JPH02226059A - Calibration of reading of dissolved gas of display means for measuring apparatus for concentration - Google Patents

Calibration of reading of dissolved gas of display means for measuring apparatus for concentration

Info

Publication number
JPH02226059A
JPH02226059A JP4803289A JP4803289A JPH02226059A JP H02226059 A JPH02226059 A JP H02226059A JP 4803289 A JP4803289 A JP 4803289A JP 4803289 A JP4803289 A JP 4803289A JP H02226059 A JPH02226059 A JP H02226059A
Authority
JP
Japan
Prior art keywords
oil
gas
concentration
display means
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4803289A
Other languages
Japanese (ja)
Other versions
JP2572836B2 (en
Inventor
Tatsuo Saito
達夫 斉藤
Yoshinao Nozawa
野沢 義尚
Kiyoshi Fukui
清 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP4803289A priority Critical patent/JP2572836B2/en
Publication of JPH02226059A publication Critical patent/JPH02226059A/en
Application granted granted Critical
Publication of JP2572836B2 publication Critical patent/JP2572836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To enable stable calibration of a reading of a concentration of a dissolved gas by a method wherein a carrier gas is bubbled in a reference oil so that hydrogen carbide for sensitivity of a gas sensor is vaporized at a fixed rate to be mixed into the carrier gas and the gas is measured with gas sensor to adjust the sensitivity of the sensor so that the current reading reaches a set value. CONSTITUTION:When a calibration is carried out by a reference oil wherein an unused oil to be inspected is mixed with hexane, it is allright that a meter gives a reading of 400 when a concentration of hexane is 5vol.%. At this point, to achieve a calibration, sensitivity of a gas sensor is adjusted to be turned at 400 in a display of a display panel.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油中の溶存ガス濃度測定器における表示手段
の溶存ガス濃度指示値校正方法に関するもので、つまり
、変圧器や遮断器などの油入電気機器の絶縁油や、回転
機器等の潤滑油などの高沸点の油は、長期間使用による
経時的劣化がおこる。特に絶縁油ではアーク放電、コロ
ナ放電等の放電や、あるいは局部過熱などの異常によっ
て分解してCO,COz、 Hz、CI+4.C11l
s、Cz)In。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for calibrating a dissolved gas concentration indication value of a display means in a dissolved gas concentration measuring device in oil. High boiling point oils such as insulating oil for oil-filled electrical equipment and lubricating oil for rotating equipment deteriorate over time due to long-term use. Insulating oil, in particular, decomposes due to electrical discharge such as arc discharge or corona discharge, or abnormalities such as local overheating, resulting in CO, COz, Hz, CI+4. C11l
s, Cz) In.

CzHi、CzHi、Czlls、CJio等のガスが
発生し、その発生ガスは油中に溶存としやすく、これら
油中に溶存している可燃性ガスの濃度を測定することに
よって、絶縁油や潤滑油等の油の劣化度や電気n器の異
常を正も1に診断することができる。そこで、油中の溶
存ガスの濃度をより正確に知るために、油中の溶存ガス
濃度測定器における表示手段の溶存ガス濃度指示値を、
校正する方法に関するものである。
Gases such as CzHi, CzHi, Czlls, and CJio are generated, and the generated gases are likely to be dissolved in oil.By measuring the concentration of flammable gases dissolved in these oils, it is possible to treat insulating oil, lubricating oil, etc. It is possible to accurately diagnose the degree of oil deterioration and abnormalities in electric equipment. Therefore, in order to know the concentration of dissolved gas in oil more accurately, the dissolved gas concentration indicated value on the display means of the dissolved gas concentration meter in oil is
It concerns how to calibrate.

