCCTG−3′を32pで標識したプローブに52
℃で強く会合した1菌株を選んだ〔グルンステイン・ホ
グネス(Grunstein −Hogness)の方
法、プロシーディング・オン・ザ・ナショナル・アカデ
ミイ・オン・サイエンス(Proc、 Natl、 A
cad、 Sci、 )11sA  72.396H1
975)) 。コ(7)菌株が持つプラスミドpLT1
のcDNAの全塩基配列を、M13ファージを用いたデ
イデオキシ・シーフェンス法により決定した。その結果
、pLTlのcDNAはヒトLTをコードしていること
が判明した。
(3) Selection of recombinant DNA containing human LT cDNA: Using the recombinant plasmid obtained in (2), E. coli C60
0SF8 strain [CamBron: Proceedings on the National Academy 4' of
Science (Proc, Natl, AcadSci
, ) USA 72.3416 (1975) ] 5
Cott et al.'s method [Katsuya Shigesada: Cell Engineering 2.616 (
1983)]. About 30,0 obtained
00 colonies were fixed on nitrocellulose filters. Human LT cDNA isolated by Genentech
Patrick Il, Gray + et al.: Nature 312.721 (198
4) 1? which matches the base sequence of part of the 5' untranslated region of )? Synthesis of marNA5'-GATCCCCGGCC
TGCCTG-3' to the 32p-labeled probe with 52
One strain that strongly associated at ℃ was selected [Grunstein-Hogness method, Proceedings of the National Academy of Sciences (Proc. Natl., A.
cad, Sci, )11sA 72.396H1
975)). Plasmid pLT1 carried by Ko (7) strain
The entire base sequence of the cDNA was determined by the deideoxy-Siefens method using M13 phage. As a result, it was revealed that the pLTl cDNA encodes human LT.

2)組換え体プラスミドpLA1の造成(第37図参照
) : 前項の方法によって得たpLTl(4,7Kb)5■を
全量50dのY−0緩衡液に溶かし、制限酵素XhoT
I (ベーリンガーマンハイム社製)10単位を加えて
、37℃で2時間切断反応を行った。次いで、NaC1
を終濃度150mMとなるように加え、制限酵素N5i
l(二x−イングランド・バイオラブズ社M)10単位
を加え、37℃でさらに3時間切断反応を行った。
2) Construction of recombinant plasmid pLA1 (see Figure 37): Dissolve 5 µl of pLTl (4.7 Kb) obtained by the method in the previous section in a total volume of 50 d of Y-0 buffer, and add restriction enzyme XhoT.
10 units of I (manufactured by Boehringer Mannheim) were added, and the cleavage reaction was carried out at 37°C for 2 hours. Then, NaCl
was added to a final concentration of 150mM, and restriction enzyme N5i
10 units of 2x-England Biolabs M) were added and the cleavage reaction was further carried out at 37°C for 3 hours.

反応液からLGT法によりヒ)LTDNAの大部分を含
む約750bpのDNA断片(Xh。
A DNA fragment of approximately 750 bp (Xh.

U−Nsil断片)約0.3■を得た。Approximately 0.3 μm of the U-Nsil fragment was obtained.

別に、pLTl  20Jtgを200u1のY−50
緩衝液に溶かし、制限酵素HaeI[[40単位を加え
て、37℃で2時間切断反応を行った。
Separately, pLTl 20Jtg was added to 200u1 of Y-50
It was dissolved in a buffer solution, 40 units of restriction enzyme HaeI was added, and a cleavage reaction was performed at 37°C for 2 hours.

次いで、NaC1を終濃度150mMとなるように加え
、N5iI40単位を加え、37℃でさらに3時間切断
反応を行った。反応液からポリアクリルアミドゲル電気
泳動法により、ヒ)LTのN末端部分を含む約5obp
のDNA断片(Ha em−Ns i I断片)約40
ngを得た。
Next, NaCl was added to a final concentration of 150 mM, 40 units of N5iI was added, and the cleavage reaction was further carried out at 37°C for 3 hours. By polyacrylamide gel electrophoresis from the reaction solution, approximately 5 obp containing the N-terminal portion of LT was detected.
DNA fragment (Ha<em>Ns i I fragment) of approximately 40
ng was obtained.

一方、pGELl  (3,4Kb)3縄を全量30d
のY−100緩衝液に溶かし、制限酵素5turと制限
酵素BglUそれぞれ6単位ずつを加え37℃で3時間
切断反応を行った。
On the other hand, the total amount of pGELl (3,4Kb) 3 ropes was 30d.
Y-100 buffer, 6 units each of restriction enzyme 5tur and restriction enzyme BglU were added, and a cleavage reaction was carried out at 37°C for 3 hours.

この反応液からLCIJT法によりApr遺伝子を含む
約2.3 K bのDNA断片(S t u IBgI
m断片)約1.0■を得た。
From this reaction solution, an approximately 2.3 Kb DNA fragment containing the Apr gene (S tu IBgI
m fragment) approximately 1.0 μm was obtained.

次に上記で得たpLT1由来のXhoII−Nsil断
片(約750bp)0.2ugおよびHaeI[l−N
a i I断片(約50bp)20ngとpGEL1由
来のStul−Bgj!:T断片(約2.3Kb)0.
6ggを全量20扉のT4リガーゼ緩衝液に溶かし、こ
の混合溶液にさらに2単位のT 4 DNA ’Jガー
ゼ(宝酒造社製)を加え4℃18時間反応を行った。
Next, 0.2 ug of the pLT1-derived XhoII-Nsil fragment (approximately 750 bp) obtained above and HaeI[l-N
20 ng of a i I fragment (approximately 50 bp) and Stul-Bgj from pGEL1! :T fragment (approximately 2.3 Kb) 0.
A total of 6 gg was dissolved in 20 volumes of T4 ligase buffer, and 2 units of T 4 DNA'J gauze (manufactured by Takara Shuzo Co., Ltd.) were further added to this mixed solution, and the reaction was carried out at 4° C. for 18 hours.

このようにして得た組換え体プラスミドDNAを用い、
Bscherichia coli KM 430株を
コーエンらの方法により形質転換し、Ap’のコロニー
を得た。この形質転換株よりプラスミドDNAを公知の
方法に従って分離精製し、該プラスミドDNAを5tu
I等の制限酵素で切断することによりプラスミドの構造
解析を行った。その結果、目的のプラスミドが得られた
ことを確認した。この組換え体プラスミドをpLAと呼
ぶ。
Using the recombinant plasmid DNA thus obtained,
Bscherichia coli KM 430 strain was transformed by the method of Cohen et al. to obtain Ap' colonies. Plasmid DNA was isolated and purified from this transformed strain according to a known method, and the plasmid DNA was transformed into 5tu
The structure of the plasmid was analyzed by cutting it with a restriction enzyme such as I. As a result, it was confirmed that the desired plasmid was obtained. This recombinant plasmid is called pLA.

3)LT発現プラスミドpLsA1の造成(第38図参
照): 前項により得られたpLAl  (3,IKb)をもつ
大腸菌KM430株を培養し、培養菌体から常法により
pLAI DNAを調製した。得られたpLAIDNA
  3ugをY−100緩衝液30dに溶かし、5tu
lとBgII[それぞれ3単位ずつを加え37℃で3時
間切断反応を行った。この反応液からLGT法によりヒ
トLT遺伝子の大部分を含む約790bpのDNA断片
(StuI−Bg1m断片)約0.5■を得た。
3) Construction of LT expression plasmid pLsA1 (see Figure 38): Escherichia coli KM430 strain carrying pLAI (3, IKb) obtained in the previous section was cultured, and pLAI DNA was prepared from the cultured cells by a conventional method. Obtained pLAI DNA
Dissolve 3ug in 30d of Y-100 buffer and add 5tu
1 and BgII [3 units each were added and the cleavage reaction was carried out at 37°C for 3 hours. From this reaction solution, a DNA fragment of about 790 bp (StuI-Bg1m fragment) containing about 0.5 μm containing most of the human LT gene was obtained by the LGT method.

別に、特開昭58−110600号公報記載の方法で調
製したpKYPlo  3J1gをY−100緩衝液3
0mに溶かし、制限酵素BanI[[と制限酵素Pst
lをそれぞれ6単位ずつを加え37℃で3時間切断反応
を行った。この反応液からLGT法によりトリプトファ
ンプロモータ−(Ptrp)を含む約1. I K b
のDNA断片(Banm−Ps t I断片)約0.6
.を得た。
Separately, 1 g of pKYPlo 3J prepared by the method described in JP-A-58-110600 was added to 3 ml of Y-100 buffer.
Dissolve the restriction enzyme BanI [[ and the restriction enzyme Pst
6 units of each were added and the cleavage reaction was carried out at 37°C for 3 hours. From this reaction solution, approximately 1.0% of the tryptophan promoter (Ptrp) was extracted using the LGT method. I Kb
DNA fragment (Banm-Ps t I fragment) of approximately 0.6
.. I got it.

また、pGELl  (3,4Kb)2JtgをY−1
00緩衝液20顧に溶かし、制限酵素HindI[[。
In addition, pGELl (3,4Kb)2Jtg was added to Y-1
Dissolve the restriction enzyme HindI in 20% of 00 buffer.

BamHIおよびPstIそれぞれ4単位ずつを加え3
7℃で3時間切断反応を行った。この反応液からLGT
法によりリポプロティン由来ターミネータ−を含む約1
.7 K bのDNA断片(Pstl−BamHI断片
)約0.7.を得た。
Add 4 units each of BamHI and PstI to 3
The cleavage reaction was carried out at 7°C for 3 hours. From this reaction solution, LGT
Approximately 1 containing a lipoprotein-derived terminator by the method
.. 7 Kb DNA fragment (Pstl-BamHI fragment) approximately 0.7. I got it.

一方、成熟ヒ)LTポリペプチドのN末端であるLeu
 (CTA)から、5番目のアミノ酸であるGly (
GGC)の2番目の塩基(GO)までと、発現に必要な
開始コドン(ATG)を付与する必要があること、また
Ptrpの下流のSD配列とATGとの距離は、6〜x
sbpの間の適当な長さにする必要があることなどの理
由から、下記のD N A Uンカーを合成した。
On the other hand, Leu, which is the N-terminus of the mature human) LT polypeptide,
(CTA), the fifth amino acid Gly (
GGC) up to the second base (GO) and the start codon (ATG) necessary for expression must be added, and the distance between the SD sequence downstream of Ptrp and ATG is 6 to x
Due to the need to have an appropriate length between sbp and other reasons, the following DNA Unker was synthesized.

まず、−木調DNA、 27−marと25−marを
通常のトリエステル法により合成した。27−marお
よび25−marの各々20ピコモルを全量40dのT
4キナーゼ緩衝液に溶かし、T4ポリヌクレオチドキナ
ーゼ(宝酒造社製)6単位を加えて、37℃で60分間
リン酸化反応を行った。
First, -wood-like DNA, 27-mar and 25-mar, were synthesized by the usual triester method. 20 pmol each of 27-mar and 25-mar in a total amount of 40 d T
4 kinase buffer, 6 units of T4 polynucleotide kinase (manufactured by Takara Shuzo Co., Ltd.) was added, and a phosphorylation reaction was performed at 37°C for 60 minutes.

次に上記で得たpLA1由来のStul−Bgj!n断
片(約790bp)fl、3gと発現ベクターpKYP
 1(18)Banm−Pstl断片(約1.IKb)
0.4gおよびpGEL1由来のPst[−BamHI
断片(約1.7Kb)0.6■を741Jガーゼ緩衝液
25u1に溶かし、この混合液に上記DNA!Iンカー
を約1ピコモル加えた。この混合溶液にさらにT 4 
DNA !Jガーゼ6単位を加え、4℃で18時間結合
反応を行った。
Next, Stul-Bgj derived from pLA1 obtained above! n fragment (approximately 790 bp) fl, 3g and expression vector pKYP
1 (18) Banm-Pstl fragment (approximately 1.IKb)
0.4 g and Pst[-BamHI from pGEL1
Dissolve 0.6 μl of the fragment (approximately 1.7 Kb) in 25 μl of 741J gauze buffer, and add the above DNA! to this mixture. Approximately 1 pmol of Inker was added. Add T4 to this mixed solution.
DNA! Six units of J gauze were added and the binding reaction was carried out at 4°C for 18 hours.

組換え体プラスミドを含む反応混合物を用いて大腸菌K
M430株を形質転換し、Ap’のコロニーを得た。こ
のコロニーの培養菌体からプラスミドDNAを回収した
。得られたプラスミドの構造は制限酵素EcoR1,B
anIII。
E. coli K using a reaction mixture containing the recombinant plasmid.
M430 strain was transformed and Ap' colonies were obtained. Plasmid DNA was recovered from the cultured cells of this colony. The structure of the obtained plasmid is based on restriction enzymes EcoR1 and B.
anIII.

Pstl、HindlI[、EglKで切断後、アガロ
ースゲル電気泳動により確認した。このプラスミドをp
LSAlとよぶ。pLsAlのBann[、HindI
n付近の塩基配列は下記のとおりであることをマキサム
・ギルバーFの方法〔エイ・エム・マキサム(^0M0
Maxam)ら:プロシーディング・オン・ザ・ナショ
ナル・アカデミイ・オン・サイエンス(Proc、Na
tl。
After cleavage with Pstl, HindlI[, and EglK, it was confirmed by agarose gel electrophoresis. This plasmid is p
It is called LSAl. Bann[, HindI of pLsAl
The nucleotide sequence near n is as follows using the Maxam-Gilver F method [A.M. Maxam (^0M0
Maxam) et al.: Proceedings on the National Academy of Sciences (Proc, Na
tl.

^cad、Sci、)、 IIs^ 74.560(1
977) ]で確認した。
^cad, Sci,), IIs^ 74.560 (1
977)].

参考例15゜ hG−C5F発現プラスミドpcfTA1の造成(第3
9図参照) : 参考例4により得られたpcsFl−2DNA2■を全
量20−のy−too緩衝液に溶かし、制限酵素Apa
I[ベーリンガー・マンハイム(Boehringer
 Mannheim)社製〕とBamHIそれぞれlO
単位を加え、37℃で4時間反応を行った。
Reference Example 15 Construction of hG-C5F expression plasmid pcfTA1 (3rd
(See Figure 9): Dissolve the pcsFl-2 DNA 2■ obtained in Reference Example 4 in a total volume of 20-y-too buffer, and add the restriction enzyme Apa
I [Boehringer Mannheim
Mannheim) and BamHI respectively.
Units were added and the reaction was carried out at 37°C for 4 hours.

この反応液からLGT法により1.5 K bのDNA
断片0.4 ugを精製、回収した。
From this reaction solution, 1.5 Kb DNA was extracted by the LGT method.
0.4 ug of fragment was purified and collected.

別に参考例14の方法で調製したプラスミドpLSA1
2ugをY−100緩衝液20mに溶かし、制限酵素B
anI[[(東洋紡績社製)とBamHIそれぞれ10
単位を加え、37℃で4時間反応を行った。この反応液
からLGT法により2.8 K bのDNA断片o、a
gを精製、回収した。
Plasmid pLSA1 separately prepared by the method of Reference Example 14
Dissolve 2ug in 20ml of Y-100 buffer, add restriction enzyme B
anI[[(manufactured by Toyobo Co., Ltd.) and BamHI 10 each
Units were added and the reaction was carried out at 37°C for 4 hours. From this reaction solution, 2.8 Kb DNA fragments o and a were obtained by the LGT method.
g was purified and collected.

一方、成熟hG−CSFポリペプチドのN末端1番目か
ら5番目までのアミノ酸〔スレオニン1(ACAまたは
ACT) 、プロリン”1CCAまたはCCT)、ロイ
シン’(CTA)、グリシン4(GGC) 、プロリン
’(CCC))をコードするコドンと発現に必要な開始
コドン(ATG>を付与する必要があること、また、ト
リプトファンプロモーター(Ptrp)の下流のSD−
配列とATGとの距離を、6〜18bpの間の適当な長
さにする必要があることなどの理由から、下記のDNA
リンカ−を合成した。
On the other hand, the amino acids from the 1st to the 5th N-terminus of the mature hG-CSF polypeptide [threonine 1 (ACA or ACT), proline 1CCA or CCT), leucine' (CTA), glycine 4 (GGC), proline' ( It is necessary to provide the codon encoding CCC)) and the start codon (ATG> necessary for expression), and the SD-
Due to the need to keep the distance between the sequence and ATG to an appropriate length between 6 and 18 bp, the following DNA
A linker was synthesized.

まず−本am D N A 、 26marと20ma
rを通常のトリエステル法〔アール・フレア(R,Cr
ea)ら:プロシーディング・オン・ザ・ナショナル・
アカデミ−・オン・サイエンス(Proc、Natl、
 Acad、 Sci、)、USA75.5765 (
1978) ]により合成した。261Tler。
First - book am DNA, 26mar and 20ma
r by the usual triester method [R Flare (R, Cr
ea) et al.: Proceedings on the National
Academy on Science (Proc, Natl.
Acad, Sci,), USA75.5765 (
1978)]. 261 Tler.

20marのそれぞれ2J1gをT4キナーゼ緩衝液に
溶かし、T4ポリヌクレオチドキナーゼ30単位を加え
て、37℃60分間リン酸化反応を行った。
1 g of 2J of each 20mar was dissolved in T4 kinase buffer, 30 units of T4 polynucleotide kinase was added, and a phosphorylation reaction was performed at 37° C. for 60 minutes.

上記で得たpcsFl−2由来のApal−BamHI
断片(1,5Kb) 0.4.とpLsA1由来のBa
nnl−BamHI断片(2,8にb)0.2■とを2
54の741Jガーゼ緩衝液に溶かし、この混合液に上
記DNA!Jンカーを0.1.加えた。
Apal-BamHI derived from pcsFl-2 obtained above
Fragment (1,5Kb) 0.4. and Ba derived from pLsA1
nnl-BamHI fragment (2,8 b) 0.2■ and 2
54 in 741J gauze buffer, and add the above DNA to this mixture! J car 0.1. added.

