JPH0222606Y2 - - Google Patents

Info

Publication number
JPH0222606Y2
JPH0222606Y2 JP1983083707U JP8370783U JPH0222606Y2 JP H0222606 Y2 JPH0222606 Y2 JP H0222606Y2 JP 1983083707 U JP1983083707 U JP 1983083707U JP 8370783 U JP8370783 U JP 8370783U JP H0222606 Y2 JPH0222606 Y2 JP H0222606Y2
Authority
JP
Japan
Prior art keywords
tube
absorption
heat transfer
liquid
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983083707U
Other languages
Japanese (ja)
Other versions
JPS59186769U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8370783U priority Critical patent/JPS59186769U/en
Publication of JPS59186769U publication Critical patent/JPS59186769U/en
Application granted granted Critical
Publication of JPH0222606Y2 publication Critical patent/JPH0222606Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は伝熱性能にすぐれた伝熱管を有する吸
収器に関する。
[Detailed Description of the Invention] The present invention relates to an absorber having a heat transfer tube with excellent heat transfer performance.

吸収式冷凍機、濃度差利用エンジン等に使用さ
れる吸収器、すなわち吸収剤に冷媒ガスが吸収さ
れる過程で熱を放出する熱交換器は、例えば吸収
式冷凍機の場合をみると、水−リチウムブロマイ
ド(LiBr)系が多く用いられてきたために、系
内圧力は低くて冷媒ガスの比体積が大きくなり、
従つてシエルアンドチユーブ型、シエルアンドコ
イル型の熱交換器を使用してシエル側を吸収作用
がなされる領域に、伝熱管内を冷却水の通路とす
る所謂管外吸収方式のものが多かつた。
Absorbers used in absorption chillers, concentration difference engines, etc., that is, heat exchangers that release heat in the process of absorbing refrigerant gas into an absorbent, are - Because lithium bromide (LiBr) systems have been widely used, the internal pressure is low and the specific volume of the refrigerant gas is large.
Therefore, many shell-and-tube type and shell-and-coil type heat exchangers are used in the area where the absorption action is performed on the shell side, and the so-called extra-tube absorption type in which the inside of the heat transfer tube is used as a passage for cooling water. Ta.

近年に至つてフロン吸収式が実用化されつつあ
り、例えばフロン冷媒R22−テトラエチレングリ
コールジメチルエーテル(TEGDME)系では吸
収器の系内圧力が5〜6Kg/cm2Gで冷媒比体積が
小さくなることから吸収器の空冷化が可能とな
り、かゝる技術的背景から、管内吸収方式が採用
可能となるに及んで管内吸収用伝熱管として高い
吸収伝熱性能のものが要求されている。
In recent years, fluorocarbon absorption systems have been put into practical use. For example, in the case of the fluorocarbon refrigerant R22-tetraethylene glycol dimethyl ether (TEGDME), the specific volume of the refrigerant becomes small when the internal system pressure of the absorber is 5 to 6 Kg/cm 2 G. Since then, it has become possible to air-cool the absorber, and from this technical background, as the in-tube absorption method becomes possible to adopt, a heat exchanger tube for in-tube absorption is required to have high absorption heat transfer performance.

しかし乍ら、現状ではこの伝熱管として銅裸管
が最良とされているが、これは材質、管の厚さな
どにより決まる伝熱性能の限界値があつて高い値
を期待し得なく、空気に対する接触面積を増大す
るためには、伝熱管の管径、本数を大とする必要
があつて吸収器が大形となるなど実用上の問題点
を有していた。
However, at present, copper bare tubes are considered to be the best heat transfer tubes, but they have a heat transfer performance limit determined by the material, tube thickness, etc., and high values cannot be expected. In order to increase the contact area with the absorber, it is necessary to increase the diameter and number of the heat transfer tubes, which poses practical problems such as the absorber becoming large.

本考案はかゝる実状に着目して成されたもので
あつて、管内吸収伝熱管自体の単位長当り吸収熱
伝達率を、構造面から増大化を可能ならしめるこ
とにより、熱交換器のコンパクト化をはかる吸収
器の汎用を推進する点を本考案は目的としてい
る。
The present invention was developed by focusing on the above-mentioned situation, and by making it possible to increase the absorption heat transfer coefficient per unit length of the intra-tube absorption heat transfer tube itself from a structural standpoint, the heat exchanger The purpose of this invention is to promote the general use of compact absorbers.