〔従来の技術〕[Conventional technology]

従来、油中の溶存ガス濃度を測定するためには、被検査
油中から溶存ガスを抜気して抽出する吸引ポンプを設け
、吸引ポンプで抽出した被検出ガスを分析するガスクロ
マトグラフを設けて、このガスクロマトグラフによって
、被検査油中の溶存ガス濃度を測定していた。しかし、
吸引ポンプによって被検査油中から溶存ガスを抜気する
には、その装置に耐圧性が必要であったり、減圧能力の
高い吸引ポンプが必要で、大型で高価になる上に、更に
被検出ガスを分析するガスクロマトグラフ自体が、大型
で高価であるという欠点があった。そこで、本発明者は
、小型で安価な溶存ガス濃度測定器として、高沸点の被
検査油中に挿入してキャリアガスをバブリングするため
の吹込パイプを設け、被検査油中にバブリングしたキャ
リアガスに対する回収路を設け、キャリアガス中の可燃
性ガスの濃度を測定するガスセンサーを、前記回収路に
設け、前記ガスセンサーによる測定器を表示する表示手
段を設けてある油中の溶存ガス濃度測定器を提案してお
り、この溶存ガス濃度測定器においては、溶存ガス濃度
を正確に知るために、表示手段による溶存ガス濃度指示
値が正6′αに示されているか否かをチエツクして校正
することが望まれている。
Conventionally, in order to measure the dissolved gas concentration in oil, a suction pump was installed to extract the dissolved gas from the oil being tested, and a gas chromatograph was installed to analyze the detected gas extracted by the suction pump. This gas chromatograph was used to measure the concentration of dissolved gases in the oil being tested. but,
In order to extract dissolved gas from the oil under test using a suction pump, the device must be pressure resistant, and a suction pump with high decompression capacity is required, which is large and expensive, and also reduces the amount of gas to be detected. The disadvantage is that the gas chromatograph itself used to analyze this is large and expensive. Therefore, the present inventor created a small and inexpensive dissolved gas concentration measuring device by providing a blowing pipe for bubbling carrier gas by inserting it into the high-boiling-point oil to be tested. A gas sensor for measuring the concentration of combustible gas in the carrier gas is provided in the recovery path, and a display means for displaying a measuring device using the gas sensor is provided.Dissolved gas concentration measurement in oil In this dissolved gas concentration measuring device, in order to accurately know the dissolved gas concentration, it is checked whether the dissolved gas concentration indicated value by the display means is indicated at the positive 6'α. Proofreading is desired.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記校正を行うために、被検査油中から使用に
伴って発生してくるガスと同様のガスを、空気で希釈し
て設定濃度の標準ガスを形成し、この標準ガスを、直接
ガスセンサーで測定して、この時の表示手段の指示値が
設定値になるようにガスセンサーの感度を調整すること
が考えられるが、校正に際してバブリング操作がないた
めに誤差が大きく、しかも、前記ガスは外部に漏れて減
量しやすく、標準ガスを保管してガスの濃度管理を行う
のが困難で、校正が不正確になりやすいという欠点を備
えている。
However, in order to perform the above calibration, a gas similar to the gas generated during use from the oil being tested is diluted with air to form a standard gas with a set concentration, and this standard gas is directly used as a gas. It is conceivable to measure with a sensor and adjust the sensitivity of the gas sensor so that the value indicated on the display means at this time becomes the set value, but since there is no bubbling operation during calibration, the error is large, and furthermore, the gas It has the disadvantages that it is easy to leak outside and lose weight, it is difficult to store standard gas and control the gas concentration, and calibration is likely to be inaccurate.

本発明の目的は、校正を、より正確に行う点にある。An object of the present invention is to perform calibration more accurately.

