JPH02226055A - Ash content meter - Google Patents

Ash content meter

Info

Publication number
JPH02226055A
JPH02226055A JP1046237A JP4623789A JPH02226055A JP H02226055 A JPH02226055 A JP H02226055A JP 1046237 A JP1046237 A JP 1046237A JP 4623789 A JP4623789 A JP 4623789A JP H02226055 A JPH02226055 A JP H02226055A
Authority
JP
Japan
Prior art keywords
filter
clay
ash
titanium
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1046237A
Other languages
Japanese (ja)
Inventor
Hirotoshi Ishikawa
石川 宏俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1046237A priority Critical patent/JPH02226055A/en
Publication of JPH02226055A publication Critical patent/JPH02226055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To measure ash content accurately without being affected by a blending of three components by determining contents of clay, titanium and calcium by a simultaneous equation with three unknowns obtained for each of through holes and filters to obtain a ash rate signal based on the obtained content value. CONSTITUTION:A motor 8 is driven to turn a filter wheel 7 in a direction of the arrow and as a through hole 7a, a first filter 7b and a second filter 7c are positioned right above an X-ray tube 1 sequentially, X ray energy irradiated to an object 3 to be measured varies corresponding to the positions of the filters. In turn, mass absorption coefficients of clay, titanium and calcium composing ash changes sequentially, with the result that an energy distribution of X rays irradiated from the X-ray tube. Contents of clay, titanium and calcium are determined by simultaneously equations obtained for each of the through holes and filters concerning clay, titanium and calcium thereby obtaining a ash rate signal based on the obtained content value.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、灰分計に係わり、特に、紙の灰分率をオンラ
インで連続的に測定する際に紙に含まれる灰分にクレー
、チタン、炭酸カルシウムの三成分が存在していても正
しく灰分を測定できる灰分計に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an ash meter, and in particular, when the ash content of paper is continuously measured online, clay, titanium, carbonate, etc. are detected in the ash contained in paper. This invention relates to an ash meter that can accurately measure ash even if three components of calcium are present.

〈従来の技術〉 一般に、灰分とは紙を約900″C程度の温度で完全燃
焼させた後の残渣と定義され、主として抄紙の際にパル
プに添加される填料、顔料などの鉱物粉末で構成される
。また、灰分の添加で紙の地合いは改善され白色度や柔
軟性が向上して印刷適性も良くなり、しかも高価なバル
ブを節約できるため経済的なメリットは大きい、このた
め、オンラインで灰分を管理することが重要となり、製
品(祇)の品質向上とコストダウンのため紙中の灰分を
オンラインで測定する灰分計が使用されるようになって
いる。
<Prior art> Generally, ash is defined as the residue after completely burning paper at a temperature of about 900"C, and is mainly composed of mineral powders such as fillers and pigments added to pulp during paper making. In addition, the addition of ash improves the texture of the paper, improves whiteness and flexibility, and improves printability.In addition, it has great economic benefits as it saves on expensive valves. It has become important to control the ash content, and ash meters that measure the ash content in paper online are now being used to improve the quality of products (Gi) and reduce costs.

第4図は、このような灰分計の従来例構成説明図であり
、図中、1はX線管、2は電鍵箱、3は例えばシート状
の紙でなるシート状の被測定物体、4は電離11f2か
ら送出される灰分量信号S、を増幅するアンプ、5は被
測定物体3に含まれる水分や単位面積当たりの重量(以
下、「坪量」という)を検出して坪量・水分量信号S2
を出力する坪量・水分量検出器、6は演算器である。
FIG. 4 is an explanatory diagram of the configuration of a conventional example of such an ash meter. In the figure, 1 is an X-ray tube, 2 is an electric key box, 3 is a sheet-shaped object to be measured made of, for example, a sheet of paper, and 4 5 is an amplifier that amplifies the ash content signal S sent out from the ionizer 11f2, and 5 is an amplifier that detects the moisture contained in the object to be measured 3 and the weight per unit area (hereinafter referred to as "basis weight"), and calculates the basis weight/moisture content. Quantity signal S2
6 is a calculation unit.