この混合溶液にさらにT4DNAIJガーゼ6単位を加
え、4℃、18時間結合反応を行った。
Further, 6 units of T4DNAIJ gauze were added to this mixed solution, and a binding reaction was performed at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて大腸菌H
BIOI株〔ポリバー(Bolivar)ら:ジーン(
Gene) 2.75 (1977) ]をココーンら
の方法〔ニスーxヌ・コーエン(S、N、 Cohen
)ら:プロシーディング・オン・ザ・ナショナル・アカ
デミ−・オン・サイエンス (Proc、Natl、A
cad。
Using the obtained mixture of recombinant plasmids, E. coli H.
BIOI strain [Bolivar et al.: Gene (
Gene) 2.75 (1977)] using the method of Cocone et al.
) et al: Proceedings on the National Academy of Sciences (Proc, Natl, A
cad.

Sci、)U S A、 、69.2110 (197
2) )により形質転換し、AI)’のコロニーを得た
。このコロニーの培養菌体からプラスミドDNAを回収
した。得られたプラスミドの構造は、Ban1lI、 
Rs a I 5Pstl、HindII[、Bgll
Iで切断後、アガロースゲル電気泳動により確認した。
Sci, ) USA, , 69.2110 (197
2) Transformation was performed according to ) to obtain AI)' colonies. Plasmid DNA was recovered from the cultured cells of this colony. The structure of the obtained plasmid is BanlllI,
Rs a I 5Pstl, HindII [, Bgll
After cutting with I, it was confirmed by agarose gel electrophoresis.

このプラスミドをpCfTAlとよぶ。pcfTAlの
BanII[、HindI[I付近の塩基配列は下記の
とおりであることを、M13ファージを用いたデイデオ
キシ・シーフェンス法で確認した。
This plasmid is called pCfTA1. It was confirmed by the Deideoxy Siefens method using M13 phage that the nucleotide sequence near BanII[, HindI[I of pcfTAL is as follows.

参考例16゜ pCfBD28の造成: (1)  hG−CSFcDNAの3′−非翻訳領域の
一部を欠失したプラスミドpcfTB2(18)造成(
第40図参照): 参考例15で得られたhG−C5F発現プラスミミドp
cfTA1  (4,3Kb)2ugをY−100緩衝
液20JL1に溶かし、制限酵素BamHI  4単位
を加えて37℃4時間消化反応を行った。フェノール−
クロロホルム抽出の後、エタノール沈澱により、DNA
断片1.8■を回収した。このDNA断片をクレノー緩
衝液20頭に溶かし、dATP、dTTP、dCTP%
dGTPをそれぞれ1mMになるように加え、さらに4
単位のDNAポリメラーゼI・クレノー断片を加えて、
室温で1時間反応させ、突出末端を平坦末端に変換した
Reference Example 16 Construction of pCfBD28: (1) Construction of plasmid pcfTB2 (18) in which part of the 3'-untranslated region of hG-CSF cDNA was deleted (
(See Figure 40): hG-C5F expression plasmid p obtained in Reference Example 15
2 ug of cfTA1 (4.3 Kb) was dissolved in 20 JL1 of Y-100 buffer, 4 units of restriction enzyme BamHI was added, and a digestion reaction was performed at 37° C. for 4 hours. Phenol-
After chloroform extraction, DNA was extracted by ethanol precipitation.
1.8 µ of fragments were recovered. Dissolve this DNA fragment in 20 volumes of Klenow buffer and add dATP, dTTP, dCTP%.
Add dGTP to 1mM each, and add 4
Add 1 unit of DNA polymerase I Klenow fragment,
The protruding ends were converted to flat ends by reacting at room temperature for 1 hour.

フェノール−クロロホルム抽出後、エタノール沈澱によ
り、DNA断片1.6■を回収した。該DNA断片をY
−100緩衝液20u1に溶かし、10単位のEcoR
iを加え、37℃4時間切断反応を行った。この反応液
からLGT法により2.5 KbのDNA断片CBam
HI(平坦末端)−EcoR■断片〕 lugを得た。
After phenol-chloroform extraction, 1.6 μl of DNA fragments were recovered by ethanol precipitation. The DNA fragment is
-10 units of EcoR dissolved in 20 u1 of 100 buffer
i was added, and the cleavage reaction was carried out at 37°C for 4 hours. From this reaction solution, a 2.5 Kb DNA fragment CBam was obtained using the LGT method.
HI (flat end)-EcoR■ fragment] lug was obtained.

別に、pcfTA12■を20戚のY−100緩衝液に
溶かし、10単位のEcoRIを加え、37℃4時間切
断反応を行った後、NaC1濃度が150mMとなるよ
うにNaC1を添加し、10単位のpraIを加え、3
7℃4時間切断反応を行った。アガロースゲル電気泳動
にて完全な分解を確認した後、hG−C5FcDNAを
含む1.OKbのDNA断片(EcoRI−Dral断
片)0.2■を、LGT法により精製、回収した。
Separately, pcfTA12■ was dissolved in 20% Y-100 buffer, 10 units of EcoRI was added, and the cleavage reaction was carried out at 37°C for 4 hours. Then, NaCl was added so that the NaCl concentration was 150 mM, and 10 units of EcoRI was added. Add praI, 3
The cleavage reaction was carried out at 7°C for 4 hours. After confirming complete degradation by agarose gel electrophoresis, 1. 0.2 inch of OKb DNA fragment (EcoRI-Dral fragment) was purified and recovered by the LGT method.

上記で得たBamHI(平坦末端)−EcoRI断片(
2,5にb)0.2gとEcoRI−Dral断片(1
,0Kb)0.2gをT4リガーゼ緩衡液25〃に溶か
し、この混合液に74DNAリガ一ゼ6単位を加え、4
℃18時間結合反応を行った。
BamHI (flat end)-EcoRI fragment obtained above (
b) 0.2 g and EcoRI-Dral fragment (1
, 0 Kb) was dissolved in 25% of T4 ligase buffer solution, 6 units of 74 DNA ligase was added to this mixture, and 0.2 g of T4 ligase buffer was added.
The binding reaction was carried out for 18 hours at °C.

得られた組換え体プラスミドの混合物を用いて大腸菌8
8101株を形質転換し、A p rのコロニーを得た
。このコロニーの培養菌体よりプラスミドDNAを回収
した。得られたプラスミドの構造は、1(indII[
、Pstlで切断後、アガロースゲル電気泳動により確
認した。このプラスミドをpcfTB2Gと呼ぶ。
Using the mixture of recombinant plasmids obtained, E. coli 8
The 8101 strain was transformed to obtain A pr colonies. Plasmid DNA was recovered from the cultured cells of this colony. The structure of the obtained plasmid is 1(indII[
, and confirmed by agarose gel electrophoresis after cleavage with Pstl. This plasmid is called pcfTB2G.

(2)  hG−CSFのN末端アミノ酸を置換したポ
リペプチドをコードするプラスミドpCfTL38の造
成(第41図参照) : 参考例4の方法によって得たpC5F 1−2(4,5
Kb)3gを60g#Y−100緩衝液ニ溶かし、制限
酵素ApaI(ベーリンガー・マンハイム社製)とfI
J限酵素BamHIそれぞれ8単位ずつを加え、37℃
で3時間切断反応を行った。
(2) Construction of plasmid pCfTL38 encoding a polypeptide with N-terminal amino acid substitution of hG-CSF (see Figure 41): pC5F 1-2 (4,5
Dissolve 3 g of Kb) in 60 g of #Y-100 buffer, add restriction enzyme ApaI (manufactured by Boehringer Mannheim) and fI.
Add 8 units each of J-limiting enzyme BamHI and 37°C.
The cleavage reaction was carried out for 3 hours.

この反応液からLGT法によりhG−CSF遺伝子の大
部分を含む約L 5 KbのDNA断片(Apal−B
amHI断片)約0.4■を得た。
From this reaction solution, an approximately L 5 Kb DNA fragment (Apal-B
amHI fragment) was obtained.

一方、pGELI C関根ら:プロシーディング・オン
・ず・ナショナル・アカデミイ・オン・サイエンス(P
roc、Natl、Acacl、Sci、> US八 
82.4306(1985) ) (B、coli I
GELI  FERM  BP−629の培養物から常
法により採取) (3,4Kb)2■をY−100緩衝
液40mに溶かし、制限酵素BindI[I、BamH
IおよびpstIそれぞれ4単位ずつを加え37℃で3
時間切断反応を行っだ。この反応液からLGT法により
、リポプロティン由来ターミネータ−を含む約1.7 
K bのDNA断片(Pstl−Ban)II断片)約
0.5塊を得た。
On the other hand, pGELI C Sekine et al.: Proceedings of the National Academy of Sciences (P
roc, Natl, Acacl, Sci, > US8
82.4306 (1985) ) (B, coli I
GELI FERM BP-629 culture (3,4Kb) 2■ was dissolved in 40ml of Y-100 buffer, and restriction enzymes BindI[I, BamH
Add 4 units each of I and pstI and incubate at 37°C.
A time-cut reaction was performed. From this reaction solution, about 1.7 g
About 0.5 pieces of Kb DNA fragment (Pstl-Ban II fragment) were obtained.

別に、特開昭58−110600号公報記載の方法で調
製したpKY’P10 3■をY−100緩衝液60J
IIlに溶かし、制限酵素 BanI[[(東洋紡績社
1K)と制限酵素Pstlをそれぞれ6単位ずつ加え3
7℃で3時間切断反応を行った。この反応液からLGT
法によりトリプトファンプロモーター(Ptrp)を含
む約1. I K bのDNA断片(Banl[[−P
s t E断片)約Q、 5.を得た。
Separately, 3μ of pKY'P10 prepared by the method described in JP-A-58-110600 was added to 60J of Y-100 buffer.
Add 6 units each of the restriction enzyme BanI [[(Toyobo Co., Ltd. 1K)] and the restriction enzyme Pstl.
The cleavage reaction was carried out at 7°C for 3 hours. From this reaction solution, LGT
About 1. I K b DNA fragment (Banl[[-P
s t E fragment) about Q, 5. I got it.

一方、成熟hG−CSFのN末端のアミノ酸であるTh
rをSer、Cys、ArgまたはGlyのうちのいず
れかに置換し、発現に必要な開始コドン(ATG)を付
与する必要があること、またPtrpの下流のSD配列
とATGとの距離は、6〜18bpの間の適当な長さに
する必要があることなどの理由から、下記のDNAリン
カ−を合成した。
On the other hand, Th, which is the N-terminal amino acid of mature hG-CSF,
It is necessary to replace r with Ser, Cys, Arg, or Gly to provide the start codon (ATG) necessary for expression, and the distance between the SD sequence downstream of Ptrp and ATG is 6 The following DNA linker was synthesized because it needed to have an appropriate length of ~18 bp.

Ser (NはG、 A、 TまたはCのいずれかの塩基である
)まず、−末鎖DNA、 26−marと20−mar
を通常のトリエステル法により合成し“た。26−me
rおよび20−marの各々20ピコモルを404のT
4キナーゼ緩衝液に溶かし、T4ポリヌクレオチドキナ
ーゼ6単位を加えて、37℃で60分間リン酸化反応を
行った。
Ser (N is any base of G, A, T or C) First, -terminal strand DNA, 26-mar and 20-mar
was synthesized by the conventional triester method.26-me
20 pmol each of r and 20-mar to 404 T
4 kinase buffer, 6 units of T4 polynucleotide kinase was added, and a phosphorylation reaction was performed at 37°C for 60 minutes.

次に上記で得たpcsFl−2由来のApa 1−Ba
mHI断片(約1.5 Kb) 0.3.とpGEL1
由来のPs t I−BamHI断片(約1.7 K 
b )0.2gおよび発現ベクターpKYP1(18)
Ban1[[−Pstl断片(約1.1Kb)0.2■
を全量30戚のT4リガーゼ緩衝液に溶かし、この混合
液に上記DNAリンカ−を約1ピコモル加えた。
Next, Apa 1-Ba derived from pcsFl-2 obtained above
mHI fragment (approximately 1.5 Kb) 0.3. and pGEL1
Ps t I-BamHI fragment (approximately 1.7 K
b) 0.2g and expression vector pKYP1 (18)
Ban1 [[-Pstl fragment (approximately 1.1 Kb) 0.2
The total amount of the DNA linker was dissolved in 30% T4 ligase buffer, and about 1 picomole of the above DNA linker was added to this mixture.

この混合液にさらに6単位のT 4 DNA !Jガー
ゼを加えて4℃、18時間結合反応を行った。
Add 6 more units of T 4 DNA to this mixture! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

組換え体プラスミドを含む反応混合物を用いて大111
1c600sF8株(FERM  BP−1070)〔
カメロン(Cameron)ら:プロシーデイング・才
ブ・ザ・ナショナル・アカデミイ・オン・サイエンス(
Proc、Natl、^cad、Sci、)、 USA
  72.3416(1975) ]を形質転換し、A
plのコロニーを得た。この形質転換株よりプラスミド
DNAを公知の方法に従って分離・精製した。該プラス
ミドDNAの構造はPstl、EcoRl、BanI[
Iで切断後、ポリアクリルアミドゲル電気泳動により確
認した。このプラスミドを第41図に示したとおりpC
fTL38とよぶ。上記プラスミド中のhG−CSF誘
導体遺伝子のN末端付近の配列はであることをM13フ
ァージを用いたデイデオキシ・シーフェンス法により確
認した。
Using a reaction mixture containing the recombinant plasmid,
1c600sF8 strain (FERM BP-1070) [
Cameron et al.: Proceedings of the National Academy on Science (
Proc, Natl, ^cad, Sci,), USA
72.3416 (1975)] and transformed A
Colonies of pl were obtained. Plasmid DNA was isolated and purified from this transformed strain according to a known method. The structure of the plasmid DNA is Pstl, EcoRl, BanI [
After cutting with I, it was confirmed by polyacrylamide gel electrophoresis. This plasmid was converted into pC as shown in Figure 41.
It is called fTL38. The sequence near the N-terminus of the hG-CSF derivative gene in the above plasmid was confirmed by the Deideoxy Seefence method using M13 phage.

(3)  組換え体プラスミドpcfWD1の造成(第
42図参照) : 参考例15の方法で得たpcfTAl  5Mを50d
のY−100緩衝液に溶かし、制限酵素Stu 110
単位と、制限酵素BanII[(東洋紡績社製)10単
位を加えて、37℃で1時間消化反応を行った。反応液
からLGT法によりhG−CSFcDNAを含む約1.
3にb17) D N A断片(B a n lll−
5tuI断片)約0.5gを得た。別に、参考例2の方
法で製造したpKYP26 3■を504のy−too
緩衝液に溶かし、BamH16単位を加えて、30℃で
1時間消化反応を行った。
(3) Construction of recombinant plasmid pcfWD1 (see Figure 42): 50d of pcfTAL 5M obtained by the method of Reference Example 15
Dissolve restriction enzyme Stu 110 in Y-100 buffer.
Unit and 10 units of restriction enzyme BanII [(manufactured by Toyobo Co., Ltd.) were added, and a digestion reaction was performed at 37°C for 1 hour. Approximately 1.0% of hG-CSF cDNA is extracted from the reaction solution by the LGT method.
3 b17) DNA fragment (B an lll-
Approximately 0.5 g of 5tuI fragment) was obtained. Separately, pKYP26 3■ produced by the method of Reference Example 2 was added to 504 y-too.
It was dissolved in a buffer solution, 16 units of BamH was added, and a digestion reaction was performed at 30°C for 1 hour.

これにlQmM T r i s −HC1(pH7,
5)。
This was added with lQmM Tris-HC1 (pH 7,
5).

1mMEDTAで飽和したフェノールを等量加え、激し
く撹拌した後、低速遠心分離法(3,30Orpm、1
0分間、以下同条件)により水層を集めた。等量のクロ
ロホルムを加え、激しく撹拌した後低速遠心分離法によ
り水層を集めた。1/10容の3M酢酸ナトリウムを加
え、2.5倍容のエタノールを加え、−20℃、1時間
静置した。冷却遠心分離法(4℃、  11,000r
prnlO分間)で沈殿を集めた。この沈殿を30dの
クレノー緩衝液に溶かし、dATP、dTTP。
After adding an equal amount of phenol saturated with 1mM EDTA and stirring vigorously, low-speed centrifugation (3,30Orpm, 1
The aqueous layer was collected under the same conditions (hereinafter the same conditions). After adding an equal amount of chloroform and stirring vigorously, the aqueous layer was collected by low-speed centrifugation. 1/10 volume of 3M sodium acetate was added, 2.5 volumes of ethanol was added, and the mixture was left standing at -20°C for 1 hour. Refrigerated centrifugation method (4℃, 11,000r
The precipitate was collected at 1 min). This precipitate was dissolved in 30 d of Klenow buffer, dATP, dTTP.

dcTP、dGTPをそれぞれ100μMになるように
加え、DNAポリメラーゼI・クレノー断片を2単位加
え17℃で15分間反応を行った。68℃で10分間処
理してDNAポリメラーゼ■・クレノー断片を失活させ
た後、NaC1を100mMとなるように加え、制限酵
素PstIを5単位加え37℃で1時間消化反応を行っ
た。
dcTP and dGTP were added at 100 μM each, 2 units of DNA polymerase I/Klenow fragment were added, and the reaction was carried out at 17° C. for 15 minutes. After treating at 68°C for 10 minutes to inactivate the DNA polymerase ①/Klenow fragment, NaCl was added to 100mM, 5 units of restriction enzyme PstI were added, and a digestion reaction was carried out at 37°C for 1 hour.

反応液からLGT法によりlppターミネータ−を含む
約1.8 K bのDNA断片[BamHI(平坦末端
)−Pst[断片〕約0.6■を得た。
From the reaction solution, a DNA fragment of approximately 1.8 Kb [BamHI (flat end)-Pst [fragment] approximately 0.6 μm containing an lpp terminator was obtained by the LGT method.

これとは別に、pGEL 1の4■を40〃のY−10
0緩衝液に溶かし、制限酵素Bann1(東洋紡績社製
)10単位とPstl  10単位を加え37℃で1時
間消化反応を行い、反応液から、LGT法でトリプトフ
ァン系プロモーターを含む約lKbのDNA断片(Ba
nl[I−Pstl断片)を0.4■得た。
Separately, add 4■ of pGEL 1 to 40〃 of Y-10.
0 buffer, add 10 units of restriction enzymes Bann1 (manufactured by Toyobo Co., Ltd.) and 10 units of Pstl, perform a digestion reaction at 37°C for 1 hour, and extract a DNA fragment of about 1Kb containing a tryptophan promoter from the reaction solution using the LGT method. (Ba
0.4 μ of nl [I-Pstl fragment] was obtained.