〔課題を解決するための手段〕[Means to solve the problem]

本発明における油中の溶存ガス濃度測定器における表示
手段の溶存ガス濃度指示値校正方法の特徴手段は、未使
用の被検香油に対し、その被検香油よりも低沸点で、且
つ、常温で液体のガスセンサー感知用炭化水素を、設定
割合になるように混入させて標準油を形成し、吹込パイ
プを前記標準油中に挿入してキャリアガスをバブリング
し、そのバブリングしたキャリアガスをガスセンサーで
測定し、この時の表示手段の指示値が、設定値になるよ
うに前記ガスセンサーの感度を調整することにあり、そ
の作用効果は、次の通りである。
The characteristic means of the method for calibrating the dissolved gas concentration indication value of the display means in the dissolved gas concentration measuring device in the present invention is that the method for calibrating the dissolved gas concentration indication value of the display means in the dissolved gas concentration measuring device in oil is as follows: A liquid hydrocarbon for gas sensor sensing is mixed in a set ratio to form a standard oil, a blowing pipe is inserted into the standard oil to bubble carrier gas, and the bubbled carrier gas is used for the gas sensor. The purpose is to adjust the sensitivity of the gas sensor so that the indicated value on the display means at this time becomes the set value, and its effects are as follows.

〔作 用〕[For production]

つまり、被検香油よりも低沸点で、且つ、常温で液体の
炭化水素は、前述のガスよりも外部に逃げにくく、その
ために、その炭化水素を設定割合になるように未使用の
被検香油に混入させた標準油は、安定した割合で炭化水
素を含有しつづけることができる。そして、そのI”l
!油にキャリアガスをバブリングすることによって、標
準油中のガスセンサー感知用炭化水素が、−定の割合で
気化してキャリアガス中に混在し、そのキャリアガスを
ガスセンサーで測定し、この時の表示手段の指示値が、
設定値になるようにガスセンサーの18度を調整するこ
とにより、安定した校正が行える。
In other words, hydrocarbons that have a lower boiling point than the test perfume oil and are liquid at room temperature are less likely to escape to the outside than the aforementioned gases. The standard oil mixed into the standard oil can continue to contain hydrocarbons in a stable proportion. And that I”l
! By bubbling carrier gas into the oil, the hydrocarbons for gas sensor sensing in the standard oil are vaporized at a constant rate and mixed into the carrier gas, and the carrier gas is measured with a gas sensor. The indicated value of the display means is
Stable calibration can be performed by adjusting the gas sensor 18 degrees to match the set value.

〔発明の効果〕〔Effect of the invention〕

従って、標準油の前記炭化水素の濃度を、安定した状態
で保管しやすく、長期にわたって表示手段の溶存ガス濃
度指示値を正確に校正でき、経済性及びイε顛性を高め
ることができるようになった。
Therefore, the hydrocarbon concentration of the standard oil can be easily stored in a stable state, the dissolved gas concentration indication value of the display means can be accurately calibrated over a long period of time, and economical efficiency and consistency can be improved. became.

〔実施例〕〔Example〕

次に、本発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

第1図及び第2図に示すように、変圧器内の絶縁油中の
可燃性溶存ガス濃度を測定するために、採油容器(1)
内に採取した絶縁油中に挿入してキャリアガスをバブリ
ングするための吹込パイプ(2)を設け、吹込パイプ(
2)に対して測定器本体(3)に内蔵したキャリアガス
の供給用ポンプ(P)を接続し、油中にバブリングした
キャリアガスに対する回収路(R)を、採油容器(1)
内の絶縁油中に吹込パイプ(2)の先端側を浸漬させた
状態で、採油容器(1)の口(IA)に嵌合する筒部(
4)内に形成し、回収路(11)に接続したキャリアガ
スの排気口(5)を筒部(4)に設け、キャリアガス中
の可燃性のガスの濃度を測定する半導体式ガスセンサー
(6)を、筒部(4)内の回収路(R)に設け、ガスセ
ンサー(6)からの測定値を表示する表示手段としてデ
ジタル式の表示パネル(7)を測定器本体(3)に設け
て、油中の溶存ガス濃度測定器を構成しである。
As shown in Figures 1 and 2, an oil sampling container (1) is used to measure the concentration of flammable dissolved gas in the insulating oil in the transformer.
A blowing pipe (2) is provided for bubbling carrier gas by inserting it into the insulating oil collected inside the tank.
Connect the carrier gas supply pump (P) built into the measuring instrument body (3) to 2), and connect the recovery path (R) for the carrier gas bubbled in the oil to the oil sampling container (1).
With the tip side of the blow pipe (2) immersed in the insulating oil inside, insert the cylindrical part (
4) A semiconductor gas sensor (4) is provided with a carrier gas exhaust port (5) formed in the cylindrical part (4) and connected to the recovery channel (11), and measures the concentration of combustible gas in the carrier gas. 6) is installed in the recovery channel (R) in the cylinder part (4), and a digital display panel (7) is installed in the measuring instrument body (3) as a display means for displaying the measured value from the gas sensor (6). It is provided to constitute an instrument for measuring the concentration of dissolved gas in oil.