このような構成からなる従来の灰分計において、X線管
1から照射されたX線は被測定物体3を透過し下式(1
)のようなランベルト・ベアの法則に従って減衰し、そ
の後、電離箱2に到達して検出される。該検出信号は灰
分量信号S、となり、アンプ4で増幅されて、その後、
坪!・水分量検出器5からの坪量・水分量信号S2と演
算され灰分量信号S3となって出力されるようになる。
In the conventional ash meter with such a configuration, the X-rays irradiated from the X-ray tube 1 pass through the object to be measured 3 and are expressed by the following formula (1
) attenuates according to the Lambert-Baer law, and then reaches the ionization chamber 2 and is detected. The detection signal becomes an ash content signal S, which is amplified by an amplifier 4, and then
Tsubo! - It is calculated with the basis weight/moisture content signal S2 from the moisture content detector 5 and is output as an ash content signal S3.

1=Io  −exp  (−i−tχ)−・−(1,
1ここで、  ■;透過X線量 Io;入射X線量 μ:XI!吸収係数(m2/g) χ;X線吸収物質量<g/m’ ) ところで、紙中の灰分は主としてタルク、クレ、酸化チ
タン、及び炭酸カルシウムから構成され、これらの成分
は用途に応じて種々配合されて使われている。低エネル
ギーX線の吸収現象を利用した灰分計では、タルクとク
レーの検出感度が時間−であるにら拘らず、クレー、酸
化チタン及び炭酸カルシウムの吸収係数がそれぞれ異な
り検出感度の差を生じている。
1=Io −exp (−i−tχ)−・−(1,
1 Here, ■; Transmitted X-ray dose Io; Incident X-ray dose μ: XI! Absorption coefficient (m2/g) χ; Amount of X-ray absorption substance<g/m') By the way, the ash content in paper is mainly composed of talc, clay, titanium oxide, and calcium carbonate, and these components are It is used in various combinations. With an ash meter that uses the absorption phenomenon of low-energy X-rays, although the detection sensitivity for talc and clay is - time, the absorption coefficients of clay, titanium oxide, and calcium carbonate are different, causing a difference in detection sensitivity. There is.

これらの欠点を是正するため、Tlの特性X線(4,5
KeV)とそれ以上のエネルギーの連続X線を利用した
酸化チタン・クレー等感度形成分計が開発されている。
In order to correct these drawbacks, the characteristic X-rays of Tl (4,5
A sensitive formation analyzer for titanium oxide, clay, etc., using continuous X-rays with energies of KeV) and higher has been developed.

しかし、このような灰分計は、炭酸カルシウムの検出感
度が酸化チタンやクレーの約2倍の検出感度となってい
るなめ、クレ、酸化チタン、及び炭酸カルシウムの三成
分が混合した灰分を正しく測定できないという欠点があ
った。一方、Caの特性X線(3,7KeV)とそれ以
上のエネルギーの連続X線を利用した炭酸カルシウム・
クレー等感度形成分計も開発されている。しかし、この
ような灰分計は、酸化チタンの検出感度が炭酸カルシウ
ムやクレーの約2倍の検出感度となっているため、クレ
ー、酸化チタン、及び炭酸カルシウムの三成分が混合し
た灰分を正しく測定できないという欠点があった。
However, these ash meters cannot accurately measure ash, which is a mixture of three components: clay, titanium oxide, and calcium carbonate, because the detection sensitivity of calcium carbonate is about twice that of titanium oxide or clay. The drawback was that it couldn't be done. On the other hand, calcium carbonate, which uses the characteristic X-rays of Ca (3.7KeV) and continuous
A clay-sensitivity fraction analyzer has also been developed. However, these ash meters have a detection sensitivity that is approximately twice as sensitive for titanium oxide as for calcium carbonate and clay, making it difficult to accurately measure ash that is a mixture of three components: clay, titanium oxide, and calcium carbonate. The drawback was that it couldn't be done.

〈発明が解決しようとする間組点〉 本発明は、かかる従来例の欠点に鑑みてなされものであ
り、その課題は、クレー、酸化チタン。
<Problems to be Solved by the Invention> The present invention was made in view of the drawbacks of the conventional examples, and its problem is that of clay and titanium oxide.