上記で得たpCfTA1由来のBanI[[−3tul
断片(約1.3にb)約0.2gg、  pKYP26
由来のBamHI  (平坦末端)−PstI断片(約
1.8Kb)約0.1■、  pGELI由来のBan
1[I−Ps t I断片(約IKb)約0.1■を3
0dのT4DNA!Iガーゼ緩衝液に溶かし、4単位の
T4DNAリガーゼを加え、4℃。
BanI[[-3tul] derived from pCfTA1 obtained above
Fragment (about 1.3 to b) about 0.2 gg, pKYP26
BamHI (flat end)-PstI fragment (approximately 1.8 Kb) approximately 0.1 ■ from pGELI, BamHI (flat end) from pGELI
1 [I-Ps t I fragment (approximately IKb) approximately 0.1■
0d's T4DNA! Dissolve in I gauze buffer, add 4 units of T4 DNA ligase, and incubate at 4°C.

18時間結合反応を行った。The binding reaction was carried out for 18 hours.

該反応液を用いて大腸菌H8101株を形質転換し、A
p’のコロニーを得、このコロニーより航記バーンボイ
ムらの方法によりプラスミドDNAを回収し、第42図
に示したpcfWDlを得た。
E. coli H8101 strain was transformed using the reaction solution, and A
A colony of p' was obtained, and plasmid DNA was recovered from this colony by the method of Koki Birnboim et al. to obtain pcfWDl shown in FIG. 42.

(4) pcfT95に19の造成(第43図参照)p
CfTL3Bの5■を50誠のY−100緩衝液に溶か
し、制限酵素HindI[IとBgIl■を1θ単位ず
つ加え、37℃で1時間消化反応を行った。反応液から
LGT法によりトリプトファン・プロモーターを含む約
2.6 K bのDNA断片(HindIII−Bg1
m断片)約0.7゜を得た。別にpCf TL38. 
100.gを1.5mlのY−IQO緩衡緩衝溶かし、
制限酵素BamH1と)l i ndI[[を80単位
ずつ加え、37℃で6時間消化反応を行った。反応液か
らLGT法によりhG−CS F c DNAを含むD
NA断片を回収し、E L U T I P ” −d
 (Schleicher &5chue11社製)で
精製した。このDNA断片を90dのY−150緩衝液
に溶かし、制限酵素Dpn I  (Boehring
er  Mannheim社製)3単位を加え37℃で
15分間消化反応を行った。反応液からポリアクリルア
ミド電気泳動法で、hG−CS F c DNAを含む
約300bpのDNA断片(Hindl[[−Dpnl
断片)約1.を得た。
(4) Creation of 19 in pcfT95 (see Figure 43)p
5 ml of CfTL3B was dissolved in 50 Makoto's Y-100 buffer, 1 θ units of restriction enzymes HindI[I and BgIl] were added, and a digestion reaction was carried out at 37° C. for 1 hour. A DNA fragment of approximately 2.6 Kb (HindIII-Bg1) containing a tryptophan promoter was obtained from the reaction mixture by the LGT method.
m fragment) approximately 0.7° was obtained. Separately pCf TL38.
100. Dissolve g in 1.5 ml of Y-IQO buffer,
Restriction enzymes BamH1 and )lindI[[ were added in 80 units each, and a digestion reaction was carried out at 37°C for 6 hours. D containing hG-CS F c DNA was extracted from the reaction solution by the LGT method.
Collect the NA fragments and ELUTIP''-d
(manufactured by Schleicher & 5chue 11). This DNA fragment was dissolved in 90d Y-150 buffer, and restriction enzyme Dpn I (Boehring
er Mannheim) was added thereto, and a digestion reaction was carried out at 37°C for 15 minutes. About 300 bp DNA fragment (Hindl [[-Dpnl
Fragment) Approximately 1. I got it.

別にpcfT82(18)10gを100JdlのY−
100緩衝液に溶かし、制限酵素Ava I 10単位
を加え、37℃で1時間消化反応を行った。
Separately, add 10g of pcfT82 (18) to 100Jdl of Y-
100 buffer, added 10 units of restriction enzyme Ava I, and performed a digestion reaction at 37°C for 1 hour.

フェノール−クロロホルム抽出およびエタノール沈殿で
DNAを回収し、30dのクレノー緩衝液に溶かし、D
NAポリメラーゼ■・クレノー断片を2単位加え、17
℃で30分間反応を行った。68℃で10分間処理しD
NAポリメラーゼ!・クレノー断片を失活させ、NaC
1を100mMになるように加え制限酵素BglU10
単位を加え37℃で1時間消化反応を行った。
DNA was recovered by phenol-chloroform extraction and ethanol precipitation, dissolved in 30 d of Klenow buffer, and
Add 2 units of NA polymerase ■/Klenow fragment, 17
The reaction was carried out at ℃ for 30 minutes. Treated at 68℃ for 10 minutes
NA polymerase!・Deactivate the Klenow fragment and add NaC
Add restriction enzyme BglU10 to 100mM.
Units were added and the digestion reaction was carried out at 37°C for 1 hour.

反応液からLGT法で1p1)ターミネータ一部分を含
む約4aobpのDNA断片〔Aval(平坦末端) 
−Bgj!I[]約0.3■を得た。
From the reaction solution, a DNA fragment of approximately 4 aobp containing a portion of the terminator [Aval (flat end)] was obtained using the LGT method.
-Bgj! I[]about 0.3■ was obtained.

上記で得た、pCfTL38由来のHindIII−B
gjII断片(約2.6Kb)約0.1.。
HindIII-B derived from pCfTL38 obtained above
gjII fragment (approximately 2.6 Kb) approximately 0.1. .

pCfTL38由来のHind[[[−Dpnl断片(
約aoobp)約0.2■、pcfTB20由来のAv
al(平坦末端)−Bgl■断片(約480bp)約0
..15ugを30dのT4DNAリガーゼ緩衝液に溶
かし、4単位のT4DNAリガーゼを加え、4℃で18
時間結合反応を行った。該反応液を用いて大腸菌881
01株を形質転換し、Aprのコロニーを得、このコロ
ニーより前記バーンボイムらの方法によりプラスミドD
NAを回収し、第43図に示したpCfT95に19を
得た。
Hind[[[-Dpnl fragment (
approx. aoobp) approx. 0.2■, Av derived from pcfTB20
al (flat end)-Bgl■ fragment (about 480 bp) about 0
.. .. Dissolve 15 ug in 30 d of T4 DNA ligase buffer, add 4 units of T4 DNA ligase, and incubate at 4°C for 18 µg.
A time binding reaction was performed. Using the reaction solution, E. coli 881
01 strain was transformed to obtain a colony of Apr, and from this colony, plasmid D was obtained by the method of Birnboim et al.
NA was collected and 19 was obtained in pCfT95 shown in FIG.

(5)  pCf A A 1の造成(第43図参照)
 :前項で得たpcfT95に19 5■を50〃のY
−100緩衝液に溶かし、制限酵素BanI[I(東洋
紡績社製)7単位とBgJ!I(日本ジーン社製)2単
位を加え、37℃で1時間消化反応を行った。反応液か
らLGT法によりトリプトファン・プロモータ一部分を
含む約IKbのDNA断片(Bannl−Bgj!I断
片)約0.6■と、1ppターミネータ一部分を含む約
1.8KbのDNA断片(BglE−Bgl 1断片)
約Igを得た。
(5) Creation of pCf A A 1 (see Figure 43)
: Add 195■ to pcfT95 obtained in the previous section and add 50〃Y
-100 buffer, 7 units of restriction enzyme BanI [I (manufactured by Toyobo Co., Ltd.) and BgJ! Two units of I (manufactured by Nippon Gene Co., Ltd.) were added, and the digestion reaction was carried out at 37°C for 1 hour. From the reaction solution, an approximately 0.6-inch DNA fragment of approximately IKb (Bannl-Bgj!I fragment) containing a portion of a tryptophan promoter and a DNA fragment of approximately 1.8 Kb (BglE-Bgl 1 fragment) containing a portion of a 1pp terminator were obtained using the LGT method. )
Approximately Ig was obtained.

これとは別に15■のpcf795に19を150dの
Y−100緩衝液に溶かし、制限酵素Bgj!I(日本
ジーン社製)6単位と5au3A110単位を加え37
℃で1時間消化反応を行った。反応液からポリアクリル
アミドゲル電気泳動法によりhG−CSFcDNA部分
を含む約350 bpのDNA断片(Bgll−3au
3AI断片)約0.3.を得た。
Separately, dissolve 15μ of pcf795 and 19 in 150d of Y-100 buffer and add the restriction enzyme Bgj! Add 6 units of I (manufactured by Nippon Gene Co., Ltd.) and 110 units of 5au3A to make 37
Digestion reaction was carried out at ℃ for 1 hour. A DNA fragment of approximately 350 bp containing hG-CSF cDNA portion (Bgll-3au
3AI fragment) about 0.3. I got it.

これとは別に、下記の口N^クリンカを合成した。Separately, the following clinker was synthesized.

まず、−木簡DNA、 39−marと41−marを
通常のトリエステル法により合成した。39−marお
よび41−marの各々20ピコモルを全量40dのT
4キナーゼ緩衝液に溶かし、T4ポリヌクレオチドキナ
ーゼ(宝酒造社製) 6単位を加えて、37℃で60分
間リン酸化反応を行った。
First, -wooden strip DNA, 39-mar and 41-mar, were synthesized by the usual triester method. 20 picomole each of 39-mar and 41-mar in a total amount of 40 d T
4 kinase buffer, 6 units of T4 polynucleotide kinase (manufactured by Takara Shuzo Co., Ltd.) were added, and a phosphorylation reaction was performed at 37°C for 60 minutes.

次に上記で得たpcf795K19由来のBan1[I
−Bgl l断片(約IKb)0.1q。
Next, Ban1[I derived from pcf795K19 obtained above
-Bgl l fragment (approximately IKb) 0.1q.

Bgll−Bgl!断片(約1.8Kb)0.05g、
Bgi! l−3au3AI断片(約350 bp)0
、1.をT4DNAリガーゼ緩衝液25AIIに溶かし
、この混合液に上記DNA!Jンカーを約2ピコモル加
えた。さらにT4DNAリガーゼ6単位を加え、4℃で
18時間結合反応を行った。
Bgll-Bgl! 0.05 g of fragment (approximately 1.8 Kb),
Bgi! l-3au3AI fragment (approximately 350 bp) 0
, 1. was dissolved in T4 DNA ligase buffer 25AII, and the above DNA! was added to this mixture. Approximately 2 pmol of J-linker was added. Furthermore, 6 units of T4 DNA ligase were added, and the binding reaction was carried out at 4°C for 18 hours.

該反応液を用いて大腸菌88101株を形質転換し、A
p’のコロニーを得、このコロニより前記バーンポイム
らの方法によりプラスミドDNAを回収し、第43図に
示したpcfAAlを得た。前記デイデオキシ・シーフ
ェンス法でpc f AA 1のDNA!lンカ一部分
の塩基配列を決定したところ、4番目のアミノ酸である
Leuをコードするコドンの3番目の塩基はAであるこ
とが判明した。このpc f AA 1ではhG−CS
Fの10番目のProから23番目のLysまでの14
アミノ酸をコードするDNAfflS分が欠失している
。また、hG−CSFの6番目のAlaがAsnに変化
する変異が導入されており、新たに)(holサイトが
生じる。
E. coli strain 88101 was transformed using the reaction solution, and A
A colony of p' was obtained, and plasmid DNA was recovered from this colony by the method of Bernpoim et al. to obtain pcfAAl shown in FIG. 43. DNA of pc f AA 1 using the Deideoxy Seafence method! When the base sequence of a portion of the linker was determined, it was found that the third base of the codon encoding the fourth amino acid, Leu, was A. In this pc f AA 1, hG-CS
14 from the 10th Pro to the 23rd Lys of F
The DNA fflS, which encodes an amino acid, is deleted. In addition, a mutation has been introduced in which the 6th Ala of hG-CSF is changed to Asn, resulting in the creation of a new hol site.

(6)  pCf A B 5の造成(第431!j参
照):前項で得たpcfAAl  3鴻を30dのY−
100緩衝液に溶かし、制限酵素)(ho Iを5単位
加え、37℃で1時間消化反応を行った。
(6) Creation of pCf A B 5 (see No. 431!j): Convert pcfAAl 3 obtained in the previous section to 30d Y-
100 buffer, added 5 units of restriction enzyme (ho I), and performed a digestion reaction at 37°C for 1 hour.

アガロースゲル電気泳動法でXho I切断が完全に行
われていることを確認したのち、制限酵素Bgi!I(
日本ジーン社製)を1単位加え、37℃で25分間部分
消化反応を行った。反応液からLGT法によりトリプト
ファン・プロモータ一部分および1ppターミネータ一
部分を含む約3にbのDNA断片(Xho I−BgJ
 I断片)約1■を得た。これとは別に、下記のDNA
 リンカ−を合成した。
After confirming that the Xho I cleavage had been completed by agarose gel electrophoresis, the restriction enzyme Bgi! I(
One unit of Nippon Gene Co., Ltd.) was added, and a partial digestion reaction was carried out at 37°C for 25 minutes. From the reaction solution, a DNA fragment of about 3 to 10 cm containing a portion of the tryptophan promoter and a portion of the 1pp terminator (Xho I-BgJ
I fragment) About 1■ was obtained. Apart from this, the following DNA
A linker was synthesized.

(NはG、A、TまたはC) このリンカ−DNAはpcfAAlのhG−CSFcD
NAで欠失していたhG−C5Fの10番目のProか
ら23番目のLysまでの14アミノ酸をコードするD
NAR分を含んでいる。
(N is G, A, T or C) This linker DNA is hG-CSFcD of pcfAAl
D encodes 14 amino acids from Pro at position 10 to Lys at position 23 of hG-C5F that was deleted in NA.
Contains NAR.

まず、−本alDNAs 2 ?−marと25−ma
r(2種)と23−marを通常のトリエステル法によ
り合成した。たがいに相補的な27−marと25−m
ar右よび25−merと23−marのDNA20ピ
コモルずつを各々全量40Jd!のT4キナーゼ緩衝液
に溶かし、T4ポリヌクレオチドキナーゼ(宝酒造社製
)6単位を加えて、37℃で60分間リン酸化反応を行
った。
First, - real alDNAs 2? -mar and 25-ma
r (2 types) and 23-mar were synthesized by the usual triester method. 27-mar and 25-m are complementary to each other
A total amount of 20 pmol each of ar right, 25-mer, and 23-mar DNA was 40 Jd each! was dissolved in T4 kinase buffer, 6 units of T4 polynucleotide kinase (manufactured by Takara Shuzo Co., Ltd.) was added, and a phosphorylation reaction was performed at 37°C for 60 minutes.

次に上記で得たpcfAA1由来のXhol−BglI
断片(約3にb)0.1縄、前項で得たpcFT95に
19由来のBgl l−5au3AI断片(約350b
p) 0.1■をT4DNAリガーゼ緩衝液30JdI
に溶かし、この混合液に上記DNAリンカ−を2ピコモ
ルずつ加えた。さらにT4 DNA リガーゼ6単位を
加え、4℃で18時間結合反応を行った。
Next, Xhol-BglI derived from pcfAA1 obtained above
The Bgl l-5au3AI fragment (approximately 350 b) derived from 19 was added to pcFT95 obtained in the previous section.
p) Add 0.1μ to T4 DNA ligase buffer 30JdI
The above DNA linker was added to the mixture in an amount of 2 pmol each. Furthermore, 6 units of T4 DNA ligase were added, and the binding reaction was carried out at 4°C for 18 hours.

該反応液を用いて大腸菌88101株を形質転換し、A
prのコロニーを得、このコロニーより前記バーンボイ
ムらの方法によりプラスミドDNAを回収し、第43図
に示したpCfAB5を得た。前記デイデオキシ・シー
フェンス法でpcfAB5のDNAIJンカ一部分の塩
基配列を決定したところ、17番目のアミノ酸をコード
するコドンの1番目の塩基はpCfAB5では八であり
、成熟型hG−C5Fの17番目のCysが、pCfA
B5ではSerに置換していることが判明した。
E. coli strain 88101 was transformed using the reaction solution, and A
A colony of pr was obtained, and plasmid DNA was recovered from this colony by the method of Birnboim et al. to obtain pCfAB5 shown in FIG. 43. When the base sequence of a part of the DNA IJ linker of pcfAB5 was determined using the deideoxy-Siefens method, the first base of the codon encoding the 17th amino acid is 8 in pCfAB5, and the 17th base of the codon encoding the 17th amino acid is Cys is pCfA
It was found that B5 was substituted with Ser.

(η pCfBA8の造成(第44図参照) :前項で
得たpCfAB5.3Rを40dのY−100緩衝液に
溶かし、制限酵素AvaI5単位とBgj!115単位
を加え37℃で1時間消化反応を行った。反応液からL
GT法により、トリプトファンプロモータ一部分と1p
p9−ミネータ一部分を含む約2.8 k bのDNA
断片(Aval−BgIU断片)を約1■得た。
(η Construction of pCfBA8 (see Figure 44): Dissolve pCfAB5.3R obtained in the previous section in 40d of Y-100 buffer, add 5 units of restriction enzyme AvaI and 115 units of Bgj!, and perform a digestion reaction at 37°C for 1 hour. L from the reaction solution
By the GT method, a part of the tryptophan promoter and 1p
Approximately 2.8 kb of DNA containing part of p9-minator
Approximately 1 inch of fragment (Aval-BgIU fragment) was obtained.

これとは別に、pcfWDlの6肩を50dのY−IQ
Q緩衝液に溶かし、制限酵素Bg1Mを5単位加え、3
7℃で1時間消化反応を行った。アガロースゲル電気泳
動法でBgin切断が完全に行われていることを確認し
た後に、制限酵素Avalを3単位加え、37℃で20
分間部分切断反応を行った。反応液からLGT法により
、hG−CSFcDNAの大部分を含む約1.3 K 
bのDNA断片(BgJII−AvaI断片)を0. 
Aug得た。
Separately, add 6 shoulders of pcfWDl to 50d Y-IQ
Dissolve in Q buffer, add 5 units of restriction enzyme Bg1M, and add 3
Digestion reaction was carried out at 7°C for 1 hour. After confirming that Bgin cleavage was completed by agarose gel electrophoresis, 3 units of restriction enzyme Aval were added, and the mixture was incubated at 37°C for 20
Partial cleavage reactions were performed for minutes. Approximately 1.3 K containing most of the hG-CSF cDNA was extracted from the reaction solution by the LGT method.
The DNA fragment of b (BgJII-AvaI fragment) was added to 0.
I got Aug.