前記ポンプ(P)からは、空気をキャリアガスとして吹
込パイプ(2)内に供給するように構成しである。
The pump (P) is configured to supply air as a carrier gas into the blowing pipe (2).

次に、油中の溶存ガス濃度の測定法を説明する。Next, a method for measuring the concentration of dissolved gas in oil will be explained.

■ 絶縁油を、採油容器(1)内に設定量採取する。■ Collect a set amount of insulating oil into the oil sampling container (1).

O採油容器(1)内の絶縁油中に、吹込パイプ(2)の
先端側を挿入して浸漬させながら、筒部(4)を口(I
A)に嵌合させる。
While inserting and immersing the tip of the blowing pipe (2) into the insulating oil in the O oil collection container (1), insert the cylindrical portion (4) into the opening (I).
Fit into A).

○ ポンプ(P)を作動させて、エアーを吹込パイプ(
2)を介して絶縁油内に吸込む。
○ Activate the pump (P) and blow air into the pipe (
2) into the insulating oil.

■ 油中にバブリングしたエアーを、回収路(R)を介
して排気口(5)から排気させながら、エアー中の可燃
性ガスをガスセンサー(6)で検出させてその濃度を表
示パネル(7)に表示させる。
■ While the air bubbling in the oil is exhausted from the exhaust port (5) via the recovery path (R), the flammable gas in the air is detected by the gas sensor (6) and its concentration is displayed on the display panel (7). ).

■ 表示パネル(7)に表示された測定濃度の最大値を
、油中の溶存ガス濃度とする。
■ The maximum value of the measured concentration displayed on the display panel (7) is taken as the dissolved gas concentration in the oil.

次に、前記表示パネル(7)の溶存ガス濃度指示値を校
正するための方法を説明する。ただし、以下に説明する
校正方法は、前述の測定方法を行うlnに、実施するの
がよい。絶縁油のうち未使用の被検香油に対し、その被
検香油よりも低沸点で、且つ、常温で液体のガスセンサ
ー感知用炭化水素を、設定割合になるように混入させて
標準油を形成し、採油容器(1)に収容した標準油中に
吹込パイプ(2)を挿入してキャリアガスをバブリング
し、そのバブリングしたキャリアガスを回収路(R)中
のガスセンサー(6)で測定し、この時の表示手段(7
)指示値が、設定値になるようにガスセンサー(6)の
感度を調整する。
Next, a method for calibrating the dissolved gas concentration indication value of the display panel (7) will be explained. However, the calibration method described below is preferably performed at the same time as the measurement method described above. A standard oil is formed by mixing a hydrocarbon for gas sensor sensing, which has a lower boiling point than the test fragrance oil and is liquid at room temperature, into an unused test fragrance oil among insulating oils at a set ratio. Then, the blowing pipe (2) is inserted into the standard oil stored in the oil collection container (1) to bubble carrier gas, and the bubbled carrier gas is measured by the gas sensor (6) in the recovery path (R). , the display means at this time (7
) Adjust the sensitivity of the gas sensor (6) so that the indicated value becomes the set value.