そのために本考案はこの種吸収器に用いる管内
吸収伝熱管を、管母線に対しねじれ角を持つらせ
ん微小溝及びらせん微小隆起が交互の繰り返しに
存し形成される微小凹凸が管内面に存すると共
に、この微小凹凸と同じねじれ方向で前記ねじれ
角より大きいねじれ角を持つらせん状のひだ面を
管内・外面に有する構成としたものであつて、微
小凹凸が設けられたことによつて液相の混合作用
が促進される結果、濃度勾配を小さくし、かつ気
液接触面積を増加せしめて吸収効率が良くなり、
さらにひだ面の形成によつてさらに吸収液が混合
作用が活溌になされることとなり、かくして所期
の目的は達成される。
To this end, the present invention has developed an in-tube absorption heat transfer tube for use in this type of absorber, in which micro-irregularities formed by alternating repetitions of helical micro-grooves and helical micro-ridges that have a helical angle with respect to the tube generatrix exist on the inner surface of the tube. The pipe has a structure in which the inner and outer surfaces of the tube have spiral folds having a twist angle larger than the twist angle in the same twist direction as the micro-asperities, and the provision of the micro-asperities reduces the flow of the liquid phase. As a result of promoting the mixing action, the concentration gradient is reduced, the gas-liquid contact area is increased, and the absorption efficiency is improved.
Furthermore, the formation of the pleats further activates the mixing action of the absorbent liquid, thus achieving the intended purpose.

以下、本考案の1実施例の内容について添付図
面により説明する。
Hereinafter, the contents of one embodiment of the present invention will be explained with reference to the accompanying drawings.

第1図及び第2図は吸収式冷凍機及び濃度差利
用エンジンの各配管系統図であつて、吸収式冷凍
機は吸収器1、発生器2、溶液熱交換器3、溶液
ポンプ4によつて形成される溶液配管系と、凝縮
器5、膨脹弁6、蒸発器7を備えて発生器2の気
相部と吸収器1の入口側とを接続する冷媒配管系
とからなつており、一方前記エンジンは第1図々
示冷凍機と同様に形成してなる溶液配管系と、発
生器2の気相部と吸収器1の入口側とを接続する
配管中にタービン8を介設してなる冷媒配管系と
からなつている。
Figures 1 and 2 are piping system diagrams for an absorption chiller and a concentration difference engine. and a refrigerant piping system that is equipped with a condenser 5, an expansion valve 6, and an evaporator 7 and connects the gas phase part of the generator 2 and the inlet side of the absorber 1. On the other hand, the engine has a solution piping system formed in the same manner as the refrigerator shown in FIG. It consists of a refrigerant piping system.

これらの装置の詳細構造例ならびに作動態様に
関しては特開昭55−146207号公報、特開昭57−
28818号公報などによつて公知であるので説明を
省くが、R22−TEGDME系になる冷媒・吸収系
によつて冷熱の発生、動力の発生を行ない得るよ
う形成され、そして吸収器1としては空冷方式に
なる熱交換器を採用している。
For detailed structural examples and operating modes of these devices, see Japanese Patent Application Laid-Open Nos. 146207-1982 and 1983-146207.
The explanation is omitted as it is well known from Publication No. 28818, etc., but it is formed so that cold heat and power can be generated by a refrigerant/absorption system that is an R22-TEGDME system, and the absorber 1 is an air-cooled A heat exchanger is used.

上記吸収器1は伝熱管を水平に配設してこの水
平配置部分で管内での吸収剤と冷媒ガスとの間の
吸収作用を行なわせるようになつている。
The absorber 1 has heat transfer tubes disposed horizontally, and the absorbent and refrigerant gas within the tubes are absorbed into each other at the horizontally disposed portions.

なお、本考案は空冷方式のものに限定されるも
のではなく、この他に二重管式で内管側管内での
吸収作用を行なわせるものであつても勿論差支え
ない。
It should be noted that the present invention is not limited to an air-cooled system, and may of course be a double-tube system in which the absorption action is performed within the inner tube.