次に上記で得たpCfAB5由来のAval−BgIU
断片(約2.8 Kb)の0.1■とpCfWDI由来
の8g1■−AVaI断片(約1.3Kb)0.3J1
gをT4DNAリガーゼ緩衝液25犀に溶かし、3単位
のT4DNAリガーゼを加え、4℃18時間結合反応を
行った。
Next, Aval-BgIU derived from pCfAB5 obtained above
0.1■ of the fragment (approximately 2.8 Kb) and 0.3J1 of the 8g1■-AVaI fragment (approximately 1.3 Kb) derived from pCfWDI.
g was dissolved in 25ml of T4 DNA ligase buffer, 3 units of T4 DNA ligase was added, and a ligation reaction was performed at 4°C for 18 hours.

該反応液を用いて大腸菌88101株を形質転換し、A
prのコロニーを得、このコロニより前記バーンボイム
らの方法によりプラスミドDNAを回収し、第44図に
示したpCfBA8を得た。
E. coli strain 88101 was transformed using the reaction solution, and A
A colony of pr was obtained, and plasmid DNA was recovered from this colony by the method of Birnboim et al. to obtain pCfBA8 shown in FIG. 44.

pcfBA8のコードするhG−CSF誘導体のアミノ
酸配列は、成熟型hG−CSFの6番目のAlaがAs
nに、177番目CysがSetに置換している。
The amino acid sequence of the hG-CSF derivative encoded by pcfBA8 shows that the sixth Ala of mature hG-CSF is As.
n, the 177th Cys is replaced with Set.

(8)  pCfBD2gの造成(′i!J44図参照
):まず、下記のDNAIJンカーを合成した。
(8) Construction of pCfBD2g (see figure 'i!J44): First, the following DNA IJ anchor was synthesized.

このDNAリンカ−は、4ケ所の塩基がG、  A。The four bases in this DNA linker are G and A.

T、 Cのうちのいづれかであり、合計256種類のD
NA!Iンカーの混合物として得られる。
Either T or C, totaling 256 types of D
NA! It is obtained as a mixture of I-linkers.

その結果、このDNAリンカ−のコードするhG−CS
FのN末端のアミノ酸配列としては4ケ所に4種類のア
ミノ酸の可能性があり、全体として256種類のアミノ
酸配列が可能であるようにデザインされている。
As a result, hG-CS encoded by this DNA linker
The N-terminal amino acid sequence of F has four possible amino acid sequences at four positions, and is designed to have a total of 256 possible amino acid sequences.

まず−末鎖DNA、31−marと33−marを通常
のトリエステル法により合成した。31−merおよび
33−merの各々2μgを全量40dのT4キナーゼ
緩衝液にとかし、T4ポリヌクレオチドキナーゼ30単
位(宝酒造社製)を加えて、37℃で60分間リン酸化
反応を行った。
First, -terminal strand DNAs, 31-mar and 33-mar, were synthesized by a conventional triester method. 2 μg each of 31-mer and 33-mer were dissolved in a total volume of 40 d of T4 kinase buffer, 30 units of T4 polynucleotide kinase (manufactured by Takara Shuzo Co., Ltd.) was added, and a phosphorylation reaction was performed at 37° C. for 60 minutes.

次にpcfBA8由来のBanI[[−Bglln断片
(約2.7 K b断片)0.1■、同じ< pCf 
BA8由来(7)XhoI−Bg1m断片(約1.4 
K b断片)0.1ugをT4DNAリガーゼ緩衝液2
5〃に溶かし、この混合液に上記DNAリンカ−を約2
ピコモル加えた。さらにT4DNAリガーゼ6単位を加
え、4℃で18時間結合反応を行った。
Next, BanI[[-Bglln fragment (approximately 2.7 Kb fragment) 0.1■ derived from pcfBA8, the same < pCf
BA8-derived (7) XhoI-Bg1m fragment (approximately 1.4
K b fragment) 0.1ug was added to T4 DNA ligase buffer 2
5, and add about 2 of the above DNA linkers to this mixture.
Added picomole. Furthermore, 6 units of T4 DNA ligase were added, and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて大腸菌8
8101株を形質転換し、Aprのコロニーを得た。こ
のコロニーの培養菌体からプラスミドを回収し、pc 
f BD2 Bを得た。
Using the mixture of recombinant plasmids obtained, E. coli 8
8101 strain was transformed and Apr colonies were obtained. Plasmids were collected from the cultured cells of this colony, and pc
f BD2 B was obtained.

前記デイデオキシ・シーフェンス法でDNAリンカ一部
分の塩基配列を決定したところ、hG−CSF誘導体の
N末端側の塩基配列は下記の通りであることが判明した
When the base sequence of a portion of the DNA linker was determined by the Deideoxy Seefens method, the base sequence of the N-terminal side of the hG-CSF derivative was found to be as follows.

pCfBD28がコードするhG−CSF誘導体は、そ
れぞれ成熟型hG−CSFに比べて次のようにアミノ酸
残基が置換されている。
The hG-CSF derivatives encoded by pCfBD28 each have the following amino acid residue substitutions compared to the mature hG-CSF.

pCfBD2BにコードされるhG−CSF誘導体をh
G−CSF CND28]と呼ぶ。
The hG-CSF derivative encoded by pCfBD2B was
G-CSF CND28].

pCfBD28を含む大腸菌菌株はBscher ic
h iacoliEcfBD28(FERMBP−14
79)として微工研に寄託しである。
The E. coli strain containing pCfBD28 is Bscheric
h iacoliEcfBD28 (FERMBP-14
79) and has been deposited with the Institute of Fine Technology.

参考例17 組換え体プラスミドpTkSR18の造成:(1)  
組換え体プラスミドpTksJlの造成:参考例8で得
られたpTA4プラスミドDNA約2■を30dのY−
0緩衡液に溶かし、10単位のEcoRIと30単位の
Bbelを加え、37℃で2時間消化反応を行った。6
5℃、10分間の熱処理後、AFT法を用い、約2.8
にbのBbeI−EcoRI断片を精製した。
Reference Example 17 Construction of recombinant plasmid pTkSR18: (1)
Construction of recombinant plasmid pTksJl: Approximately 2 cm of pTA4 plasmid DNA obtained in Reference Example 8 was transformed into a 30 d Y-
0 buffer, 10 units of EcoRI and 30 units of Bbel were added, and a digestion reaction was performed at 37°C for 2 hours. 6
After heat treatment at 5°C for 10 minutes, approximately 2.8
The BbeI-EcoRI fragment of b was purified.

別に、pTA4DNA約3■を30dのY−O緩衝液に
溶かし、12単位のKpnIを加え37℃で2時間消化
反応を行った。続いて、1.5gの2M  NaCjと
1単位のEcoRIを加え、さらに37℃で1時間消化
反応を行った。この反応により、DNAはKpnIで完
全に、EcoRIで部分的に消化された。65℃、10
分間の熱処理後、AFT法を用い、約1.4にbのEc
oRI−Kpnl断片を精製した。また、下記2種の合
成りNA(16塩基と24塩基)をアプライド・バイオ
システムズ社380A −DNA合成機を用いて合成し
、それぞれ別々に上で述べた方法と同様の方法を用いて
5′−リン酸化した。
Separately, about 3 μm of pTA4 DNA was dissolved in 30 d of YO buffer, 12 units of KpnI was added, and a digestion reaction was carried out at 37° C. for 2 hours. Subsequently, 1.5 g of 2M NaCj and 1 unit of EcoRI were added, and the digestion reaction was further performed at 37° C. for 1 hour. This reaction resulted in DNA being completely digested with KpnI and partially with EcoRI. 65℃, 10
After heat treatment for a minute, using the AFT method, the Ec of b was approximately 1.4.
The oRI-Kpnl fragment was purified. In addition, the following two types of synthetic NAs (16 bases and 24 bases) were synthesized using an Applied Biosystems 380A-DNA synthesizer, and 5' - Phosphorylated.

5’ −CTCCTGCCTCCCATGG −3’3
’ −CGCGGAGGACGGAGGGTACCTT
^^−5′このようにして得られたpTA4由来の約2
.8にbのBbeI−EcoRf断片(約0.1g)、
pTA4由来の約1.4にbのEcoRI−Kpnl断
片(約0.05■)および5′−リン酸化された2種の
合成りNA (それぞれl pmoleずつ)を20犀
のT4リガーゼ緩衡液に溶かし、50単位のT 4 D
NA !Jガーゼを加え、4℃で18時間結合反応を行
った。
5'-CTCCTGCCTCCCCATGG-3'3
' -CGCGGAGGACGGAGGGGTACCTT
^^-5' Approximately 2 from pTA4 thus obtained
.. BbeI-EcoRf fragment (approximately 0.1 g) of b in 8.
An approximately 1.4 b EcoRI-Kpnl fragment derived from pTA4 (approximately 0.05 μm) and two 5'-phosphorylated synthetic NAs (1 pmole each) were added to 20 rhino T4 ligase buffer. 50 units of T 4 D
NA! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNA、pTkSJ 1を単離
し、制限酵素消化による構造解析およびM13ファージ
を用いたデイデオキシ・シーフェンス法により、pTk
 SJlが目的の構造を有することを確認した(第50
図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA, pTkSJ 1, was isolated from this transformed strain, and pTk
It was confirmed that SJl has the desired structure (50th
(see figure).

(2)組換え体プラスミドpTksR18の造成:上で
得られたpTksJ1プラスミドDNA約3■を30d
のY−100緩衝液に溶かし、10単位のXholと1
5単位のSca lを加え、37℃で2時間消化反応を
行った。65℃、10分間の熱処理後、AFT法を用い
、約0.5KbのDNA断片を精製した。別に、参考例
5−(2)で得られたpTrS33プラスミドDNA約
2埒を150mM  KCIを含むY−0緩衝液に溶か
し、8単位のPvuIと15単位のSaj■を加え、3
7℃で2時間消化反応を行った。
(2) Construction of recombinant plasmid pTksR18: Approximately 3 cm of pTksJ1 plasmid DNA obtained above was
of Y-100 buffer, 10 units of Xhol and 1
5 units of Scal were added and the digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 0.5 Kb was purified using the AFT method. Separately, approximately 2 tbsp of pTrS33 plasmid DNA obtained in Reference Example 5-(2) was dissolved in Y-0 buffer containing 150 mM KCI, 8 units of PvuI and 15 units of Saj■ were added, and 3
Digestion reaction was carried out at 7°C for 2 hours.

65℃、10分間の熱処理後、AFT法を用い、約1.
0にbのDNA断片を精製した。また、参考例6で得ら
れたpTe rm2プラスミドDNA約2塊を30dの
Y−15011衝液に溶かし、8単位のPvu Iと8
単位のNs i I  (NewI!ngland B
iolabs社製)を加え、37℃で2時間消化反応を
行った。65℃、10分間の熱処理後、AFT法を用い
、約1.85 KbのDNA断片を精製した。また、下
記2種の合成りNA(35塩基と31塩基)をアプライ
ド・バイオシステムズ社380A−DNA合成機を用い
て合成し、それぞれを別々に上で述べた方法と同様の方
法を用いて5′−リン酸化した。
After heat treatment at 65°C for 10 minutes, approximately 1.
A DNA fragment of 0.b was purified. In addition, about 2 blocks of pTerm2 plasmid DNA obtained in Reference Example 6 were dissolved in 30 d of Y-15011 solution, and 8 units of Pvu I and 8
Unit of Ns i I (NewI!ngland B
iolabs) was added thereto, and the digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65° C. for 10 minutes, a DNA fragment of approximately 1.85 Kb was purified using the AFT method. In addition, the following two types of synthetic NAs (35 bases and 31 bases) were synthesized using an Applied Biosystems 380A-DNA synthesizer, and each was separately synthesized using the same method as described above. '-phosphorylated.

5′−^CTGTGACGTCCCCAGCTGTTC
TG^^GGAAATGCA −3’3’−TG^CA
CTGCAGGGGTCGAC^^GACTTCCTT
T −5’このようにして得られたpTksJ1由来の
約0.5にbのXhol−5eal断片(約0.05g
)、pTrS33由来の約1. OKbのPvu 1−
5iI1断片(約0.14) 、pTerm2由来の約
1.85 KbのN5iI−PvuI断片(約0.1■
)、および5′7リン酸化された2種の合成りNA (
それぞれ1 pmo16ずつ)を20mのT4リガーゼ
緩衝液に溶かし、50単位のT4DNA!Iガーゼを加
え、4℃で18時間結合反応を行った。
5'-^CTGTGACGTCCCCAGCTGTT
TG^^GGAAATGCA -3'3'-TG^CA
CTGCAGGGGTCGAC^^GACTTCCTT
T-5' Xhol-5eal fragment (about 0.05 g
), approximately 1.0 from pTrS33. OKb Pvu 1-
5iI1 fragment (approximately 0.14), an approximately 1.85 Kb N5iI-Pvul fragment from pTerm2 (approximately 0.1
), and two types of 5'7 phosphorylated synthetic NA (
1 pmo16 each) in 20 m T4 ligase buffer and 50 units of T4 DNA! I gauze was added and the binding reaction was carried out at 4°C for 18 hours.

このようにして得られた組換え体プラスミドの混合物を
用いて、大腸菌MM294株を形質転換し、Ap耐性株
を得た。この形質転換株からプラスミドDNA、pTk
sRl 8を単離し、制限酵素消化による構造解析およ
びM13ファージを用いたデイデオキシ・シーフェンス
法により、pTkSR18が目的の構造を存することを
確認した(第51図参照)。
Using the mixture of recombinant plasmids thus obtained, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA, pTk, was obtained from this transformed strain.
sRl 8 was isolated, and it was confirmed that pTkSR18 had the desired structure by structural analysis by restriction enzyme digestion and the deideoxy-Siefens method using M13 phage (see Figure 51).

参考例18゜ pTKss4の造成: (1)組換え体プラスミドpTkSD217の造成: 参考例8で得られたpTA4プラスミドDNA 約10
gを100dのY−100緩衝液に溶かし、約30単位
のXholを加え、37℃で2時間消化反応を行った。
Reference Example 18 Construction of pTKss4: (1) Construction of recombinant plasmid pTkSD217: Approximately 10 pTA4 plasmid DNA obtained in Reference Example 8
g was dissolved in 100 d of Y-100 buffer, approximately 30 units of Xhol was added, and a digestion reaction was performed at 37°C for 2 hours.

続いて、フェノール抽出およびクロロホルム抽出を行っ
た後、エタノール沈澱によってDNA断片を回収し、5
0dのTE緩衝液[10mM  Tr i 5−HCI
(pH7,5) 、0.5mM  EDTA)に溶かし
た。
Subsequently, after performing phenol extraction and chloroform extraction, DNA fragments were collected by ethanol precipitation, and 5
0d TE buffer [10mM Tri 5-HCI
(pH 7.5, 0.5mM EDTA).

このDNA溶液1OJJiに、5濃度度のBAL31緩
衝液[100mM  Tr i 5−HCj! (pH
8,0) 、3M  NaC1,60mM  CaC1
x、60mM MgC15,5mM EDTA)を1(
ld、水を304加え、さらに0.5単位のエキソヌク
レアーゼBAL31(宝酒造社製)を加え、30℃で5
分間反応を行った。この反応条件は、Xhol末端から
約0.5にbのDNAが削れる条件である。この反応を
フェノール抽出によって止め、さらにクロロホルム抽出
を行った後、エタノール沈澱によりDNA断片を回収し
た。このDNA断片を30誠のY−100緩衝液に溶か
し、10単位のBamHIを加え、37℃で2時間消化
反応を行った。65℃、10分間の熱処理後、AFT法
を用い、約1.5 KbのDNA断片を精製した。
1 OJJi of this DNA solution was added with 5 concentrations of BAL31 buffer [100mM Tri 5-HCj! (pH
8,0), 3M NaCl, 60mM CaCl
x, 60mM MgC15, 5mM EDTA) at 1(
ld, add 304 ml of water, further add 0.5 unit of exonuclease BAL31 (manufactured by Takara Shuzo Co., Ltd.), and incubate at 30°C for 50 min.
The reaction was carried out for minutes. These reaction conditions are such that DNA b can be removed by about 0.5 from the Xhol end. This reaction was stopped by phenol extraction, and after further chloroform extraction, DNA fragments were recovered by ethanol precipitation. This DNA fragment was dissolved in 30 Makoto's Y-100 buffer, 10 units of BamHI was added, and a digestion reaction was performed at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, a DNA fragment of approximately 1.5 Kb was purified using the AFT method.

これとは別に、pTrS33プラスミドDNA(参考例
5)約2Jigを30dのY−0緩衝液中で約12単位
の5aclを加え、37℃で2時間消化反応を行った。
Separately, about 2 Jig of pTrS33 plasmid DNA (Reference Example 5) was added with about 12 units of 5 acl in 30 d of Y-0 buffer, and a digestion reaction was performed at 37°C for 2 hours.

フェノール抽出とクロロホルム抽出の後、エタノール沈
澱によってDNA断片を回収し、全量404の50mM
  Tris−HCj!(pH7,8) 、7mM  
MgC1z、6mM  2−メルカプトエタノール、0
.25mM  dATPo、25mM  dcTP、0
.25mM  dGTPおよび0.25mM  dTT
Pを含む緩衝液(以下、“ポリメラーゼ緩衝液”と略称
する)に溶かし、6単位のクレノー断片(にlenow
 Pal I ) (宝酒造社製)を加え、15℃で1
時間反応させ、Sac■突出末端を削って平坦末端に変
えた。反応をフェノール抽出によって止め、クロロホル
ム抽出を行った後、エタノール沈澱によってDNA断片
を回収した。このDNA断片を30dのY−100緩衝
液に溶かし、10単位のBamHIを加え、37℃で2
時間消化反応を行った。65℃、10分間の熱処理後、
AFT法を用い、約2.8にbのDNA断片を精製した
After phenol extraction and chloroform extraction, DNA fragments were recovered by ethanol precipitation, and the total amount of 404 was 50mM.
Tris-HCj! (pH 7,8), 7mM
MgC1z, 6mM 2-mercaptoethanol, 0
.. 25mM dATPo, 25mM dcTP, 0
.. 25mM dGTP and 0.25mM dTT
Dissolve in a buffer containing P (hereinafter abbreviated as "polymerase buffer") and add 6 units of Klenow fragment (to
Pal I) (manufactured by Takara Shuzo Co., Ltd.) and incubated at 15°C.
After reacting for some time, the Sac■ protruding end was shaved off and changed to a flat end. The reaction was stopped by phenol extraction, followed by chloroform extraction, and then DNA fragments were recovered by ethanol precipitation. Dissolve this DNA fragment in 30 d of Y-100 buffer, add 10 units of BamHI, and incubate at 37°C for 2
A time digestion reaction was performed. After heat treatment at 65℃ for 10 minutes,
The DNA fragment of approximately 2.8 b was purified using the AFT method.