及び炭酸力ルシュウムの三成分が被測定物体に含有され
ていても、これら三成分の配合に左右されることなく灰
分を正確に測定できる灰分計を提供することにある。
An object of the present invention is to provide an ash meter capable of accurately measuring ash content regardless of the composition of these three components even if the three components, lucium and carbonate, are contained in an object to be measured.

く課題を解決するための手段〉 本発明番゛よ、X線管から照射されたX線がシート状の
被測定物体を透過して減衰したのち電離箱で検出され、
該検出信号が増幅されて後、坪量・水分量検出器からの
坪量・水分量信号と演算器内で所定の演算が施され前記
被測定物体に含まれる灰分の割合を示す灰分量信号が得
られる灰分計において、貫通穴、第1フィルター、及び
第2フィルターが円周上に配置され前記X線管と被測定
M$lJ体の間に配設されるフィルターホイールと、該
フィタホイールを回転させると共に同期信号を前記演算
器に送出するモータとを具備し、該モータが回転し前記
貫通穴、第1フィルター、第2フィルターが前記X線管
の真上に順次位置すると、これらフィルターの位置に対
応して前記被測定物体に照射されるX線エネルギーが変
化し、前記灰分を構成するクレー、チタン、及びカルシ
ウムのvl量吸収係数が順次変化し、前記クレー、チタ
ン、及びカルシウムについて貫通穴やフィルター毎に得
られる三元連立方程式から前記クレー5チタン、及びカ
ルシウムの各含有率を求め該各含有率に基いて前記灰分
量信号を求めることによって前記課題を解決したもので
ある。
According to the present invention, X-rays emitted from an X-ray tube are transmitted through a sheet-shaped object to be measured and attenuated, and then detected in an ionization chamber.
After the detection signal is amplified, a predetermined calculation is performed in a computing unit with the basis weight/moisture content signal from the basis weight/moisture content detector to produce an ash content signal indicating the percentage of ash contained in the object to be measured. In the ash content meter, a filter wheel having a through hole, a first filter, and a second filter disposed on the circumference and disposed between the X-ray tube and the M$lJ body to be measured; and a motor that rotates the X-ray tube and sends a synchronization signal to the arithmetic unit, and when the motor rotates and the through hole, the first filter, and the second filter are sequentially positioned directly above the X-ray tube, these filters The X-ray energy irradiated to the object to be measured changes in accordance with the position of The above-mentioned problem is solved by determining the contents of clay, titanium, and calcium from three-dimensional simultaneous equations obtained for each through-hole and filter, and determining the ash content signal based on the contents.

〈実施例〉 以下、本発明について図を用いて詳細に説明する。第1
図(イ)は本発明実施例の構成説明図であり、図中、第
4図と同一記号は同一意味を持たせて使用しここでの重
複説明は省略する。また、7はフィルタホイール、8は
フィルターホイール7を一定周期で回転させると共に回
転の同期信号を演算器6に送出するモータである。第2
図i□□□はフィルターホイール7を第1図の上側(即
ち、被測定物体3側)から見た図であり、図中、7aは
貫通穴、7bは第1フィルター、7cは第2フィルター
である。一方、第3図はX線エネルギーと質量吸収係数
との関係を示す図である。この図において、質量吸収係
数(μ)はX線エネルギー(E)に対応して変化してい
るが、セルロースよりも酸化チタン、炭酸カルシウム、
或いはクレーの方が大きな吸収係数を示しX線を吸収し
易いことを示している。また、炭酸カルシウムと酸化チ
タンはあるエネルギー(いわゆる吸収端)を境に急激に
変化している。このようなX線エネルギーと質量吸収係
数との関係についての考察を前提として、以下、本発明
実施例の動作説明を行う。
<Example> Hereinafter, the present invention will be described in detail using the drawings. 1st
Figure (A) is an explanatory diagram of the configuration of an embodiment of the present invention. In the figure, the same symbols as in Figure 4 are used with the same meanings, and repeated explanations here will be omitted. Further, 7 is a filter wheel, and 8 is a motor that rotates the filter wheel 7 at a constant cycle and sends a rotation synchronization signal to the calculator 6. Second
Figure i□□□ is a view of the filter wheel 7 viewed from the upper side of Figure 1 (i.e., from the side of the object to be measured 3), in which 7a is a through hole, 7b is a first filter, and 7c is a second filter. It is. On the other hand, FIG. 3 is a diagram showing the relationship between X-ray energy and mass absorption coefficient. In this figure, the mass absorption coefficient (μ) changes depending on the X-ray energy (E), but titanium oxide, calcium carbonate, and
Alternatively, clay exhibits a larger absorption coefficient, indicating that it absorbs X-rays more easily. Furthermore, calcium carbonate and titanium oxide change rapidly after reaching a certain energy level (the so-called absorption edge). The operation of the embodiment of the present invention will be described below, based on the consideration of the relationship between X-ray energy and mass absorption coefficient.