しかして、前記吸収器1に用いられる伝熱管9
は第3図、第4図に部分切断により構造を概要示
しているが、内面には伝熱管9の母線(管軸に平
行な管壁上の線)に対して、ねじれ角αを持つら
せん微小溝及びらせん微小隆起が交互の繰り返し
に存することによつて形成される微小凹凸10を
有すると共に、この微小凹凸10と同じねじれ方
向で前記ねじれ角αよりも大きいねじれ角β及び
ねじれピツチを持つらせん状のひだ面11を管
内・外両面に亘らせて有する内・外面加工管であ
る。
Therefore, the heat exchanger tube 9 used in the absorber 1
The structure of the heat transfer tube 9 is schematically shown by partially cutting it in FIGS. 3 and 4, and the inner surface has a helix angle α with respect to the generatrix of the heat transfer tube 9 (line on the tube wall parallel to the tube axis). It has micro-asperities 10 formed by alternating repetition of micro-grooves and spiral micro-ridges, and has a twist angle β and twist pitch larger than the twist angle α in the same twist direction as the micro-asperities 10. This is an inner/outer surface-processed tube that has spiral pleats 11 on both the inner and outer surfaces of the tube.

かゝる加工処理を施した伝熱管の吸収機能につ
いて凝縮の場合と対比の上、第5図及び第6図に
もとづき説明すると、吸収の場合には伝熱管9の
内面に接して層流を形成する吸収液(R22+
TEGDME)とこれに接している冷媒ガス層との
境界である気液界面L1は液温が高く、かつ冷媒
濃度も高いために緩やかに流動している液層流の
状態では吸収が難くなる。
The absorption function of heat transfer tubes subjected to such processing will be explained based on FIGS. 5 and 6 in comparison with the case of condensation. In the case of absorption, a laminar flow is produced in contact with the inner surface of the heat transfer tube The absorbing liquid that forms (R22+
The gas-liquid interface L1 , which is the boundary between the TEGDME) and the refrigerant gas layer in contact with it, has a high liquid temperature and high refrigerant concentration, making it difficult to absorb it in a slowly flowing liquid laminar flow state. .

なお、上記吸収液と伝熱管9とが接する伝熱面
界面L2では気液界面L1に比して液温が低くかつ
冷媒濃度も低い。
Note that at the heat transfer surface interface L2 where the absorbing liquid and the heat transfer tube 9 are in contact, the liquid temperature is lower and the refrigerant concentration is lower than that at the gas-liquid interface L1 .

一方、凝縮の場合には、凝縮液相内は凝縮液が
単一成分であるところから温度勾配が存在するだ
けであつて、気液界面温度が飽和ガス温度よりも
低ければ凝縮が起り、従つて緩やかな液層流の状
態でも凝縮し難くなることはない。
On the other hand, in the case of condensation, there is only a temperature gradient in the condensed liquid phase because the condensed liquid is a single component; if the gas-liquid interface temperature is lower than the saturated gas temperature, condensation will occur; Even in a state of slow liquid laminar flow, condensation does not become difficult.

以上の点からすれば、吸収の場合には、吸収液
相における温度勾配を小さくすることにより、吸
収液の濃度勾配をなくするようにし、気液界面
L1の冷媒濃度を下げることが吸収を促進する上
での要点となるものであり、従つて液層流内での
撹拌が活発に行なわれるようにするべきである。
From the above points, in the case of absorption, the concentration gradient of the absorption liquid should be eliminated by reducing the temperature gradient in the absorption liquid phase, and the gas-liquid interface
Reducing the refrigerant concentration in L 1 is key to promoting absorption, and therefore active stirring within the liquid laminar flow should be ensured.

そこで、管内面に微小凹凸10を形成すること
によつて、液流を利用した混合撹拌が効果的に行
なわれる結果、濃度(温度)勾配は殆どなくな
り、また、気液接触面積をも増大して綜合的な吸
収効率向上を果すことが可能である。
Therefore, by forming minute irregularities 10 on the inner surface of the tube, mixing and stirring using liquid flow can be performed effectively, resulting in almost no concentration (temperature) gradient and also increasing the gas-liquid contact area. It is possible to achieve a comprehensive improvement in absorption efficiency.