つまり、前記ガスセンサー感知用炭化水素は、Cn H
tall OH(ただしnが3〜7)、及びCrhHm
(ただしnが5〜11)のうちの少なくとも一種から成
るもので、例えば、ペンタン、ヘキサン、ペブタン、オ
フタン、ノナン、デカン、ウンデカン等が使用でき、そ
れらの蒸気圧、及び、沸点を次の表に示す。
That is, the hydrocarbon for gas sensor sensing is CnH
tall OH (however, n is 3 to 7), and CrhHm
(where n is 5 to 11), for example, pentane, hexane, pbutane, oftane, nonane, decane, undecane, etc. can be used, and their vapor pressures and boiling points are shown in the table below. Shown below.

前記絶縁油は、炭素数20前後の炭化水素が多く、沸点
が300℃以上であるのに対し、上記表からも判るよう
に、前記炭化水素の沸点は、絶緑地よりも低く、常温で
は液体である。
The insulating oil contains many hydrocarbons with a carbon number of around 20 and has a boiling point of 300°C or higher.As can be seen from the table above, the boiling point of the hydrocarbons is lower than that of Zetsuryokuchi and is liquid at room temperature. It is.

次に、第3図乃至第5図に示すように、被検香油に混入
させるものとして、炭素数1や3の炭化水素と、炭素数
6や10の炭化水素について、濃度とガスセンサー(6
)の出力との関係(第3図)、及び、ガスセンサー(6
)の出力の経1」変化(第4図)、及び校正のために使
用した回数とガスセンサー(6)の出力の関係(第5図
)を、比較してみると、第3図に示すように、所定の出
力を得るための含有濃度が各炭化水素によって決まって
いるために、被検査油中に、例えばCH,でもCbHx
でもどちらを混合させて標準油を形成しても良いことが
判るが、第4図より、炭素数1や2の炭化水素は被検査
油中より発揮して経過日数の増加と共に含有量が減少し
てガスセンサーの出力が低下し、これに対して、炭素数
6や7の炭化水素は、センサー出力の経口変化が小さく
、C8以上は全(変化しないために、その炭化水素を混
入させた標準油は、安定で長期保管が可能であることが
判る。しかし、分子量が大きくなれば前記表でも示すよ
うに蒸気圧が小さくなるために、センサー出力は低く校
正には適さなくなる難点もある。
Next, as shown in Figures 3 to 5, the concentration and gas sensor (
) and the relationship with the output of the gas sensor (6) (Fig. 3).
) (Fig. 4) and the relationship between the number of times used for calibration and the output of the gas sensor (6) (Fig. 5), the results are shown in Fig. 3. Since the content concentration for obtaining a predetermined output is determined by each hydrocarbon, for example, CH, CbHx, etc.
However, it can be seen that either of them can be mixed to form the standard oil, but from Figure 4, hydrocarbons with 1 or 2 carbon atoms are more prominent in the tested oil, and the content decreases as the number of days passes increases. On the other hand, hydrocarbons with 6 or 7 carbon atoms cause a small change in the sensor output, and those with C8 or higher do not change completely, so it is necessary to mix the hydrocarbons. Standard oils are known to be stable and can be stored for long periods of time.However, as the molecular weight increases, the vapor pressure decreases as shown in the table above, so the sensor output is low and it is not suitable for calibration.

また、第5図で示すように、低分子■の炭化水素を含む
標準油は、校正に1回使用しただけで大部分の低分子炭
化水素が被検査油中より気化放出してしまい、2回目以
降はセンサー出力が大きく低下するが、炭素数6以上の
炭化水素を含む標準油では、使用回数に伴うセンサー出
力の低下率が低く、校正を複数回繰返し行うことができ
る。
Furthermore, as shown in Figure 5, when using a standard oil containing low-molecular-weight hydrocarbons only once for calibration, most of the low-molecular-weight hydrocarbons are vaporized and released from the test oil. After the first use, the sensor output decreases significantly, but with standard oils containing hydrocarbons having 6 or more carbon atoms, the rate of decrease in the sensor output with the number of uses is low, and calibration can be repeated multiple times.