このようにして得られたpTA4由来の約1.5Kbの
DNA断片(約0.2.)とpTr333由来の約2.
8にbのDNA断片(約0.1g>とを、全量20dの
T4’lガーゼ緩衝液に溶かし、50単位のT 4 D
NA !Jガーゼを加え、4℃で18時間結合反応を行
った。
The approximately 1.5 Kb DNA fragment (approximately 0.2 Kb) derived from pTA4 and the approximately 2.0 Kb DNA fragment derived from pTr333 thus obtained.
In step 8, dissolve the DNA fragment b (approximately 0.1 g) in a total amount of 20 d of T4'l gauze buffer, and add 50 units of T4D.
NA! J gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNApTksD217を単離
し、制限酵素消化による構造解析を行うとともに、大腸
菌トリプトファン・プロモーター(Ptrp)の下流の
塩基配列をM13ファージを用いたデイデオキシ・シー
フェンス(dideoxy 5equence)法によ
って決定した。その結果、pTkSD217は目的の構
造を有しており、かつ該塩基配列は であることを確認した(第52図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNApTksD217 was isolated from this transformed strain, and its structure was analyzed by restriction enzyme digestion, and the nucleotide sequence downstream of the E. coli tryptophan promoter (Ptrp) was determined by the dideoxy 5 sequence method using M13 phage. Decided. As a result, it was confirmed that pTkSD217 had the desired structure and the base sequence was (see Figure 52).

口) 組換え体プラスミドpTksL11の造成:上で
得られたpTksD21 ?プラスミドDNA約3■を
30dのY−100緩衝液に溶かし、10単位のHin
dI[[と15単位の5eaIを加え、37℃で2時間
消化反応を行った。
) Construction of recombinant plasmid pTksL11: pTksD21 obtained above? Dissolve approximately 3 μ of plasmid DNA in 30 d of Y-100 buffer and add 10 units of Hin.
dI[[ and 15 units of 5eaI were added, and the digestion reaction was carried out at 37°C for 2 hours.

65℃、10分間の熱処理後、AFT法を用い、約0.
23 KbのDNA断片を精製した。次に、参考例5で
得られたpTerm2プラスミドDNA約2■を30d
のY−1oo緩衡液に溶かし、10単位のHindI[
[と10単位のN5il(二ニー・イングランド・バイ
オラブズ社製)を加え、37℃で2時間消化反応を行っ
た。
After heat treatment at 65°C for 10 minutes, approximately 0.
A 23 Kb DNA fragment was purified. Next, about 2 μg of pTerm2 plasmid DNA obtained in Reference Example 5 was added for 30 d
of Y-1oo buffer and 10 units of HindI[
[ and 10 units of N5il (manufactured by Niney England Biolabs) were added, and the digestion reaction was carried out at 37°C for 2 hours.

65℃、10分間の熱処理後、AFT法を用い、約2.
8 KbのDNA断片を精製した。また、下記2種の合
成りNA(35塩基と31塩基)をアプライド・バイオ
システムズ社380A−DNA合成機を用いて合成し、
それぞれ別々に上で述べた方法を用いて5′−リン酸化
した。
After heat treatment at 65°C for 10 minutes, approximately 2.
An 8 Kb DNA fragment was purified. In addition, the following two types of synthetic NAs (35 bases and 31 bases) were synthesized using an Applied Biosystems 380A-DNA synthesizer,
Each was separately 5'-phosphorylated using the method described above.

5′−^CTGTGACGTCCC[”AG[:TGT
TCTGAAGG^^ATGCA −3’3’−TGA
CACTGCAGGGGTCGACAAGACTTCC
TTT −5’このようにして得られたpTkSD21
 ?由来の約0.23 KbのDNA断片(約0.01
g)、pTe rm2由来の約2.8 KbのDNA断
片(約0.14g)、および5′−リン酸化された2種
の合成りNA (1ピコモルずつ)を全量20威のT4
リガーゼ緩衝液に溶かし、300単位のT4DNAIJ
ガーゼを加え、4℃で18時間結合反応を行った。
5'-^CTGTGACGTCCC["AG[:TGT
TCTGAAGG^^ATGCA -3'3'-TGA
CACTGCAGGGGTCGACAAGACTTCC
TTT-5'pTkSD21 thus obtained
? About 0.23 Kb DNA fragment (about 0.01
g), an approximately 2.8 Kb DNA fragment derived from pTerm2 (approximately 0.14 g), and two types of 5'-phosphorylated synthetic NA (1 pmol each) were added to a total amount of 20 μM of T4.
Dissolve 300 units of T4DNAIJ in ligase buffer.
Gauze was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNA、pTksLl 1を単
離し、制限酵素消化による構造解析およびM13デイデ
オキシ・シーフェンス法による塩基配列決定を行ったと
ころ、pTksLllは目的の構造を有することを確認
した(第53図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA, pTksLl 1, was isolated from this transformed strain, and structural analysis by restriction enzyme digestion and nucleotide sequence determination by the M13 deideoxy-Siefens method confirmed that pTksLll had the desired structure (No. (See Figure 53).

(3)組換えプラスミドpTk S S 4の造成:参
考例1で得られたptPA?プラスミドDNA約2gを
304のY−100緩衝液に溶かし、12単位の制限酵
素Sca Iを加え、37℃で2時間消化反応を行った
。65℃、10分間の熱処理後、AFT法を用いて約2
. OKbのDNA断片を精製した。一方、上で得られ
たpTksLl 1プラスミドDNA約2.を上と同様
の反応に供し、65℃、10分間の熱処理後、AFT法
を用いて約2、OKbのDNA断片を精製した。
(3) Construction of recombinant plasmid pTk SS 4: ptPA? obtained in Reference Example 1? Approximately 2 g of plasmid DNA was dissolved in 304 Y-100 buffer, 12 units of restriction enzyme Sca I was added, and a digestion reaction was performed at 37° C. for 2 hours. After heat treatment at 65℃ for 10 minutes, approximately 2
.. The OKb DNA fragment was purified. On the other hand, approximately 2.0% of the pTksLl 1 plasmid DNA obtained above. was subjected to the same reaction as above, and after heat treatment at 65°C for 10 minutes, a DNA fragment of approximately 2.0 OKb was purified using the AFT method.

このようにして得られたptPA?由来の約2、 OK
bのDNA断片(約0.1■)とpTkSL11由来の
約2.0にbのDNA断片(約0.14)を204のT
4リガーゼ緩衝液に溶かし、T4DNAリガーゼ300
単位を加え、4℃で18時間結合反応を行った。
The ptPA thus obtained? About 2, OK
The DNA fragment of b (about 0.1■) and the DNA fragment of b (about 0.14) of about 2.0 derived from pTkSL11 were added to 204 T.
4 ligase buffer, T4 DNA ligase 300
The units were added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、AI)耐性株を得た。この
形質転換株からプラスミドDNA%pTkSS4を単離
し、制限酵素消化による構造解析を行ったところ、pT
k S S 4が、目的の構造を有することを確認した
(第54図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an AI) resistant strain. Plasmid DNA% pTkSS4 was isolated from this transformed strain, and structural analysis by restriction enzyme digestion revealed that pT
It was confirmed that kSS4 had the desired structure (see Figure 54).

参考例19゜ 組換えプラスミドpTG3の造成: 参考例18で得られたpTk S S 4プラスミドD
NA約2ugを304のY−0緩衝液に溶かし、lO単
位の制限酵素NarIJニコーイングランド・バイオラ
ブズ社製)を加え、37℃で2時間消化反応を行った。
Reference Example 19 Construction of recombinant plasmid pTG3: pTk SS 4 plasmid D obtained in Reference Example 18
Approximately 2 ug of NA was dissolved in 304 Y-0 buffer, 10 units of restriction enzyme NarIJ (manufactured by Nikol England Biolabs) was added, and a digestion reaction was performed at 37°C for 2 hours.

続いて1.0 dの2M  NaC,1と12単位のB
amHIを加え、さらに37℃で2時間消化反応を行っ
た。65℃、10分間の熱処理後、AFT法を用いて約
3、3 KbのDNA断片を精製した。一方、参考例1
7で得られたpTksR18プラスミドDNA約3■を
上と同一の反応に供し、65℃、10分間の熱処理後、
AFT法を用いて約0.2KbのDNA断片を精製した
followed by 1.0 d of 2M NaC, 1 and 12 units of B
amHI was added, and the digestion reaction was further carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, a DNA fragment of approximately 3.3 Kb was purified using the AFT method. On the other hand, reference example 1
Approximately 3 cm of pTksR18 plasmid DNA obtained in step 7 was subjected to the same reaction as above, and after heat treatment at 65°C for 10 minutes,
A DNA fragment of approximately 0.2 Kb was purified using the AFT method.

このようにして得られたpTk S S 4由来の約3
.3 KbのDNA断片(約0.IJig)とpTk 
5R18由来の約0.2にbのDNA断片(約0.01
gg)を204のT41Jガーゼ緩衝液に溶かし、T4
DNAリガーゼ100単位を加え、4℃で18時間結合
反応を行った。
The pTk SS obtained in this way derived from approximately 3
.. 3 Kb DNA fragment (approximately 0.IJig) and pTk
Approximately 0.2b DNA fragment derived from 5R18 (approximately 0.01
gg) in 204 T41J gauze buffer, T4
100 units of DNA ligase was added and the binding reaction was carried out at 4°C for 18 hours.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNA%pTG3を単離し、制
限酵素消化による構造解析を行ったところ、pT’G3
が目的の構造を有することを確認した(第55図参照)
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA%pTG3 was isolated from this transformed strain, and structural analysis by restriction enzyme digestion revealed that pT'G3
was confirmed to have the desired structure (see Figure 55).
.

参考例20゜ 組換えプラスミドphPA2の造成: 参考例19で得られたpTG3プラスミドDNA約2■
をY、−100緩衝液30mに溶かし、10単位のEc
oRIとpvulを加え、37℃で2時間消化反応を行
った。65℃、10分間の熱処理後、ATF法を用いて
約1.7 K bのDNA断片を精製しな。
Reference Example 20 Construction of recombinant plasmid phPA2: Approximately 2㎜ pTG3 plasmid DNA obtained in Reference Example 19
was dissolved in 30 m of Y, -100 buffer, and 10 units of Ec
oRI and pvul were added, and the digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65°C for 10 minutes, a DNA fragment of approximately 1.7 Kb was purified using the ATF method.

また、参考例12で得られたpUKB 101プラスミ
ドDNA約2gをY−100緩衝液304に溶かし、l
O単位のNcolとpvulを加え、37℃で2時間消
化反応を行った。65℃、10分間の熱処理後、ATF
法を用いて約3.0にbのDNA断片を精製した。
In addition, about 2 g of pUKB 101 plasmid DNA obtained in Reference Example 12 was dissolved in Y-100 buffer 304, and l
O units of Ncol and pvul were added, and the digestion reaction was carried out at 37°C for 2 hours. After heat treatment at 65℃ for 10 minutes, ATF
A DNA fragment of approximately 3.0 b was purified using the method.

さらに、参考例17で得られたpTksR18プラスミ
ドDNA約2ggをY−100緩衝液30〃に溶かし、
10単位の)iindDIとAatllを加え、37℃
で2時間消化反応を行った。
Furthermore, about 2 gg of pTksR18 plasmid DNA obtained in Reference Example 17 was dissolved in 30 ml of Y-100 buffer,
Add 10 units of iindDI and Aatll and heat to 37°C.
Digestion reaction was carried out for 2 hours.

65℃、10分間の熱処理後、ATF法を用いて約0.
55にbのDNA断片を精製した。
After heat treatment at 65°C for 10 minutes, approximately 0.0% was measured using the ATF method.
55, the DNA fragment b was purified.

また、下記4種の合成りNA(37塩基と41塩基およ
び41塩基と45塩基)をアプライド・バイオシステム
ズ社380A−DNA合成機を用いて合成した。
In addition, the following four types of synthetic NAs (37 bases, 41 bases, 41 bases, and 45 bases) were synthesized using an Applied Biosystems 380A-DNA synthesizer.

これらの合成りNAを20ピコモル(pmoles)ず
つ別々に、204のT4キナーゼ緩衝液中で5単位の7
4DNAキナーゼ(宝酒造社製)を加え、37℃で30
分間反応させることにより、合成りNAの5′末端をリ
ン酸化した。
20 pmoles of these synthetic NAs were separately added to 5 units of 7 in 204 T4 kinase buffer.
Add 4 DNA Kinase (manufactured by Takara Shuzo Co., Ltd.) and incubate at 37℃ for 30 minutes.
By reacting for minutes, the 5' end of the synthetic NA was phosphorylated.

このようにして得られたpTG3由来の約1、7 Kb
のDNA断片(約0.05gg> 、pUKB101由
来の約3.0にbのDNA断片(約0.05■)、pT
ksR18由来の約0.55 KbのDNA断片(約0
.05g)、および5′リン酸化された4種の合成りN
A (1ピコモルずつ)を全量20dのT41Jガーゼ
緩衝液に溶かし300単位のT41Jガーゼを加え、4
℃で18時間結合反応を行った。
Approximately 1.7 Kb derived from pTG3 thus obtained
DNA fragment (approximately 0.05 gg>), approximately 3.0 b DNA fragment (approximately 0.05 ■) derived from pUKB101, pT
Approximately 0.55 Kb DNA fragment derived from ksR18 (approximately 0
.. 05g), and four 5'-phosphorylated synthetic N
Dissolve A (1 pmol each) in a total volume of 20 d of T41J gauze buffer, add 300 units of T41J gauze, and add 300 units of T41J gauze.
The binding reaction was carried out for 18 hours at °C.

得られた組換え体プラスミドの混合物を用いて、大腸菌
MM294株を形質転換し、Ap耐性株を得た。この形
質転換株からプラスミドDNA、phPA2を単離し、
制限酵素消化による構造解析およびM13デイデオキシ
・シーフェンス法による塩基配列決定を行ったところ、
phPA2は目的の構造を有するこきを確認した(第5
6図参照)。
Using the obtained mixture of recombinant plasmids, E. coli strain MM294 was transformed to obtain an Ap-resistant strain. Plasmid DNA, phPA2, was isolated from this transformed strain,
Structural analysis by restriction enzyme digestion and base sequence determination by the M13 deideoxy-Siefens method revealed that
phPA2 confirmed that it has the desired structure (5th
(See Figure 6).