しかもこの場合の液層流はねじれ角を持つらせ
ん状溝及び隆起によつて旋回力が与えられるので
伝熱管9の内面に沿つて分散することとなり、冷
媒ガスとの接触面積はさらに増大し混合の効果が
倍増する。
Furthermore, since the liquid laminar flow in this case is given a swirling force by the spiral grooves and ridges having a twist angle, it is dispersed along the inner surface of the heat exchanger tube 9, and the contact area with the refrigerant gas is further increased and mixed. The effect is doubled.

上述した施回力の発生は微小凹凸10によるだ
けでなく、前記ひだ面11の形成によつてより一
層大きくなり、さらにひだ面11のねじれ方向が
微小凹凸10のねじれ方向と合致しているので、
これが逆方向のものでは微小凹凸10によつて形
成した施回力が与えられて流動しているものに逆
方向の施回力を与えて通路抵抗の大巾増加をもた
らす不都合があるのに対して、かかる問題は全然
起らなく吸収液の混合を一層促進し得る。
The generation of the above-mentioned winding force is not only due to the minute irregularities 10 but also becomes even greater due to the formation of the pleated surface 11, and furthermore, since the twisting direction of the pleated surface 11 matches the twisting direction of the minute unevenness 10,
If this is in the opposite direction, the winding force formed by the minute irregularities 10 is applied to the flowing object, giving a winding force in the opposite direction, which is inconvenient, resulting in a large increase in passage resistance. Such problems do not occur at all, and the mixing of the absorption liquid can be further promoted.

なお、本考案者によつて吸収作用の時の熱伝達
(kca/m2h℃)を、等径をなす本願考案に係
る内面処理加工管と内面処理を一切行なわない従
来の裸管とで比較して数度の実験をしたところ、
前者の内面処理加工管の方が約50%良くなつたこ
とが判明するに至つて内面処理加工の利点が立証
され、特に吸収器において有効であることがわか
つた。
The present inventor has calculated the heat transfer (kca/m 2 h°C) during the absorption action between an inner-treated tube of the present invention having the same diameter and a conventional bare tube without any inner surface treatment. After several experiments to compare,
The advantage of the inner surface treatment was demonstrated when it was found that the former inner surface treatment tube was about 50% better, and was found to be particularly effective in absorbers.

本考案は上述した構成および作用をなすもので
あつて、らせんピツチを持つ微小凹凸10とらせ
ん状のひだ面11とを伝熱管面に有せしめたこと
により、吸収液に対する混合撹拌が積極的になさ
れて管内吸収熱伝達率を大巾に向上し得る。
The present invention has the above-mentioned structure and function, and by providing the heat transfer tube surface with minute irregularities 10 having helical pitches and a helical fold surface 11, the absorption liquid can be actively mixed and stirred. As a result, the absorption heat transfer coefficient within the tube can be greatly improved.