そこで、具体的に、ヘキサンを未使用の被検香油に混入
させた標準油で校正を行う場合を例にとると、第6図に
示すように、例えば、ヘキサン濃度が5vo1%の特に
、400のメータ指示値が出ていれば良く、この時、表
示パネル(7)の表示を、400に合わせるようにガス
センサー(6)の感度を51することによって校正が行
える。
Therefore, taking as an example a case in which calibration is performed using a standard oil in which hexane is mixed into an unused test perfume oil, as shown in Fig. 6, for example, when the hexane concentration is 5 vol. It is sufficient that the meter indicated value is displayed. At this time, calibration can be performed by setting the sensitivity of the gas sensor (6) to 51 so that the display on the display panel (7) matches 400.

〔別実施例〕[Another example]

被検香油に混入させて標準油を形成させる炭化水素は、
前記したように飽和の炭化水素のみならず、アルコール
類や不飽和の炭化水素であっても良く、また異性体であ
っても良く、それらの−例として、プロパツール(C3
11?OH)、ブタノール(CdL+0i1)、ペンタ
ノール(CsHzO)I)、ヘキサール(CJi30)
I)、ヘプタツール(C)f!、5011)、イソヘキ
サン(CsHllCHi) 、メチルシクロベンクン(
CaH+z)、3エチルペンクン((Czlls) 3
CH)、シクロヘキサン(Chi11□)、1.3−シ
クロへキサジエン(C,11,)、ヘキセン(CiHi
z)、メチルシクロヘキサン(C&HII  CH3)
、メチルシクロヘキセン(Cyll+z)、ベンゼンc
c’AIIh)、トルエン(C,l+。
The hydrocarbons that are mixed into the test perfume oil to form the standard oil are:
As mentioned above, not only saturated hydrocarbons but also alcohols, unsaturated hydrocarbons, and isomers may be used. Examples of these include propatool (C3
11? OH), butanol (CdL+0i1), pentanol (CsHzO)I), hexal (CJi30)
I), heptatool (C) f! , 5011), isohexane (CsHllCHi), methylcyclobencune (
CaH+z), 3 ethylpenkun ((Czlls) 3
CH), cyclohexane (Chi11□), 1,3-cyclohexadiene (C,11,), hexene (CiHi
z), methylcyclohexane (C&HII CH3)
, methylcyclohexene (Cyll+z), benzene c
c'AIIh), toluene (C,l+.

−C11,)、シクロオクタン(Catlt&) 、キ
シレン(CJt(CHs)z) 、シクロノナン(C,
旧、)、ジメチルシクロヘキサン(CIHI&) ジメ
チルヘキサン(CJt*)、等がある。
-C11,), cyclooctane (Catlt&), xylene (CJt(CHs)z), cyclononane (C,
), dimethylcyclohexane (CIHI&), dimethylhexane (CJt*), etc.

前記ポンプ(P)より吹込パイプ(2)に供給されるキ
ャリアガスは、空気以外に他の不燃性ガスであっても良
い。
The carrier gas supplied from the pump (P) to the blowing pipe (2) may be a nonflammable gas other than air.

前記ガスセンサー(6)は、半導体式ガスセンサー以外
に、接触燃焼式ガスセンサー、又は電気化学式ガスセン
サー等の他の小型のガスセンサーであっても良い。
The gas sensor (6) may be a small gas sensor other than a semiconductor gas sensor, such as a catalytic combustion gas sensor or an electrochemical gas sensor.

前記表示手段としては、デジタル式表示パネル(7)以
外に、アナログ弐のメータ表示器であ・っても良い。
The display means may be an analog meter display other than the digital display panel (7).

本発明は、変圧器の絶縁油以外に、電気機器内の絶縁油
や潤滑油中の溶存ガスの浸度測定にも使用できるもので
ある。
The present invention can be used to measure the degree of immersion of dissolved gases in insulating oil and lubricating oil in electrical equipment, in addition to insulating oil in transformers.