第1図及び第2図のような構成からなる本発明の実施例
において、モータ8が駆動してフィルターホイール7が
第2図の矢印方向に回転し貫通穴7a、第1フィルター
7b、第2フィルター7cが1頃次X線管1の真上に位
置すると、被測定物体3に照射されるX線エネルギーが
変化し、灰分を構成するクレーの質量吸収係数はそれぞ
れμC。
In the embodiment of the present invention having the configuration shown in FIGS. 1 and 2, the motor 8 is driven to rotate the filter wheel 7 in the direction of the arrow in FIG. When the filter 7c is located directly above the primary X-ray tube 1, the X-ray energy irradiated to the object to be measured 3 changes, and the mass absorption coefficient of the clay constituting the ash is μC.

μC2+μii3と変化する。同様に、灰分を構成する
チタンの質量吸収係数はμm++μt2.μt3と変化
し、灰分を構成するクレーの質量吸収係数はμC++μ
C2+μc3と変化する。また、X線管1から照射され
フィルターホイール7の貫通穴7a、第1フィルター7
b、若しくは第2フィルター70を透過しなX線は被品
定物体3を透過し前記(1)式のようなランベルト・ベ
アの法則に従って減衰し、その後、を離籍2に到達して
検出される。該検出信号は灰分量信号S1となり、アン
グ4で増幅されて、その後、坪量・水分量検出器5から
の坪量・水分量信号S2と演算され灰分量信号S3とな
って出力される。尚、演算器6にはモータ8から回転同
期信号が送出されており、どのフィルターが選択されて
いるか演算器6内で判別できるようになっている。従っ
て、被測定物体3中にクレー、チタン1及びカルシウム
がそれぞれχa(%)、χt (%)、χC(%)含ま
れている場合、X線管1から照射されフィルターホイー
ル7の貫通穴7a、第1フィルター、若しくは第2フィ
ルター7cを透過し被測定物体3に入射する入射X線量
は、I+ 、■2+  13と変化し、上記灰分量信号
S3としてsV、、SV2 、Svコが得られ下式(2
)〜(4)のような連立方程式が成立する。
It changes to μC2+μii3. Similarly, the mass absorption coefficient of titanium constituting the ash is μm++μt2. μt3, and the mass absorption coefficient of the clay that makes up the ash is μC++μ
It changes to C2+μc3. Further, the through hole 7a of the filter wheel 7, which is irradiated from the X-ray tube 1, and the first filter 7
b, or the X-rays that do not pass through the second filter 70 pass through the fixed object 3 and are attenuated according to the Lambert-Baer law as shown in equation (1) above, and then reach the separation 2 and are detected. Ru. The detection signal becomes an ash content signal S1, which is amplified by the Ang 4, and then calculated with the basis weight/moisture content signal S2 from the basis weight/moisture content detector 5, and is output as an ash content signal S3. Note that a rotation synchronization signal is sent from the motor 8 to the calculator 6, so that the calculator 6 can determine which filter is selected. Therefore, when clay, titanium 1, and calcium are contained in the measured object 3, respectively, χa (%), χt (%), and χC (%), the through hole 7a of the filter wheel 7 is irradiated from the X-ray tube 1. , the amount of incident X-rays passing through the first filter or the second filter 7c and entering the object to be measured 3 changes as I+, ■2+13, and the ash content signal S3 is obtained as sV, SV2, and Sv. The formula below (2
) to (4) are established.