発明の効果 本発明によればプロテアーゼ抵抗性、熱安定性などの性
質を付与したポリペプチドが組換えDNA技法により工
業的に供給される。
Effects of the Invention According to the present invention, polypeptides endowed with properties such as protease resistance and thermostability can be industrially supplied using recombinant DNA techniques.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、N−グリコシド結合型糖鎖の分類を示す。 図中記号はそれぞれ下記物質を示す(以下同じ)。 Glcニゲルコース、Man:マンノース、GIcNA
c:N−アセチルグルコサミン、Ga1ニガラクトース
、siaニジアル酸、Fuc :フコース 第2図は、リビド中間体の構造を示す。 図中PPはピロリン酸を示す。 第3図は、ドリコールリン酸サイクルを示す。 図中記号はそれぞれ下記物質を示す。 PAMニドリコール酸、P−P−ニドリコールピロリン
酸、GDP:グアニジンニリン酸、LJDP :ウリジ
ンニリン酸、◆ニゲルコース、:マンノース、・:N−
アセチルグルコサミン第4図は、N−グリコシド結合型
糖鎖の生合成系を示す。 図中記号はそれぞれ下記物質を示す。 −二N−アセチルグルコサミン、○:マンノース、・ニ
ガラクトース、◆ニジアル酸、ム:グルコース、Δ:フ
コース 第5図は、プラスミドpA52gの造成工程を示す。 第6図はプラスミドpASN6の造成工程を示す。 第7図(1)図はプラスミドpt1981)281’〜
145の造成工程を示す。 第7図(2)はプラスミドpAsN145の造成工程を
示す。 第8(1)図は、大腸菌で生産、精製したhc−cSF
およびhG−C5F CND28]とCHO細胞で生産
させたhG−CSF、hG−C5F CND28] 、
hc−CSF (NO38N6)右よびhG−CSF 
[NO38N145]を5DS−ポリアクリルアミド電
気泳動に供した後、銀染色したものである。 第8(2)図は、第8(1)図に示したゲル上の蛋白質
をニトロセルロース膜に移した後、抗hG−CSF単ク
ローン抗体を用いて酵素抗体染色を行ったものである。 第8(3)図は、第8(2)図の模式図である。 第8(4)図は、hG−CSF CND28)について
、O−グリコシド結合型11iiJlが新たに付加した
ものと、そうでないものについてキモトリプシン抵抗性
を調べたときの5DS−ポリアクリルアミドゲル電気泳
動の結果とその模式図を示す。 第8(5)図は、hG−CSF l:ND28N6]に
ついて、N−グリコシド結合型糖鎖が新たに付加したも
のと、そうでないものについてキモトリプシン抵抗性を
調べたときの5DS−ポリアクリルアミドゲル電気泳動
の結果とその模式図を示す。 第8(6)図は、hG−CSF [NO38N145)
について、0−グリコシド結合型11iwAあるいはN
−グリコシド結合型糖鎖が新たに付加したものとそうで
ないものについてキモトリプシン抵抗性を調べたときの
5DS−ポリアクリルアミドゲル電気泳動の結果とその
模式図を示す。 第8(7)図は、hG−CSF CND28N6]につ
いてN−グリコシド結合型糖鎖が新たに付加したものと
、それを除去したものについて熱安定性を比較したもの
である。0印はN−グリカナーゼ処理(N−グリコシド
結合型糖鎖除去hG−CSF (ND2BN6))を、
・印は対照(N−グリコシド結合型糖鎖付加hG−CS
F CND28N6〕を示す。 第9図は1木調pUKmps1の造成工程を示す。 第1O図はプラスミドpUKs 1の造成工程を示す。 第11図はプラスミドpsEIUKsl−1dの造成工
程を示す。 第12図は天然型prO−UK(!:UK誘導体UK−
31のトロンビン感受性を比較した5DS−ポリアクリ
ルアミドゲル電気泳動の結果を示す。 第13図は天然型p r o−UKとUK誘導体UK−
91のトロンビン感受性をアミドリティック活性で比較
した結果を示すグラフである。 第14図(1)と(2)は、オカヤマ・バーブ法による
cDNA合成と該DNAを含む組換え体プラスミドの造
成工程を示す。 第15図はプラスミドpccK1の造成工程を示す。 第16図はプラスミドpCCK2の造成工程を示す。 第17図はヒトpro−UKcDNAを運ぶプラスミド
pUK11の造成工程を示す。 第18図はプラスミドpTrs2(18)造成工程を示
す。 第19図はプラスミドpTrS33の造成工程を示す。 第20図はプラスミドpTe rm2の造成工程を示す
。 第21図はプラスミドpTSF 1(18)造成工程を
示す。 第22図はプラスミドpTA4の造成工程を示す。 第23図はプラスミドpΔGE105Mの造成工程を示
す。 第24図はプラスミドpAGE 106のa成工程を示
す。 第25図はプラスミドpsEIPAl−5の造成工程を
示す。 第26図はプラスミドpsEIPAI−9の造成工程を
示す。 第゛27図はプラスミドpUc19Hの造成工程を示す
。 第28rllJバプラXミ)’psEIPAI−9Aの
造成工程を示す。 第29図はプラスミドpsBIPA1sB1dhfrl
−9^の造成工程を示す。 第30図はプラスミドpsEIGc3−3の造成工程を
示す。 第31図はプラスミドpAS3−3の造成工程を示す。 第32図はプラスミドpUKA2の造成工程を示す。 第33図はプラスミドpUKB101の造成工程を示す
。 第34図はプラスミドpUKF2の造成工程を示す。 第35図はプラスミドpUKFproの造成工程を示す
。 第36図はプラスミドpsEIUKprol−IAの造
成工程を示す。 第37図はプラスミドpLA1の造成工程を示す。 第38図はプラスミドpLSA1の造成工程を示す。 第39図はプラスミドpcfTA1の造成工程を示す。 第40図はプラスミドpc fTB2(18)造成工程
を示す。 第41図はプラスミドpCfTL38の造成工程を示す
。 第42図はプラスミドpcfWDlの造成工程を示す。 第43図はプラスミドpcfT95に19、pc f 
AA 1およびpCfAB5の造成工程を示す。 第44図はプラスミドpCfBA8およびpCfBD2
8の造成工程を示す。 第45図は天然型pro−UKおよび糖鎖付加型修飾U
K−S Lの持続注入時における全身線溶系因子のレベ
ルの時間的変化を示す。 第46図は天然型pro−UKおよび糖鎖付加型修飾U
K−51の急速静注時における全身線溶系因子のレベル
の時間的変化を示す。 第47図のプラスミドpUKS3の造成工程を示す。 第48図はプラスミドpSEUKS3の造成工程を示す
。 第49図は天然型pro−UKおよび糖鎖付加型修飾U
K−53の70℃における熱失活曲線を示す。 第50図はプラスミドpTksJ1の造成工程を示す。 第51図はプラスミドpTksR18の造成工程を示す
。 第52図はプラスミドpTkSD217の造成工程を示
す。 第53図はプラスミドpTksL11の造成工程を示す
。 第54図はプラスミドpTkss4の造成工程を示す。 第55図はプラスミドpTG3の造成工程を示す。 第56図はプラスミドphPA2の造成工程を示す。 図面の浄a(内容に変更な 六膓酌 CHα姉肥 5KD − 8面の浄書(内容に変更なし) ■ (h) 第9 図 omHI st I ↓ 暑 令 第13図 反几−i1M (介) 第14図(2) DNAりが−ピ 第14図(1) 第15図 EcoRl 第16図 第18図 第20図 第21図 bgtn 第27図 第29図 区CON1 第32図 EcoRI 第36図 第37図 第39図 第38図 第40図 第47図 GGCCAA AAG ACT: ATTCGA AC
G CGT m AAG ATr ATT GGG G
GA GTT TTCTGA TAA GCT TGC
GCA AAA TTCTAA TAA CCCCCT
 CTT AA第49図 蛋白濃度10 J、l(J /m 1 70’C。 h インキユベ―hンタイム (吟) BamHl 第5θ図 第52 図 第5q図 第!!図
FIG. 1 shows the classification of N-glycoside-linked sugar chains. The symbols in the figure indicate the following substances (the same applies below). Glc nigercose, Man: Mannose, GIcNA
c: N-acetylglucosamine, Ga1 nigalactose, sia nidialic acid, Fuc: fucose Figure 2 shows the structure of the libido intermediate. In the figure, PP indicates pyrophosphoric acid. Figure 3 shows the dolichol phosphate cycle. The symbols in the figure indicate the following substances. PAM nidricholic acid, P-P-nidricol pyrophosphate, GDP: guanidine diphosphoric acid, LJDP: uridine diphosphoric acid, ◆nigelcose,: mannose, .: N-
Acetylglucosamine Figure 4 shows the biosynthesis system of N-glycoside-linked sugar chains. The symbols in the figure indicate the following substances. -2N-acetylglucosamine, ○: Mannose, Nigalactose, ◆ Nidialic acid, Mu: Glucose, Δ: Fucose Figure 5 shows the construction process of plasmid pA52g. FIG. 6 shows the construction process of plasmid pASN6. Figure 7 (1) shows plasmid pt1981)281'~
145 is shown. FIG. 7(2) shows the construction process of plasmid pAsN145. Figure 8(1) shows hc-cSF produced and purified in E. coli.
and hG-C5F CND28] and hG-CSF produced in CHO cells, hG-C5F CND28],
hc-CSF (NO38N6) right and hG-CSF
[NO38N145] was subjected to 5DS-polyacrylamide electrophoresis and then silver stained. FIG. 8(2) shows the protein on the gel shown in FIG. 8(1) being transferred to a nitrocellulose membrane and then subjected to enzyme antibody staining using an anti-hG-CSF monoclonal antibody. FIG. 8(3) is a schematic diagram of FIG. 8(2). Figure 8 (4) shows the results of 5DS-polyacrylamide gel electrophoresis when examining the chymotrypsin resistance of hG-CSF CND28) with and without newly added O-glycoside-linked 11iiJl. and its schematic diagram are shown. Figure 8 (5) shows the 5DS-polyacrylamide gel electrophoresis when examining the chymotrypsin resistance of hG-CSF l:ND28N6] with and without newly added N-glycoside-linked sugar chains. The results of electrophoresis and its schematic diagram are shown. Figure 8 (6) shows hG-CSF [NO38N145]
For, 0-glycosidic bond type 11iwA or N
- Shows the results of 5DS-polyacrylamide gel electrophoresis and its schematic diagram when chymotrypsin resistance was examined for those with and without newly added glycoside-linked sugar chains. FIG. 8(7) shows a comparison of the thermostability of hG-CSF CND28N6] with newly added N-glycoside-linked sugar chain and with that removed. Mark 0 indicates N-glycanase treatment (N-glycoside-linked sugar chain removal hG-CSF (ND2BN6)).
・The mark is a control (N-glycoside-linked glycosylated hG-CS
F CND28N6]. FIG. 9 shows the construction process of 1-wood pUKmps1. Figure 1O shows the construction process of plasmid pUKs1. FIG. 11 shows the construction process of plasmid psEIUKsl-1d. Figure 12 shows natural prO-UK (!: UK derivative UK-
The results of 5DS-polyacrylamide gel electrophoresis comparing the thrombin sensitivities of 31 samples are shown. Figure 13 shows the natural pro-UK and UK derivative UK-
Fig. 9 is a graph showing the results of comparing the thrombin sensitivity of No. 91 with amidolytic activity. Figures 14 (1) and (2) show the steps of cDNA synthesis by the Okayama-Barb method and the construction of a recombinant plasmid containing the DNA. FIG. 15 shows the construction process of plasmid pccK1. Figure 16 shows the steps for constructing plasmid pCCK2. Figure 17 shows the construction steps of plasmid pUK11 carrying human pro-UK cDNA. Figure 18 shows the steps for constructing plasmid pTrs2 (18). FIG. 19 shows the construction process of plasmid pTrS33. FIG. 20 shows the construction process of plasmid pTerm2. Figure 21 shows the steps for constructing plasmid pTSF 1 (18). Figure 22 shows the steps for constructing plasmid pTA4. FIG. 23 shows the construction process of plasmid pΔGE105M. FIG. 24 shows the step of constructing plasmid pAGE 106. FIG. 25 shows the construction process of plasmid psEIPAl-5. FIG. 26 shows the construction process of plasmid psEIPAI-9. Figure 27 shows the construction process of plasmid pUc19H. 28th rllJ Bapura Xmi)' psEIPAI-9A construction process is shown. Figure 29 shows plasmid psBIPA1sB1dhfrl
-9^ construction process is shown. FIG. 30 shows the construction process of plasmid psEIGc3-3. FIG. 31 shows the construction process of plasmid pAS3-3. Figure 32 shows the steps for constructing plasmid pUKA2. Figure 33 shows the construction process of plasmid pUKB101. Figure 34 shows the steps for constructing plasmid pUKF2. Figure 35 shows the steps for constructing plasmid pUKFpro. FIG. 36 shows the construction process of plasmid psEIUKprol-IA. Figure 37 shows the steps for constructing plasmid pLA1. Figure 38 shows the steps for constructing plasmid pLSA1. Figure 39 shows the steps for constructing plasmid pcfTA1. Figure 40 shows the steps for constructing plasmid pc fTB2 (18). Figure 41 shows the steps for constructing plasmid pCfTL38. Figure 42 shows the steps for constructing plasmid pcfWDl. Figure 43 shows 19, pcf in plasmid pcfT95.
The construction steps of AA1 and pCfAB5 are shown. Figure 44 shows plasmids pCfBA8 and pCfBD2.
8 is shown. Figure 45 shows natural pro-UK and glycosylated modified U.
Figure 2 shows temporal changes in the level of systemic fibrinolytic factors during continuous infusion of K-SL. Figure 46 shows natural pro-UK and glycosylated modified U.
Figure 2 shows temporal changes in the level of systemic fibrinolytic factors during rapid intravenous injection of K-51. FIG. 47 shows the construction process of plasmid pUKS3. Figure 48 shows the construction process of plasmid pSEUKS3. Figure 49 shows natural pro-UK and glycosylated modified U.
The heat inactivation curve of K-53 at 70°C is shown. Figure 50 shows the steps for constructing plasmid pTksJ1. Figure 51 shows the steps for constructing plasmid pTksR18. Figure 52 shows the steps for constructing plasmid pTkSD217. Figure 53 shows the steps for constructing plasmid pTksL11. Figure 54 shows the steps for constructing plasmid pTkss4. Figure 55 shows the steps for constructing plasmid pTG3. Figure 56 shows the steps for constructing plasmid phPA2. Cleaning of the drawings a (with changes in content Rokujoku CHα Anehi 5KD - 8 pages of engravings (no changes in content) ■ (h) Figure 9 omHI st I ↓ Heat Rei Figure 13 Han 几 - i1M (Intermediate) Fig. 14 (2) DNA Riga-Pi Fig. 14 (1) Fig. 15 EcoRl Fig. 16 Fig. 18 Fig. 20 Fig. 21 bgtn Fig. 27 Fig. 29 Section CON1 Fig. 32 EcoRI Fig. 36 Figure 37 Figure 39 Figure 38 Figure 40 Figure 47 GGCCAA AAG ACT: ATTCGA AC
G CGT m AAG ATr ATT GGG G
GA GTT TTCTGA TAA GCT TGC
GCA AAA TTCTAA TAA CCCCCT
CTT AA Fig. 49 Protein concentration 10 J, l (J / m 1 70'C. h Incubation time (Gin) BamHl Fig. 5θ Fig. 52 Fig. 5q Fig.!!Fig.

Claims (28)