前記ポンプ(P)は、吹込パイプ(2)に接続する以外
に、回収路(R)に接続して、採油容器(1)内空間を
吸引減圧し、エアーを吹込パイプ(2)から採油容器(
1)内の油中にバブリングさせても良い。
In addition to being connected to the blowing pipe (2), the pump (P) is also connected to a recovery path (R) to suction and depressurize the internal space of the oil collecting container (1), and supply air from the blowing pipe (2) to the oil collecting container. (
1) Bubbling may be performed in the oil inside.

尚エアーを回収路(R)より吹込パイプ(2)に循環さ
せる構造であっても良い。
Note that a structure may be adopted in which air is circulated from the recovery path (R) to the blowing pipe (2).

尚、特許請求の範囲の項に図面との対照を便利にする為
に符号を記すが、該記入により本発明は添付図面の構造
に限定されるものではない。
Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る油中の溶存ガス濃度測定器における
表示手段の溶存ガス濃度指示値校正方法の実施例を示し
、第1図は溶存ガス濃度測定器の要部断面図、第2図は
溶存ガス濃度測定器の全体斜視図、第3図〜第6図は、
夫々の指示出力を示す変化グラフである。 (2)・・・・・・吹込パイプ、(6)・・・・・・ガ
スセンサー(7)・・・・・・表示手段、(P)・・・
・・・ポンプ、(R)・・・・・・回収路。
The drawings show an embodiment of the method for calibrating the dissolved gas concentration indication value of the display means in the dissolved gas concentration measuring device in oil according to the present invention, FIG. 1 is a sectional view of the main part of the dissolved gas concentration measuring device, and FIG. The overall perspective view of the dissolved gas concentration measuring device, Figures 3 to 6 are as follows:
It is a change graph showing each instruction output. (2)...Blow pipe, (6)...Gas sensor (7)...Display means, (P)...
...Pump, (R) ...Recovery path.

Claims (1)

【特許請求の範囲】 1、高沸点の被検査油中に挿入してキャリアガスをバブ
リングするための吹込パイプ(2)を設け、被検査油中
にバブリングしたキャリアガスに対する回収路(R)を
設け、 キャリアガス中の可燃性ガスの濃度を測定 するガスセンサー(6)を、前記回収路(R)に設け、
前記ガスセンサー(6)による測定値を表示する表示手
段(7)を設けてある油中の溶存ガス濃度測定器におい
て、未使用の被検査油に対し、その被検査油よりも低沸
点で、且つ、常温で液体のガスセンサー感知用炭化水素
を、設定割合になるように混入させて標準油を形成し、
前記吹込パイプ(2)を前記標準油中に挿入してキャリ
アガスをバブリングし、そのバブリングしたキャリアガ
スを前記ガスセンサー(6)で測定し、この時の前記表
示手段(7)の指示値が、設定値になるように前記ガス
センサー(6)の感度を調整する油中の溶存ガス濃度測
定器における表示手段の溶存ガス濃度指示値校正方法。 2、前記ガスセンサー感知用炭化水素が、C_nH_2
_n_+_1OH(ただしnが3〜7)、及びC_nH
m(ただしnが5〜11)のうちの少なくとも一種を含
むものである請求項1記載の油中の溶存ガス濃度測定器
における表示手段の溶存ガス濃度指示値校正方法。
[Claims] 1. A blowing pipe (2) is provided to be inserted into the oil to be inspected with a high boiling point to bubble carrier gas, and a recovery path (R) is provided for the carrier gas bubbled into the oil to be inspected. A gas sensor (6) for measuring the concentration of combustible gas in the carrier gas is provided in the recovery path (R),
In an oil dissolved gas concentration measuring device equipped with a display means (7) for displaying the measured value by the gas sensor (6), the unused test oil has a boiling point lower than that of the test oil, In addition, a standard oil is formed by mixing a gas sensor sensing hydrocarbon that is liquid at room temperature in a predetermined ratio;
The blowing pipe (2) is inserted into the standard oil to bubble carrier gas, and the bubbled carrier gas is measured by the gas sensor (6), and the indicated value of the display means (7) at this time is , a method for calibrating a dissolved gas concentration indicated value of a display means in an oil dissolved gas concentration measuring device, which adjusts the sensitivity of the gas sensor (6) so as to reach a set value. 2. The gas sensor sensing hydrocarbon is C_nH_2
_n_+_1OH (however, n is 3 to 7), and C_nH
2. The method for calibrating a dissolved gas concentration indicated value of a display means in an oil dissolved gas concentration measuring instrument according to claim 1, wherein the method includes at least one of m (where n is 5 to 11).
JP4803289A 1989-02-27 1989-02-27 Calibration method of dissolved gas concentration indicated value of display means in dissolved gas concentration measuring device in oil Expired - Lifetime JP2572836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4803289A JP2572836B2 (en) 1989-02-27 1989-02-27 Calibration method of dissolved gas concentration indicated value of display means in dissolved gas concentration measuring device in oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4803289A JP2572836B2 (en) 1989-02-27 1989-02-27 Calibration method of dissolved gas concentration indicated value of display means in dissolved gas concentration measuring device in oil