Sv+ =I+  ・exp ((μa+  ・χa十
μ豐1 ・χを十μc1 ・χc))・旧・・(2)S
y2=12 ・exp (−(μC2・χa十μt2 
・χを十μc2 ・χc))・・・・・・(3)SV3
  =13   ・ eXP   ((jAa:i  
 ・ χ a。
Sv+ =I+ ・exp ((μa+ ・χa〉μ豐1 ・χ でμc1 ・χc))・Old・・(2) S
y2=12 ・exp (−(μC2・χa×μt2
・χ to 10 μc2 ・χc))・・・・・・(3) SV3
=13 ・eXP ((jAa:i
・χ a.

十 μ t コ  ・ χ t  十 μ c 3  
・ χ c  )  ) ・・・・・・ (4)上記(
2)〜(4)式において、μa++μa21 μiL 
 3  +  AL t  l  *  μ (2+ 
 μt3.  μC1μC2+μc3をあらかじめ求め
ておけば、上記(2)〜(4)の三元連立方程式を解く
ことにより、前記クレー、チタン、及びカルシウムの各
含有率χa(%)、χt (%)、χC(%)が求めら
れ、これらの含有率に基いて前記灰分量信号が求められ
る。
10 μt ・χ t 10 μc 3
・χ c ) ) ...... (4) Above (
In formulas 2) to (4), μa++μa21 μiL
3 + AL t l * μ (2+
μt3. If μC1μC2+μc3 is determined in advance, the clay, titanium, and calcium contents χa (%), χt (%), and χC (%) can be calculated by solving the ternary simultaneous equations (2) to (4) above. ) is determined, and the ash content signal is determined based on these content rates.

即ち、モータ8が駆動してフィルターボイールアが第2
図の矢印方向に回転し貫通穴7a、第1フィルター7b
、第2フィルター7Cが順次X線管1の真上に位置する
と、これらフィルターの位置に対応して被測定物体3に
照射されるX線エネルギーが変化し、灰分を構成するク
レー、チタン。
That is, the motor 8 is driven and the filter boiler is in the second position.
The through hole 7a and the first filter 7b rotate in the direction of the arrow in the figure.
, when the second filters 7C are successively positioned directly above the X-ray tube 1, the X-ray energy irradiated to the object to be measured 3 changes corresponding to the positions of these filters, and the clay and titanium constituting the ash content change.

及びカルシウムの質量吸収係数が順次変化し結果的に前
記X線管から照射されるX線のエネルギー分布が変化し
、前記クレー、チタン、及びカルシウムについて貫通穴
やフィルター毎に得られる三元連立方程式から前記クレ
ー、チタン、及びカルシウムの各含有率を求め該多含有
率に基いて前記灰分量信号が求められる。
The mass absorption coefficients of calcium and calcium change sequentially, and as a result, the energy distribution of the X-rays irradiated from the X-ray tube changes, and the three-dimensional simultaneous equations obtained for each through hole and filter for the clay, titanium, and calcium. The respective content rates of clay, titanium, and calcium are determined from the above, and the ash content signal is determined based on the content rate.

〈発明の効果〉 以上詳しく説明したような本発明によれば、クレー、酸
化チタン、及び炭酸力ルシュウムの三成分が被測定物体
に含有されていても、これら三成分の配合に左右される
ことなく灰分(灰分の各成分濃度やトータル灰分量など
)を正確に測定できる灰分量が実現する。
<Effects of the Invention> According to the present invention as explained in detail above, even if the three components of clay, titanium oxide, and lucium carbonate are contained in the object to be measured, the results are determined by the composition of these three components. This makes it possible to accurately measure ash content (concentration of each component of ash, total ash content, etc.) without any problems.