【特許請求の範囲】[Claims] (1)少なくとも1つの新たな糖鎖の付加が可能なアミ
ノ酸配列を有する新規ポリペプチド。
(1) A novel polypeptide having an amino acid sequence to which at least one new sugar chain can be added.
(2)ポリペプチドに対し、アミノ酸置換、アミノ酸欠
失あるいはアミノ酸挿入を行うことにより、糖鎖の付加
が可能となったものであることを特徴とする請求項1の
新規ポリペプチド。
(2) The novel polypeptide according to claim 1, wherein addition of a sugar chain is made possible by performing amino acid substitution, amino acid deletion, or amino acid insertion in the polypeptide.
(3)該アミノ酸配列がN−グリコシレーション結合部
位(アスパラギン残基−X残基−スレオニン残基あるい
はセリン残基、X残基はプロリン以外のアミノ酸)であ
ることを特徴とする請求項1の新規ポリペプチド。
(3) Claim 1, wherein the amino acid sequence is an N-glycosylation binding site (asparagine residue-X residue-threonine residue or serine residue, where the X residue is an amino acid other than proline). A novel polypeptide.
(4)請求項1から3のいずれかに記載したポリペプチ
ドに少なくとも1つの糖鎖が付加したグリコシル化ポリ
ペプチド。
(4) A glycosylated polypeptide obtained by adding at least one sugar chain to the polypeptide according to any one of claims 1 to 3.
(5)付加した糖鎖が、N−グリコシド結合型糖鎖、O
−グリコシド結合型糖鎖、あるいは化学合成した糖鎖で
あることを特徴とする請求項4記載のグリコシル化ポリ
ペプチド。
(5) The added sugar chain is an N-glycoside-linked sugar chain, an O
- The glycosylated polypeptide according to claim 4, which is a glycoside-linked sugar chain or a chemically synthesized sugar chain.
(6)糖鎖の付加部位がポリペプチドにおけるプロテア
ーゼの切断部位の近傍(その切断部位から8アミノ酸残
基以内)にあることを特徴とする請求項1から5のいず
れかに記載のポリペプチドまたはグリコシル化ポリペプ
チド。
(6) The polypeptide according to any one of claims 1 to 5, wherein the sugar chain addition site is located near the protease cleavage site (within 8 amino acid residues from the cleavage site) of the polypeptide; Glycosylated polypeptides.
(7)糖鎖の付加部位が、ポリペプチドの表面部位にあ
ることを特徴とする請求項1から5に記載のポリペプチ
ドまたはグリコシル化ポリペプチド。
(7) The polypeptide or glycosylated polypeptide according to claims 1 to 5, wherein the sugar chain addition site is located on the surface of the polypeptide.
(8)請求項1から7のいずれかに記載のポリペプチド
またはグリコシル化ポリペプチドがコロニー刺激因子(
顆粒球・マクロファージコロニー刺激因子、顆粒球コロ
ニー刺激因子、マクロファージコロニー刺激因子)、組
織プラスミノーゲン活性化因子(以下、t−PAと略記
する)、ウロキナーゼ(以下、UKと略記する)、イン
ターフェロン−α、インターフェロン−β、インターフ
ェロン−γ、リンホトキシン、リポコルチン、スーパー
オキシドジスムターゼ、エリスロポイエチンまたはイン
ターロイキン−1、−2、−3、−4、−5、−6また
は−7であることを特徴とする請求項1から7に記載の
ポリペプチドまたはグリコシル化ポリペプチド。
(8) The polypeptide or glycosylated polypeptide according to any one of claims 1 to 7 is a colony stimulating factor (
Granulocyte/macrophage colony stimulating factor, granulocyte colony stimulating factor, macrophage colony stimulating factor), tissue plasminogen activator (hereinafter abbreviated as t-PA), urokinase (hereinafter abbreviated as UK), interferon- α, interferon-β, interferon-γ, lymphotoxin, lipocortin, superoxide dismutase, erythropoietin or interleukin-1, -2, -3, -4, -5, -6 or -7. The polypeptide or glycosylated polypeptide according to claims 1 to 7.
(9)請求項1から7のいずれかに記載のポリペプチド
またはグリコシル化ポリペプチドが、ヒト顆粒球コロニ
ー刺激因子(以下、hG−CSFと略記する)であり、
hG−CSFのスレオニン残基(N末端から1番目)が
アラニン残基で、ロイシン残基(N末端から3番目)が
スレオニン残基で、グリシン残基(N末端から4番目)
がチロシン残基で、プロリン残基(N末端から5番目)
がアルギニン残基で、システイン残基(N末端から17
番目)がセリン残基でそれぞれ置換されていることを特
徴とする請求項1から7のいずれかに記載のポリペプチ
ドまたはグリコシル化ポリペプチド。
(9) The polypeptide or glycosylated polypeptide according to any one of claims 1 to 7 is human granulocyte colony stimulating factor (hereinafter abbreviated as hG-CSF),
The threonine residue (1st from the N-terminus) of hG-CSF is an alanine residue, the leucine residue (3rd from the N-terminus) is a threonine residue, and the glycine residue (4th from the N-terminus)
is a tyrosine residue, and a proline residue (5th from the N-terminus)
is an arginine residue, and a cysteine residue (17 from the N-terminus)
8. The polypeptide or glycosylated polypeptide according to any one of claims 1 to 7, wherein the polypeptide or glycosylated polypeptide according to any one of claims 1 to 7, wherein each of the positions (th) and 3) is substituted with a serine residue.
(10)請求項9記載のポリペプチドまたはグリコシル
化ポリペプチドのアラニン残基(N末端から6番目)が
アスパラギン残基で置換されていることを特徴とする請
求項9に記載のポリペプチドまたはグリコシル化ポリペ
プチド。
(10) The polypeptide or glycosylated polypeptide according to claim 9, wherein the alanine residue (sixth from the N-terminus) of the polypeptide or glycosylated polypeptide is replaced with an asparagine residue. polypeptide.
(11)請求項9記載のポリペプチドまたはグリコシル
化ポリペプチドのグルタミン残基(N末端から145番
目)がアスパラギン残基で、アルギニン残基(N末端か
ら147番目)がセリン残基でそれぞれ置換されている
ことを特徴とする請求項9に記載のポリペプチドまたは
グリコシル化ポリペプチド。
(11) The glutamine residue (145th from the N-terminus) of the polypeptide or glycosylated polypeptide according to claim 9 is replaced with an asparagine residue, and the arginine residue (147th from the N-terminus) is replaced with a serine residue. The polypeptide or glycosylated polypeptide according to claim 9, characterized in that:
(12)第2表、第3表、および第4表に示したアミノ
酸配列から選ばれるアミノ酸配列を有する請求項9記載
のポリペプチドまたはグリコシル化ポリペプチド。
(12) The polypeptide or glycosylated polypeptide according to claim 9, which has an amino acid sequence selected from the amino acid sequences shown in Tables 2, 3, and 4.
(13)請求項1から7のいずれかに記載のポリペプチ
ドまたはグリコシル化ポリペプチドがUKであり、糖鎖
の付加部位が成熟型UKのトロンビン切断部位の近傍〔
グリシン残基(N末端から149番目)からフェニール
アラニン残基(N末端から164番目)までの間〕に存
在することを特徴とする請求項1から7のいずれかに記
載のポリペプチドまたはグリコシル化ポリペプチド。
(13) The polypeptide or glycosylated polypeptide according to any one of claims 1 to 7 is UK, and the sugar chain addition site is near the thrombin cleavage site of mature UK [
The polypeptide or glycosylation according to any one of claims 1 to 7, characterized in that the polypeptide is present between a glycine residue (149th from the N-terminus) to a phenylalanine residue (164th from the N-terminus). polypeptide.
(14)成熟型UKのフェニールアラニン残基(N末端
から164番目)をアスパラギン残基に置換した請求項
13記載のポリペプチドまたはグリコシル化ポリペプチ
ド。
(14) The polypeptide or glycosylated polypeptide according to claim 13, wherein the phenylalanine residue (164th from the N-terminus) of the mature UK is replaced with an asparagine residue.
(15)成熟型UKのロイシン残基(N末端から153
番目)をアスパラギン残基に置換し、かつプロリン残基
(N末端から155番目)をスレオニン残基に置換した
請求項13記載のポリペプチドまたはグリコシル化ポリ
ペプチド。
(15) Leucine residue of mature UK (153 from the N-terminus)
14. The polypeptide or glycosylated polypeptide according to claim 13, wherein the proline residue (155th from the N-terminus) is replaced with an asparagine residue and the proline residue (155th from the N-terminus) is replaced with a threonine residue.
(16)第6表および第7表に示したアミノ酸配列から
選ばれるアミノ酸配列を有する請求項13記載のポリペ
プチドまたはグリコシル化ポリペプチド。
(16) The polypeptide or glycosylated polypeptide according to claim 13, which has an amino acid sequence selected from the amino acid sequences shown in Tables 6 and 7.
(17)請求項1から16のいずれかに記載のポリペプ
チドまたはグリコシル化ポリペプチドのポリペプチド部
分をコードするデオキシリボ核酸(DNA)。
(17) Deoxyribonucleic acid (DNA) encoding the polypeptide or the polypeptide portion of the glycosylated polypeptide according to any one of claims 1 to 16.
(18)請求項17に記載のDNAを組み込んでなる組
換え体プラスミド。
(18) A recombinant plasmid incorporating the DNA according to claim 17.
(19)プラスミドDNAとして、大腸菌トリプトファ
ンプロモーターあるいはSV40初期プロモーターを有
するプラスミドDNAを用い、該DNAが該プラスミド
DNAのプロモーターの下流に組み込まれたことを特徴
とする請求項18記載の組換え体プラスミド。
(19) The recombinant plasmid according to claim 18, wherein a plasmid DNA having an E. coli tryptophan promoter or an SV40 early promoter is used as the plasmid DNA, and the DNA is integrated downstream of the promoter of the plasmid DNA.
(20)pAS28、pASN6、pASN145、p
SE1UKS1−1dおよびpSEUKS3から選ばれ
る請求項18または19に記載の組換え体プラスミド。
(20) pAS28, pASN6, pASN145, p
The recombinant plasmid according to claim 18 or 19, selected from SE1UKS1-1d and pSEUKS3.
(21)請求項18から20のいずれかに記載の組換え
体プラスミドを含有する微生物または動物細胞。
(21) A microorganism or animal cell containing the recombinant plasmid according to any one of claims 18 to 20.
(22)該微生物が大腸菌に属することを特徴とする請
求項21記載の微生物。
(22) The microorganism according to claim 21, wherein the microorganism belongs to Escherichia coli.
(23)該動物細胞がCHO(Chinese Ham
ster Ovary)細胞またはナマルバ細胞である
ことを特徴とする請求項21記載の動物細胞。
(23) The animal cells are CHO (Chinese Ham)
22. The animal cell according to claim 21, which is a ster Ovary cell or a Namalva cell.
(24)請求項21記載の微生物または動物細胞を培地
に培養し、培養物中にポリペプチドまたはグリコシル化
ポリペプチドを蓄積させ、該培養物から該ポリペプチド
または該グリコシル化ポリペプチドを採取することを特
徴とするポリペプチドまたはグリコシル化ポリペプチド
の製造法。
(24) Cultivating the microorganism or animal cell according to claim 21 in a medium, accumulating the polypeptide or glycosylated polypeptide in the culture, and collecting the polypeptide or the glycosylated polypeptide from the culture. A method for producing a polypeptide or glycosylated polypeptide characterized by:
(25)請求項21記載の微生物または動物細胞を、1
−デオキシノジリマイシン、1−デオキシマンノジリマ
イシンまたはスワインソニンの糖鎖の生合成あるいはプ
ロセッシングに関する酵素の阻害剤を含有する培地で培
養することにより、付加する糖鎖構造を変化させること
を特徴とする請求項24記載の製造法。
(25) The microorganism or animal cell according to claim 21,
- The structure of the sugar chain to be added is changed by culturing in a medium containing an inhibitor of enzymes related to the biosynthesis or processing of sugar chains of deoxynojirimycin, 1-deoxymannojirimycin, or swainsonine. The manufacturing method according to claim 24.
(26)該微生物が大腸菌、酵母またはカビに属するこ
とを特徴とする請求項24または25記載の製造法。
(26) The production method according to claim 24 or 25, wherein the microorganism belongs to Escherichia coli, yeast, or mold.
(27)該動物細胞がCHO(Chinese Ham
ster Ovary)細胞またはナマルバ細胞である
ことを特徴とする請求項24または25記載の製造法。
(27) The animal cells are CHO (Chinese Ham)
26. The production method according to claim 24 or 25, wherein the cells are ster Ovary cells or Namalva cells.
(28)請求項24から27のいずれかに記載の製造法
で採取したグリコシル化ポリペプチドを、シアリダーゼ
、β−ガラクトシダーゼ、β−N−アセチルグルコサミ
ニダーゼ、β−マンノシダーゼおよびエンドグリコシダ
ーゼから選ばれるグリコシダーゼまたはシアル酸トラン
スフェラーゼで処理することにより、付加する糖鎖の構
造を変化させることを特徴とするグリコシル化ポリペプ
チドの製造法。
(28) The glycosylated polypeptide collected by the production method according to any one of claims 24 to 27 is processed using a glycosidase selected from sialidase, β-galactosidase, β-N-acetylglucosaminidase, β-mannosidase, and endoglycosidase. A method for producing a glycosylated polypeptide, which comprises changing the structure of a sugar chain to be added by treatment with an acid transferase.
JP1253097A 1988-09-29 1989-09-28 Novel polypeptide Expired - Lifetime JP2928287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1253097A JP2928287B2 (en) 1988-09-29 1989-09-28 Novel polypeptide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-245705 1988-09-29
JP24570588 1988-09-29
JP1253097A JP2928287B2 (en) 1988-09-29 1989-09-28 Novel polypeptide

Publications (2)

Publication Number Publication Date
JPH02227075A true JPH02227075A (en) 1990-09-10
JP2928287B2 JP2928287B2 (en) 1999-08-03

Family

ID=26537367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1253097A Expired - Lifetime JP2928287B2 (en) 1988-09-29 1989-09-28 Novel polypeptide

Country Status (1)

Country Link
JP (1) JP2928287B2 (en)

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053071A1 (en) 1998-04-14 1999-10-21 Kyowa Hakko Kogyo Co., Ltd. Process for producing isoprenoid compounds by using microorganisms and method for detecting compounds having antibacterial or herbicidal activity
WO2003027297A1 (en) 2001-09-26 2003-04-03 Kyowa Hakko Kogyo Co., Ltd. PROCESS FOR PRODUCING α2,3/α2,8-SIALYLTRANSFERASE AND SIALIC ACID-CONTAINING COMPLEX SUGAR
JP2003519478A (en) * 2000-01-10 2003-06-24 マキシゲン・ホールディングズ・リミテッド G-CSF conjugate
WO2003091424A1 (en) 2002-04-26 2003-11-06 Chugai Seiyaku Kabushiki Kaisha Method of screening agonistic antibody
WO2004038018A1 (en) 2002-10-22 2004-05-06 Eisai Co., Ltd. Gene expressed specifically in dopamine-producing neuron precursor cells after termination of division
JP2005523723A (en) * 2002-04-30 2005-08-11 マキシゲン ホルディングス リミテッド Polypeptide variants of factor VII or factor VIIa
JP2005270110A (en) * 2000-02-11 2005-10-06 Maxygen Holdings Ltd FACTOR VII OR VIIa-LIKE MOLECULES
US6995236B2 (en) 2001-05-08 2006-02-07 Riken Sphingomyelin detecting probe
US7005415B1 (en) 1997-11-10 2006-02-28 Director-General Agency Of Industrial Science And Technology Heparin-binding proteins modified with sugar chains, method of producing the same and pharmaceutical compositions containing the same
WO2007066698A1 (en) 2005-12-06 2007-06-14 Kyowa Hakko Kogyo Co., Ltd. Genetically recombinant anti-perp antibody
WO2007074857A1 (en) 2005-12-27 2007-07-05 Kyowa Hakko Kogyo Co., Ltd. Method for production of l-glutamine
WO2007119796A1 (en) 2006-04-14 2007-10-25 Medical And Biological Laboratories Co., Ltd. Mutant polypeptide having effector function
WO2007142277A1 (en) 2006-06-06 2007-12-13 Kyowa Hakko Kirin Co., Ltd. Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
WO2008038613A1 (en) 2006-09-25 2008-04-03 Kyowa Hakko Bio Co., Ltd. Method for production of dipeptide
EP1908773A2 (en) 2002-12-26 2008-04-09 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
WO2008090959A1 (en) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition having enhanced effector activity
WO2008090960A1 (en) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
WO2008090678A1 (en) 2007-01-25 2008-07-31 Kyowa Hakko Kirin Co., Ltd. Novel peptide
WO2008114733A1 (en) 2007-03-16 2008-09-25 Kyowa Hakko Kirin Co., Ltd. Anti-claudin-4 antibody
EP1975175A2 (en) 1998-06-02 2008-10-01 Nihon University IgA nephropathy-related DNA
WO2009054435A1 (en) 2007-10-24 2009-04-30 Otsuka Chemical Co., Ltd. Polypeptide having enhanced effector function
JPWO2007063907A1 (en) * 2005-11-30 2009-05-07 塩野義製薬株式会社 Peptide sugar chain adduct and pharmaceutical comprising the same as an active ingredient
WO2009072628A1 (en) 2007-12-05 2009-06-11 Kyowa Hakko Kirin Co., Ltd. Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
EP2107128A2 (en) 1999-12-16 2009-10-07 Kyowa Hakko Bio Co., Ltd. Novel polynucleotides
WO2009128448A1 (en) 2008-04-15 2009-10-22 和光純薬工業株式会社 Novel protein capable of binding to hyaluronic acid, and method for measurement of hyaluronic acid using the same
WO2010001908A1 (en) 2008-06-30 2010-01-07 協和発酵キリン株式会社 Anti-cd27 antibody
WO2010008075A1 (en) 2008-07-17 2010-01-21 協和発酵キリン株式会社 Anti-system asc amino acid transporter 2 (asct2) antibody
WO2010018847A1 (en) 2008-08-13 2010-02-18 協和発酵キリン株式会社 Recombinant protein-s composition
WO2010041715A1 (en) 2008-10-09 2010-04-15 協和メデックス株式会社 Novel fructosyl peptide oxidase
WO2010074266A1 (en) 2008-12-26 2010-07-01 協和発酵キリン株式会社 Anti-cd4 antibody
US7767886B2 (en) 2001-04-25 2010-08-03 Institut National De La Recherche Agronomique Protein involved in restoration of cytoplasmic male sterility to fertility and gene encoding the protein
EP2213727A1 (en) 2007-06-15 2010-08-04 Ipierian, Inc. Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
WO2010123012A1 (en) 2009-04-20 2010-10-28 協和発酵キリン株式会社 Antibody containing igg2 having amino acid mutation introduced therein
EP2314685A1 (en) 2000-10-06 2011-04-27 Kyowa Hakko Kirin Co., Ltd. Cells producing antibody compositions
WO2011081189A1 (en) 2009-12-28 2011-07-07 協和発酵キリン株式会社 Anti-iga1 antibody
WO2011108502A1 (en) 2010-03-02 2011-09-09 協和発酵キリン株式会社 Modified antibody composition
WO2011118739A1 (en) 2010-03-26 2011-09-29 協和発酵キリン株式会社 Novel antibody having modification site introduced therein, and antibody fragment
US8058037B2 (en) 2005-11-29 2011-11-15 Kyowa Hakko Bio Co., Ltd. Protein and DNA encoding the protein
WO2011155607A1 (en) 2010-06-11 2011-12-15 協和発酵キリン株式会社 Anti-tim-3 antibody
WO2012008298A1 (en) 2010-07-14 2012-01-19 住友ゴム工業株式会社 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire
WO2012017925A1 (en) 2010-08-02 2012-02-09 協和発酵キリン株式会社 Method for producing substance
WO2012091023A1 (en) 2010-12-27 2012-07-05 協和発酵キリン株式会社 Method for preparing aqueous solution containing culture medium and chelating agent
WO2012176779A1 (en) 2011-06-20 2012-12-27 協和発酵キリン株式会社 Anti-erbb3 antibody
WO2013081188A1 (en) 2011-11-30 2013-06-06 独立行政法人国立がん研究センター Induced malignant stem cells
WO2014007198A1 (en) 2012-07-02 2014-01-09 協和発酵キリン株式会社 Therapeutic agent for anemia including renal anemia and cancer-induced anemia which contains anti-bmp9 antibody as active ingredient
WO2014054804A1 (en) 2012-10-05 2014-04-10 協和発酵キリン株式会社 Heterodimeric protein composition
WO2014087863A1 (en) 2012-12-07 2014-06-12 協和発酵キリン株式会社 Anti-folr1 antibody
WO2015005258A1 (en) 2013-07-09 2015-01-15 協和メデックス株式会社 Glycated hexapeptide oxidase and use thereof
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
WO2016146844A1 (en) 2015-03-18 2016-09-22 Janssen Vaccines & Prevention B.V. Assays for recombinant expression systems
US9499797B2 (en) 2008-05-02 2016-11-22 Kyoto University Method of making induced pluripotent stem cells
WO2018021301A1 (en) 2016-07-26 2018-02-01 静岡県 Anti-b7-h4 antibody
WO2018030499A1 (en) 2016-08-10 2018-02-15 Spiber株式会社 Production method for insoluble recombinant protein aggregate
WO2018066558A1 (en) 2016-10-03 2018-04-12 Spiber株式会社 Method for purifying recombinant protein
WO2018131586A1 (en) 2017-01-10 2018-07-19 国立大学法人山口大学 Anti-gpc3 antibody
WO2019013308A1 (en) 2017-07-13 2019-01-17 協和発酵キリン株式会社 Anti-bril antibody and stabilization method of bril fusion protein using said antibody
WO2019017401A1 (en) 2017-07-18 2019-01-24 協和発酵キリン株式会社 Anti-human ccr1 monoclonal antibody
WO2019022163A1 (en) 2017-07-26 2019-01-31 Spiber株式会社 Modified fibroin
WO2019073973A1 (en) 2017-10-10 2019-04-18 国立大学法人山口大学 Enhancer for t-cells or b-cells having memory function, malignant tumor recurrence inhibitor, and inducer for inducing memory function in t-cells or b-cells
WO2019093342A1 (en) 2017-11-08 2019-05-16 協和発酵キリン株式会社 BISPECIFIC ANTIBODY WHICH BINDS TO CD40 AND EpCAM
WO2019117208A1 (en) 2017-12-12 2019-06-20 協和発酵キリン株式会社 Anti-bmp10 antibody, and therapeutic agent for hypertension and hypertensive diseases comprising said antibody as active ingredient
WO2019124468A1 (en) 2017-12-24 2019-06-27 ノイルイミューン・バイオテック株式会社 Immunocompetent cell that expresses a cell surface molecule specifically recognizing human mesothelin, il-7 and ccl19
WO2020004492A1 (en) 2018-06-26 2020-01-02 協和キリン株式会社 Antibody binding to cell adhesion molecule 3
WO2020004490A1 (en) 2018-06-26 2020-01-02 協和キリン株式会社 Antibody binding to chondroitin sulfate proteoglycan-5
WO2020017479A1 (en) 2018-07-17 2020-01-23 ノイルイミューン・バイオテック株式会社 Anti-gpc3 single-chain antibody-containing car
WO2020059847A1 (en) 2018-09-21 2020-03-26 国立大学法人 東京医科歯科大学 Human monoclonal antibody binding specifically to human hmgb1, and pharmaceutical composition for treating or preventing alzheimer's disease containing said human monoclonal antibody
WO2020067541A1 (en) 2018-09-28 2020-04-02 協和キリン株式会社 Antibody composition
WO2020091041A1 (en) 2018-11-02 2020-05-07 協和キリン株式会社 Liquid medium preparation method
WO2020138487A1 (en) 2018-12-28 2020-07-02 協和キリン株式会社 BISPECIFIC ANTIBODY BINDING TO TfR
WO2020145363A1 (en) 2019-01-09 2020-07-16 Spiber株式会社 Modified fibroin
WO2020230899A1 (en) 2019-05-15 2020-11-19 協和キリン株式会社 Bispecific antibody binding to cd40 and fap
WO2020230901A1 (en) 2019-05-15 2020-11-19 協和キリン株式会社 Bispecific antibody capable of binding to cd40 and gpc3
WO2021049606A1 (en) 2019-09-13 2021-03-18 協和キリン株式会社 Dcr3 variant
WO2021066167A1 (en) 2019-10-02 2021-04-08 国立大学法人九州大学 Method for producing heparin-like substance, recombinant cells and method for producing same
WO2021085497A1 (en) 2019-10-28 2021-05-06 ノイルイミューン・バイオテック株式会社 Drug for treating cancer, combination drug, drug composition, immune responsive cell, nucleic acid delivery vehicle, and product
WO2021117841A1 (en) 2019-12-11 2021-06-17 富士フイルム和光純薬株式会社 HORSESHOE CRAB-DERIVED RECOMBINANT Factor G AND METHOD FOR MEASURING β-GLUCAN USING SAME
WO2021162098A1 (en) 2020-02-14 2021-08-19 協和キリン株式会社 Bispecific antibody that binds to cd3
WO2021187502A1 (en) 2020-03-16 2021-09-23 Spiber株式会社 Synthetic polymer and method for producing same, molding material, and molded body
WO2021201236A1 (en) 2020-04-01 2021-10-07 協和キリン株式会社 Antibody composition
WO2021256522A1 (en) 2020-06-17 2021-12-23 国立大学法人京都大学 Chimeric antigen receptor-expressing immunocompetent cells
WO2023007431A1 (en) 2021-07-29 2023-02-02 Takeda Pharmaceutical Company Limited Engineered immune cell that specifically targets mesothelin and uses thereof
WO2023027177A1 (en) 2021-08-26 2023-03-02 協和キリン株式会社 Bispecific antibody that binds to cd116 and cd131
WO2023090372A1 (en) 2021-11-16 2023-05-25 学校法人東京薬科大学 Promoter activating sequence, expression vector comprising said promoter activating sequence, and mammalian cell comprising said expression vector
WO2023153471A1 (en) 2022-02-09 2023-08-17 国立研究開発法人医薬基盤・健康・栄養研究所 Antibody or fragment thereof that binds to fcrl1