Publications (2)

Publication Number Publication Date
JPH02226059A true JPH02226059A (en) 1990-09-07
JP2572836B2 JP2572836B2 (en) 1997-01-16

Family

ID=12791973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4803289A Expired - Lifetime JP2572836B2 (en) 1989-02-27 1989-02-27 Calibration method of dissolved gas concentration indicated value of display means in dissolved gas concentration measuring device in oil

Country Status (1)

Country Link
JP (1) JP2572836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749365A (en) * 2012-07-27 2012-10-24 中国计量学院 Calibration method in on-line detection for moisture content of lubricating oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749365A (en) * 2012-07-27 2012-10-24 中国计量学院 Calibration method in on-line detection for moisture content of lubricating oil

Also Published As

Publication number Publication date
JP2572836B2 (en) 1997-01-16

Similar Documents

Publication Publication Date Title
DE3148611C2 (en) Hydrogen sensor
US2939827A (en) Electrochemical determination of components in gas mixtures
RU133936U1 (en) DEVICE FOR GRADING AND INSPECTION OF DISSOLVED OXYGEN ANALYZERS
KR100345233B1 (en) Toxic gas measuring apparatus and an apparatus for controlling the amount of fuel to use according to the measured toxic gases from vehicles
DE69019121T2 (en) Flammable gas detection.
JPH02226059A (en) Calibration of reading of dissolved gas of display means for measuring apparatus for concentration
CN116678997A (en) Multifunctional hydrogen sensor evaluation testing device and method
US2204966A (en) Gas analyzing apparatus
Niki et al. An Ozone-NO Chemiluminescence Method for NO Analysis in Piston and Turbine Engines
CN113418822A (en) Gas saturation adsorption capacity tester and testing method thereof
Borsi et al. Relation between faults and generated gases in transformer liquids
Gallagher et al. Performance of the HPLC/fluorescence SO2 detector during the GASIE instrument intercomparison experiment
Weaver Electrical Measurement of Water Vapor with Hygroscopic Film
Palmer et al. Thermal-conductivity method for the analysis of gases
Garthe et al. HC measurements by means of flame ionization: Background and limits of low emission measurement
US3961895A (en) Process and equipment for the determination of certain components, particularly the carbon dioxide content of gas mixture
CN216979010U (en) Real-time accurate trace moisture measuring device of assembly line
CN114432944B (en) Gas distribution method
JPS5550148A (en) Hydrogen concentration detecting method and device
JPH03189539A (en) Instrument for measuring concentration of hydrogen
Kuczynski Effects of gaseous air pollutants on the response of the Thomas sulfur dioxide Autometer
Kang et al. Influence of Oxygen Content, Gas Flow Rate and Temperature on Detection of Dissolved Hydrogen in Oil Using Semiconductor Resistance Sensor
JPS57114839A (en) Measuring method for purity of gas
SU1520435A2 (en) Apparatus for sampling and introducing samples of steam phase to gas chromatograph
Innes et al. Hydrocarbon and carbon monoxide analysis by the selective combustion method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13