即ち、フィルターホイール7が第2図の矢印方向に回転
し貫通穴7a、第1フィルター7b、第2フィルター7
Cが順次X線管1の真上に位置すると、これらフィルタ
ーの位置に対応して被測定物体3に照射されるX線エネ
ルギーが変化し、灰分を構成するクレー、チタン、及び
カルシウムの質量吸収係数が順次変化し結果的に前記X
線管から照射されるX線のエネルギー分布が変化し、前
記クレー、チタン、及びカルシウムについて貫通穴やフ
ィルター毎に得られる三元連立方程式から前記クレー、
チタン、及びカルシウムの各含有率を求め該各含有率に
基いて前記灰分率信号が求め、その結果、クレー、酸化
チタン、及び炭酸力ルシュウムの三成分の配合に左右さ
れることなく灰分を正確に測定できるようになる。
That is, the filter wheel 7 rotates in the direction of the arrow in FIG.
When filters C are successively positioned directly above the X-ray tube 1, the X-ray energy irradiated to the object to be measured 3 changes depending on the position of these filters, and the mass absorption of clay, titanium, and calcium that make up the ash content changes. The coefficients change sequentially and as a result, the above
The energy distribution of the X-rays irradiated from the ray tube changes, and from the ternary simultaneous equations obtained for each through hole and filter for the clay, titanium, and calcium, the clay,
The content of titanium and calcium is determined, and the ash content signal is determined based on the content.As a result, the ash content can be determined accurately without being influenced by the composition of the three components: clay, titanium oxide, and lucium carbonate. be able to measure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の要部構成説明図、第2図はフィ
ルターホイールを示す図、第3図は質量吸収係数とX線
エネルギーとの関係を示す図、第4図は従来例の要部構
成説明図である。 1・・・・・・X線管、2・・・・・・を鍵箱、3・・
・・・・被測定物体、4・・・・・・アンプ、5・・・
・・・坪量・水分量検出器、6・・・・・・演算器、7
・・・・・・フィルターホイール、8・・・・・・モー
タ 第1図 第3図 E(X楳二f11.−キ゛−) 第Z− 第4 図
Fig. 1 is an explanatory diagram of the main part configuration of the embodiment of the present invention, Fig. 2 is a diagram showing the filter wheel, Fig. 3 is a diagram showing the relationship between mass absorption coefficient and X-ray energy, and Fig. 4 is a diagram of the conventional example. FIG. 2 is an explanatory diagram of the main part configuration. 1...X-ray tube, 2...key box, 3...
...Object to be measured, 4...Amplifier, 5...
... Basis weight/moisture content detector, 6... Arithmetic unit, 7
...Filter wheel, 8...Motor Fig. 1 Fig. 3 E (X Ueji f11.-key) Z- Fig. 4

Claims (1)

【特許請求の範囲】[Claims] X線管から照射されたX線がシート状の被測定物体を透
過して減衰したのち電離箱で検出され、該検出信号が増
幅されて後、坪量・水分量検出器からの坪量・水分量信
号と演算器内で所定の演算が施され前記被測定物体に含
まれる灰分の割合を示す灰分率信号が得られる灰分計に
おいて、貫通穴、第1フィルター、及び第2フィルター
が円周上に配置され前記X線管と被測定物体の間に配設
されるフィルターホイールと、該フィタホイールを回転
させると共に同期信号を前記演算器に送出するモータと
を具備し、該モータが回転し前記貫通穴、第1フィルタ
ー、第2フィルターが前記X線管の真上に順次位置する
と、これらフィルターの位置に対応して前記被測定物体
に照射されるX線エネルギーが変化し、前記灰分を構成
するクレー、チタン、及びカルシウムの質量吸収係数が
順次変化し、前記クレー、チタン、及びカルシウムにつ
いて貫通穴やフィルター毎に得られる三元連立方程式か
ら前記クレー、チタン、及びカルシウムの各含有率を求
め該各含有率に基いて前記灰分率信号を求めることを特
徴とする灰分計。
The X-rays emitted from the X-ray tube pass through the sheet-shaped object to be measured and are attenuated, and then detected in the ionization chamber. After the detection signal is amplified, the basis weight/moisture content detector outputs the In an ash meter that performs a predetermined calculation on a moisture content signal in a calculator to obtain an ash content signal indicating the percentage of ash contained in the object to be measured, a through hole, a first filter, and a second filter are arranged in a circumferential manner. A filter wheel disposed above and between the X-ray tube and the object to be measured, and a motor that rotates the filter wheel and sends a synchronization signal to the arithmetic unit, and the motor rotates. When the through hole, the first filter, and the second filter are sequentially located directly above the X-ray tube, the X-ray energy irradiated to the object to be measured changes depending on the position of these filters, and the ash content is reduced. The mass absorption coefficients of the clay, titanium, and calcium that constitute the clay, titanium, and calcium change sequentially, and the respective contents of the clay, titanium, and calcium are determined from the ternary simultaneous equation obtained for each through hole and filter for the clay, titanium, and calcium. The ash content meter is characterized in that the ash content signal is determined based on the determined content rates.
JP1046237A 1989-02-27 1989-02-27 Ash content meter Pending JPH02226055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1046237A JPH02226055A (en) 1989-02-27 1989-02-27 Ash content meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1046237A JPH02226055A (en) 1989-02-27 1989-02-27 Ash content meter