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005415B1 (en) 1997-11-10 2006-02-28 Director-General Agency Of Industrial Science And Technology Heparin-binding proteins modified with sugar chains, method of producing the same and pharmaceutical compositions containing the same
WO1999053071A1 (en) 1998-04-14 1999-10-21 Kyowa Hakko Kogyo Co., Ltd. Process for producing isoprenoid compounds by using microorganisms and method for detecting compounds having antibacterial or herbicidal activity
EP2175025A1 (en) 1998-04-14 2010-04-14 Kyowa Hakko Bio Co., Ltd. Process for producing isoprenoid compounds by using microorganisms
EP1975175A2 (en) 1998-06-02 2008-10-01 Nihon University IgA nephropathy-related DNA
EP2077275A2 (en) 1998-06-02 2009-07-08 Nihon University IgA nephropathy-related DNA
EP2107128A2 (en) 1999-12-16 2009-10-07 Kyowa Hakko Bio Co., Ltd. Novel polynucleotides
JP2003519478A (en) * 2000-01-10 2003-06-24 マキシゲン・ホールディングズ・リミテッド G-CSF conjugate
JP4509846B2 (en) * 2000-02-11 2010-07-21 バイエル・ヘルスケア・エルエルシー Factor VII or Factor VIIa-like molecule
JP2005270110A (en) * 2000-02-11 2005-10-06 Maxygen Holdings Ltd FACTOR VII OR VIIa-LIKE MOLECULES
EP2314686A1 (en) 2000-10-06 2011-04-27 Kyowa Hakko Kirin Co., Ltd. Cells producing antibody compositions
EP3263702A1 (en) 2000-10-06 2018-01-03 Kyowa Hakko Kirin Co., Ltd. Cells producing antibody compositions
EP2314685A1 (en) 2000-10-06 2011-04-27 Kyowa Hakko Kirin Co., Ltd. Cells producing antibody compositions
US7767886B2 (en) 2001-04-25 2010-08-03 Institut National De La Recherche Agronomique Protein involved in restoration of cytoplasmic male sterility to fertility and gene encoding the protein
US8134045B2 (en) 2001-04-25 2012-03-13 Institut National De La Recherche Agronomique Protein involved in restoration of cytoplasmic male sterility to fertility and gene encoding the protein and gene
US6995236B2 (en) 2001-05-08 2006-02-07 Riken Sphingomyelin detecting probe
US7217793B2 (en) 2001-05-08 2007-05-15 Riken Sphingomyelin detecting probe
WO2003027297A1 (en) 2001-09-26 2003-04-03 Kyowa Hakko Kogyo Co., Ltd. PROCESS FOR PRODUCING α2,3/α2,8-SIALYLTRANSFERASE AND SIALIC ACID-CONTAINING COMPLEX SUGAR
WO2003091424A1 (en) 2002-04-26 2003-11-06 Chugai Seiyaku Kabushiki Kaisha Method of screening agonistic antibody
JP2005523723A (en) * 2002-04-30 2005-08-11 マキシゲン ホルディングス リミテッド Polypeptide variants of factor VII or factor VIIa
WO2004038018A1 (en) 2002-10-22 2004-05-06 Eisai Co., Ltd. Gene expressed specifically in dopamine-producing neuron precursor cells after termination of division
EP1908773A2 (en) 2002-12-26 2008-04-09 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
EP1983059A2 (en) 2002-12-26 2008-10-22 Kyowa Hakko Kogyo Co., Ltd. Process for producing dipeptides
US8058037B2 (en) 2005-11-29 2011-11-15 Kyowa Hakko Bio Co., Ltd. Protein and DNA encoding the protein
JPWO2007063907A1 (en) * 2005-11-30 2009-05-07 塩野義製薬株式会社 Peptide sugar chain adduct and pharmaceutical comprising the same as an active ingredient
WO2007066698A1 (en) 2005-12-06 2007-06-14 Kyowa Hakko Kogyo Co., Ltd. Genetically recombinant anti-perp antibody
WO2007074857A1 (en) 2005-12-27 2007-07-05 Kyowa Hakko Kogyo Co., Ltd. Method for production of l-glutamine
WO2007119796A1 (en) 2006-04-14 2007-10-25 Medical And Biological Laboratories Co., Ltd. Mutant polypeptide having effector function
WO2007142277A1 (en) 2006-06-06 2007-12-13 Kyowa Hakko Kirin Co., Ltd. Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
WO2008038613A1 (en) 2006-09-25 2008-04-03 Kyowa Hakko Bio Co., Ltd. Method for production of dipeptide
WO2008090960A1 (en) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
WO2008090959A1 (en) 2007-01-24 2008-07-31 Kyowa Hakko Kirin Co., Ltd. Genetically recombinant antibody composition having enhanced effector activity
EP2316939A2 (en) 2007-01-25 2011-05-04 Kyowa Hakko Kirin Co., Ltd. Novel peptide
WO2008090678A1 (en) 2007-01-25 2008-07-31 Kyowa Hakko Kirin Co., Ltd. Novel peptide
WO2008114733A1 (en) 2007-03-16 2008-09-25 Kyowa Hakko Kirin Co., Ltd. Anti-claudin-4 antibody
EP2213727A1 (en) 2007-06-15 2010-08-04 Ipierian, Inc. Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US9714433B2 (en) 2007-06-15 2017-07-25 Kyoto University Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
US9213999B2 (en) 2007-06-15 2015-12-15 Kyoto University Providing iPSCs to a customer
WO2009054435A1 (en) 2007-10-24 2009-04-30 Otsuka Chemical Co., Ltd. Polypeptide having enhanced effector function
WO2009072628A1 (en) 2007-12-05 2009-06-11 Kyowa Hakko Kirin Co., Ltd. Monoclonal antibody capable of binding to heparin-binding epidermal growth factor-like growth factor
WO2009128448A1 (en) 2008-04-15 2009-10-22 和光純薬工業株式会社 Novel protein capable of binding to hyaluronic acid, and method for measurement of hyaluronic acid using the same
US9499797B2 (en) 2008-05-02 2016-11-22 Kyoto University Method of making induced pluripotent stem cells
WO2010001908A1 (en) 2008-06-30 2010-01-07 協和発酵キリン株式会社 Anti-cd27 antibody
WO2010008075A1 (en) 2008-07-17 2010-01-21 協和発酵キリン株式会社 Anti-system asc amino acid transporter 2 (asct2) antibody
WO2010018847A1 (en) 2008-08-13 2010-02-18 協和発酵キリン株式会社 Recombinant protein-s composition
WO2010041715A1 (en) 2008-10-09 2010-04-15 協和メデックス株式会社 Novel fructosyl peptide oxidase
WO2010074266A1 (en) 2008-12-26 2010-07-01 協和発酵キリン株式会社 Anti-cd4 antibody
WO2010123012A1 (en) 2009-04-20 2010-10-28 協和発酵キリン株式会社 Antibody containing igg2 having amino acid mutation introduced therein
EP2993188A1 (en) 2009-04-20 2016-03-09 Kyowa Hakko Kirin Co., Ltd. Antibody containing igg2 having amino acid mutation introduced therein
WO2011081189A1 (en) 2009-12-28 2011-07-07 協和発酵キリン株式会社 Anti-iga1 antibody
WO2011108502A1 (en) 2010-03-02 2011-09-09 協和発酵キリン株式会社 Modified antibody composition
WO2011118739A1 (en) 2010-03-26 2011-09-29 協和発酵キリン株式会社 Novel antibody having modification site introduced therein, and antibody fragment
WO2011155607A1 (en) 2010-06-11 2011-12-15 協和発酵キリン株式会社 Anti-tim-3 antibody
WO2012008298A1 (en) 2010-07-14 2012-01-19 住友ゴム工業株式会社 Isoprene oligomer, polyisoprene, processes for producing these materials, rubber composition, and pneumatic tire
WO2012017925A1 (en) 2010-08-02 2012-02-09 協和発酵キリン株式会社 Method for producing substance
EP3147355A1 (en) 2010-12-27 2017-03-29 Kyowa Hakko Kirin Co., Ltd. Method for preparing aqueous solution containing culture medium and chelating agent
WO2012091023A1 (en) 2010-12-27 2012-07-05 協和発酵キリン株式会社 Method for preparing aqueous solution containing culture medium and chelating agent
WO2012176779A1 (en) 2011-06-20 2012-12-27 協和発酵キリン株式会社 Anti-erbb3 antibody
WO2013081188A1 (en) 2011-11-30 2013-06-06 独立行政法人国立がん研究センター Induced malignant stem cells
WO2014007198A1 (en) 2012-07-02 2014-01-09 協和発酵キリン株式会社 Therapeutic agent for anemia including renal anemia and cancer-induced anemia which contains anti-bmp9 antibody as active ingredient
WO2014054804A1 (en) 2012-10-05 2014-04-10 協和発酵キリン株式会社 Heterodimeric protein composition
WO2014087863A1 (en) 2012-12-07 2014-06-12 協和発酵キリン株式会社 Anti-folr1 antibody
WO2015005258A1 (en) 2013-07-09 2015-01-15 協和メデックス株式会社 Glycated hexapeptide oxidase and use thereof
WO2016146844A1 (en) 2015-03-18 2016-09-22 Janssen Vaccines & Prevention B.V. Assays for recombinant expression systems
WO2018021301A1 (en) 2016-07-26 2018-02-01 静岡県 Anti-b7-h4 antibody
WO2018030499A1 (en) 2016-08-10 2018-02-15 Spiber株式会社 Production method for insoluble recombinant protein aggregate
WO2018066558A1 (en) 2016-10-03 2018-04-12 Spiber株式会社 Method for purifying recombinant protein
WO2018131586A1 (en) 2017-01-10 2018-07-19 国立大学法人山口大学 Anti-gpc3 antibody
WO2019013308A1 (en) 2017-07-13 2019-01-17 協和発酵キリン株式会社 Anti-bril antibody and stabilization method of bril fusion protein using said antibody
WO2019017401A1 (en) 2017-07-18 2019-01-24 協和発酵キリン株式会社 Anti-human ccr1 monoclonal antibody
WO2019022163A1 (en) 2017-07-26 2019-01-31 Spiber株式会社 Modified fibroin
WO2019073973A1 (en) 2017-10-10 2019-04-18 国立大学法人山口大学 Enhancer for t-cells or b-cells having memory function, malignant tumor recurrence inhibitor, and inducer for inducing memory function in t-cells or b-cells
EP4265634A2 (en) 2017-10-10 2023-10-25 National University Corporation Tottori University Enhancer for t-cells or b-cells having memory function, malignant tumor recurrence inhibitor, and inducer for inducing memory function in t-cells or b-cells
WO2019093342A1 (en) 2017-11-08 2019-05-16 協和発酵キリン株式会社 BISPECIFIC ANTIBODY WHICH BINDS TO CD40 AND EpCAM
WO2019117208A1 (en) 2017-12-12 2019-06-20 協和発酵キリン株式会社 Anti-bmp10 antibody, and therapeutic agent for hypertension and hypertensive diseases comprising said antibody as active ingredient
WO2019124468A1 (en) 2017-12-24 2019-06-27 ノイルイミューン・バイオテック株式会社 Immunocompetent cell that expresses a cell surface molecule specifically recognizing human mesothelin, il-7 and ccl19
WO2020004492A1 (en) 2018-06-26 2020-01-02 協和キリン株式会社 Antibody binding to cell adhesion molecule 3
WO2020004490A1 (en) 2018-06-26 2020-01-02 協和キリン株式会社 Antibody binding to chondroitin sulfate proteoglycan-5
WO2020017479A1 (en) 2018-07-17 2020-01-23 ノイルイミューン・バイオテック株式会社 Anti-gpc3 single-chain antibody-containing car
WO2020059847A1 (en) 2018-09-21 2020-03-26 国立大学法人 東京医科歯科大学 Human monoclonal antibody binding specifically to human hmgb1, and pharmaceutical composition for treating or preventing alzheimer's disease containing said human monoclonal antibody
WO2020067541A1 (en) 2018-09-28 2020-04-02 協和キリン株式会社 Antibody composition
WO2020091041A1 (en) 2018-11-02 2020-05-07 協和キリン株式会社 Liquid medium preparation method
WO2020138487A1 (en) 2018-12-28 2020-07-02 協和キリン株式会社 BISPECIFIC ANTIBODY BINDING TO TfR
WO2020145363A1 (en) 2019-01-09 2020-07-16 Spiber株式会社 Modified fibroin
WO2020230899A1 (en) 2019-05-15 2020-11-19 協和キリン株式会社 Bispecific antibody binding to cd40 and fap
WO2020230901A1 (en) 2019-05-15 2020-11-19 協和キリン株式会社 Bispecific antibody capable of binding to cd40 and gpc3
WO2021049606A1 (en) 2019-09-13 2021-03-18 協和キリン株式会社 Dcr3 variant
WO2021066167A1 (en) 2019-10-02 2021-04-08 国立大学法人九州大学 Method for producing heparin-like substance, recombinant cells and method for producing same
WO2021085497A1 (en) 2019-10-28 2021-05-06 ノイルイミューン・バイオテック株式会社 Drug for treating cancer, combination drug, drug composition, immune responsive cell, nucleic acid delivery vehicle, and product
WO2021117841A1 (en) 2019-12-11 2021-06-17 富士フイルム和光純薬株式会社 HORSESHOE CRAB-DERIVED RECOMBINANT Factor G AND METHOD FOR MEASURING β-GLUCAN USING SAME
WO2021162098A1 (en) 2020-02-14 2021-08-19 協和キリン株式会社 Bispecific antibody that binds to cd3
WO2021187502A1 (en) 2020-03-16 2021-09-23 Spiber株式会社 Synthetic polymer and method for producing same, molding material, and molded body
WO2021201236A1 (en) 2020-04-01 2021-10-07 協和キリン株式会社 Antibody composition
WO2021256522A1 (en) 2020-06-17 2021-12-23 国立大学法人京都大学 Chimeric antigen receptor-expressing immunocompetent cells
WO2023007431A1 (en) 2021-07-29 2023-02-02 Takeda Pharmaceutical Company Limited Engineered immune cell that specifically targets mesothelin and uses thereof
WO2023027177A1 (en) 2021-08-26 2023-03-02 協和キリン株式会社 Bispecific antibody that binds to cd116 and cd131
WO2023090372A1 (en) 2021-11-16 2023-05-25 学校法人東京薬科大学 Promoter activating sequence, expression vector comprising said promoter activating sequence, and mammalian cell comprising said expression vector
WO2023153471A1 (en) 2022-02-09 2023-08-17 国立研究開発法人医薬基盤・健康・栄養研究所 Antibody or fragment thereof that binds to fcrl1

Also Published As

Publication number Publication date
JP2928287B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JPH02227075A (en) New polypeptide
US5218092A (en) Modified granulocyte-colony stimulating factor polypeptide with added carbohydrate chains
FI88932B (en) FRAMSTAELLNING AV FUNKTIONELLT MAENSKLIGT UROKINASPROTEIN
US5160735A (en) Plasminogen activator
JP2564444B2 (en) Vector containing DNA encoding human tissue plasminogen activator
JP2527454B2 (en) New thrombolytic protein
KR100188302B1 (en) Proteins and nucleic acids
CA2772051C (en) Coagulation factor ix compositions and methods of making and using same
FI117940B (en) A method for making a human tissue plasminogen activator variant (t-PA variant)
EP0297913B1 (en) Production of Kallikrein
NZ218305A (en) Modified human t-pa, corresponding recombinant dna, vectors and recombinant processes
JPS6216931B2 (en)
AU621281B2 (en) Hybrid proteins
AU624158B2 (en) Variants of plasminogen activators and processes for their production
JPH0448434B2 (en)
EP0323149B1 (en) Vectors and compounds for expression of zymogen forms of human protein C
EP0440709B1 (en) Thrombolytic agents with modified kringle domains
JP2534332B2 (en) Polypeptide compound
EP0563280B1 (en) Tissue plasminogen activator substitution variant
JPH05336965A (en) Human prourokinase derivative
JPH02273179A (en) Novel thromboplastinogen protein, production thereof and drug comprising same protein
SI8810195A (en) Hybride proteins

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080514

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11