また、ひだ面11が前記微小凹凸10と同じね
じれ方向でねじれ角を大きくしたことにより、微
小凹凸10によつて与えられた施回力をさらに増
大せしめ、かつ接触面積を増加させると共に、施
回流に対し流通抵抗とならなく円滑な流動を促進
する効果を奏する。
In addition, since the pleated surface 11 has a large twist angle in the same twist direction as the minute unevenness 10, the turning force applied by the minute unevenness 10 is further increased, the contact area is increased, and the turning flow is On the other hand, it has the effect of promoting smooth flow without creating distribution resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本考案吸収器の実施例に係
る各装置の配管系統図、第3図及び第4図は本考
案の1例の吸収器に用いる伝熱管の一部切欠示斜
視図及び拡大示断面図、第5図は同じく伝熱管に
よる吸収の際の動態説明図、第6図は比較のため
に示した凝縮動態説明図である。 1……吸収器、10……微小凹凸、11……ひ
だ面。
Figures 1 and 2 are piping system diagrams of each device according to an embodiment of the absorber of the present invention, and Figures 3 and 4 are partially cutaway perspective views of heat exchanger tubes used in an example of the absorber of the present invention. FIG. 5 is an explanatory diagram of the dynamics during absorption by the heat exchanger tube, and FIG. 6 is an explanatory diagram of the condensation dynamics for comparison. 1...Absorber, 10...Minute unevenness, 11...Fold surface.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸収式冷凍機、濃度差利用エンジン等におい
て、吸収剤に冷媒ガスが吸収される吸収作用を管
内部で起させる伝熱管が管母線に対しねじれ角α
を持つらせん微小溝及びらせん微小隆起が交互の
繰り返しに存して形成される微小凹凸10を管内
面に有すると共に、この微小凹凸10と同じねじ
れ方向で前記ねじれ角αより大きいねじれ角βを
持つらせん状のひだ面11を管内・外両面に有す
ることを特徴とする吸収器。
In absorption refrigerators, engines that utilize concentration differences, etc., heat transfer tubes that cause an absorption action in which refrigerant gas is absorbed by an absorbent inside the tubes have a torsion angle α with respect to the tube generatrix.
The inner surface of the tube has minute irregularities 10 formed by alternating repetition of spiral microgrooves and spiral microridges, and has a twist angle β larger than the twist angle α in the same twisting direction as the minute irregularities 10. An absorber characterized by having spiral folded surfaces 11 on both the inside and outside of the tube.
JP8370783U 1983-05-31 1983-05-31 absorber Granted JPS59186769U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8370783U JPS59186769U (en) 1983-05-31 1983-05-31 absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8370783U JPS59186769U (en) 1983-05-31 1983-05-31 absorber

Publications (2)

Publication Number Publication Date
JPS59186769U JPS59186769U (en) 1984-12-11
JPH0222606Y2 true JPH0222606Y2 (en) 1990-06-19

Family

ID=30213666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8370783U Granted JPS59186769U (en) 1983-05-31 1983-05-31 absorber

Country Status (1)

Country Link
JP (1) JPS59186769U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742068Y2 (en) * 1989-03-28 1995-09-27 シャープ株式会社 Absorption refrigeration cycle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141703A (en) * 1974-08-21 1976-04-08 Hoelter H Kookusurono jutengasuokyushutsusurutamenosochi

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141703A (en) * 1974-08-21 1976-04-08 Hoelter H Kookusurono jutengasuokyushutsusurutamenosochi

Also Published As

Publication number Publication date
JPS59186769U (en) 1984-12-11

Similar Documents

Publication Publication Date Title
US3826304A (en) Advantageous configuration of tubing for internal boiling
CA1064718A (en) High performance heat exchanger
US5617737A (en) Capillary fluted tube mass and heat transfer devices and methods of use
JPH0222606Y2 (en)
CN106969558A (en) The heat-exchange method of refrigeration system and refrigeration system
JP2010096372A (en) Internal heat exchanger for carbon dioxide refrigerant
JP3091071B2 (en) Heat exchangers and absorption air conditioners
JP3042486B2 (en) Absorption refrigeration equipment
JP2973702B2 (en) Heat transfer tube for absorption type vertical absorber in tube
JPH08338670A (en) Heat transfer tube for heat exchanger
JP3266886B2 (en) Heat transfer tube
JPH0777397A (en) Heat transfer tube
JPS6036847Y2 (en) Refrigeration equipment for heating and hot water supply
JPH10115493A (en) Heat transfer tube for in-pipe absorption type longitudinal absorber, and its manufacture
JPH10115495A (en) Heat transfer tube for in-pipe condensation
JPH0942881A (en) Heat transfer pipe with condensation promoting type inner surface groove
JPH0742068Y2 (en) Absorption refrigeration cycle
JP2787111B2 (en) Absorption heat pump
JPH03291495A (en) Heat-transfer pipe for absorber
JP5255249B2 (en) Heat transfer tube with internal fin
KR20030025707A (en) A high efficiency absorber tube for absorption chiller
JP2002350079A (en) Falling film heat exchanger tube
KR20070063073A (en) Absorption refrigerating machine having heat pipe of changed inner side
JP3086097B2 (en) Heat transfer tube for double heating type low temperature regenerator
JP2005188789A (en) Heat transfer pipe for carbon dioxide and its manufacturing method