Publications (1)

Publication Number Publication Date
JPH02226055A true JPH02226055A (en) 1990-09-07

Family

ID=12741518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1046237A Pending JPH02226055A (en) 1989-02-27 1989-02-27 Ash content meter

Country Status (1)

Country Link
JP (1) JPH02226055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519381A (en) * 2000-01-05 2003-06-17 エイビービー インコーポレイテッド Method and apparatus for estimating mineral content in sheet material
JP2011232226A (en) * 2010-04-28 2011-11-17 Ihi Inspection & Instrumentation Co Ltd X-ray generator and x-ray inspection device
CN104698195A (en) * 2013-12-10 2015-06-10 丹东东方测控技术股份有限公司 Automatic offline ash detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519381A (en) * 2000-01-05 2003-06-17 エイビービー インコーポレイテッド Method and apparatus for estimating mineral content in sheet material
JP2011232226A (en) * 2010-04-28 2011-11-17 Ihi Inspection & Instrumentation Co Ltd X-ray generator and x-ray inspection device
CN104698195A (en) * 2013-12-10 2015-06-10 丹东东方测控技术股份有限公司 Automatic offline ash detection device

Similar Documents

Publication Publication Date Title
CA1076712A (en) Self-compensating x-ray or gamma ray thickness gauge
US4266425A (en) Method for continuously determining the composition and mass flow of butter and similar substances from a manufacturing process
JPH0126019B2 (en)
FI70750B (en) ANORDINATION FOR THE MAINTENANCE OF THE CONCENTRATION FOR AND FOR THE OCCASION OF A TILLSATSAEMNE
FI59489C (en) FOERFARANDE FOER MAETNING AV BELAEGGNINGSMAENGDER
JPH02226055A (en) Ash content meter
Fröjdh et al. Spectral X-ray imaging with single photon processing detectors
NL8300039A (en) REFERENCE DETECTION DEVICE FOR MULTIDETECTOR TOMODENS SITOMETER AND TOMODENS SITOMETER INCLUDING SUCH A DEVICE.
US4350889A (en) X-Ray fluorescent analysis with matrix compensation
US3121166A (en) X-ray apparatus for measuring paper web density
WO1985004565A1 (en) Computerized tomography unit
JPH02226056A (en) Ash content meter
USRE30884E (en) On-line system for monitoring sheet material additives
JP2725346B2 (en) Ash meter with equal sensitivity for three components
JPH07260680A (en) Infrared ray sensor
JPS6333096B2 (en)
JPS6311638Y2 (en)
JPH03185344A (en) Method and apparatus for analyzing component using x-rays
US5760404A (en) Method and an apparatus for determining the field size and the field form of the radiation cone of ionizing radiation source
JP2725401B2 (en) Ash meter
JP4088455B2 (en) Method and apparatus for measuring thickness of multi-layer material
JPS6311636Y2 (en)
JP3399861B2 (en) X-ray analyzer
JPH0229983B2 (en)
SU1073649A1 (en) Method of measuring filler concentartion in paper sheet