JPH0222604B2 - - Google Patents

Info

Publication number
JPH0222604B2
JPH0222604B2 JP55122780A JP12278080A JPH0222604B2 JP H0222604 B2 JPH0222604 B2 JP H0222604B2 JP 55122780 A JP55122780 A JP 55122780A JP 12278080 A JP12278080 A JP 12278080A JP H0222604 B2 JPH0222604 B2 JP H0222604B2
Authority
JP
Japan
Prior art keywords
tower
current
steel tower
follow
ground wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55122780A
Other languages
Japanese (ja)
Other versions
JPS5746622A (en
Inventor
Koichi Tsujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP55122780A priority Critical patent/JPS5746622A/en
Publication of JPS5746622A publication Critical patent/JPS5746622A/en
Publication of JPH0222604B2 publication Critical patent/JPH0222604B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 この発明は雷撃による送電鉄塔の閃絡事故を検
出する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting flash faults in power transmission towers caused by lightning strikes.

近年、電力需要の増大に伴い、送電線が大規模
化・幹線化し、また社会的要請などから送電ルー
トが山岳地域に限られるようになつてきた。その
ため、雷撃事故が発生しやすく、一度の事故が大
規模停電につながる心配があることから、耐雷対
策は重要な課題となつている。耐雷対策の一つと
して、従来から電力線の上部に地線(グランドワ
イヤ)が張られているが、これは避雷針的な役割
をするものであり、落雷が発生しそうなときは、
雷を積極的にこれに誘導し、落雷させるものであ
る。これによつて電力線そのものに落雷すること
を避けることができる。
In recent years, as the demand for electricity has increased, power transmission lines have become larger and more trunk-lined, and due to social demands, power transmission routes have become limited to mountainous regions. As a result, lightning strikes are more likely to occur, and there is a concern that a single accident could lead to a large-scale power outage, making lightning protection an important issue. As one measure against lightning, a ground wire has traditionally been placed above power lines, but this serves as a lightning rod, and when a lightning strike is likely to occur,
It actively guides lightning towards it and causes it to strike. This prevents lightning from striking the power line itself.

しかしながら、鉄塔の接地抵抗には限度がある
ため、大きな雷撃電流が流れた場合には、異常な
高電圧が鉄塔に発生し、碍子の絶縁能力を超えて
電力線へ雷サージ電流が流れ込む、いわゆる逆閃
絡が発生する。また、地線による遮蔽作用が効か
ず、電力線に直接落雷したとき、すなわち直撃雷
を受けたときは、電力線の電位が大幅に上昇し、
このときも碍子の絶縁能力を超えて閃絡し、鉄塔
(大地)に電流が流れ込む。これらの閃絡事故は
多くの場合、絶縁をもたせている碍子をとびこえ
て生じ、そのため放電路にあたつた碍子は破損す
ることが多い。閃絡事故はごく短時間で終るが、
一旦このような放電路ができると、送電中の電流
がその放電路の沿つて大地に流れ込む「続流」が
発生し、変電所の継電器を作動させるので、停電
の原因となる。なお、続流の発生から継電器を作
動(停電)までの時間を数サイクル(約0.1秒)
程度である。
However, since there is a limit to the grounding resistance of a steel tower, when a large lightning current flows, an abnormally high voltage is generated in the tower, and a lightning surge current flows into the power line beyond the insulation capacity of the insulator. A flashback occurs. In addition, when the shielding effect of the ground wire is not effective and the power line is struck directly by lightning, the potential of the power line increases significantly.
At this time, the insulator's insulating capacity is exceeded and a flash fault occurs, causing current to flow into the tower (earth). These flashover accidents often occur when the insulator that provides insulation is jumped over, and as a result, the insulator that comes into contact with the discharge path is often damaged. Flash accidents only last a short time, but
Once such a discharge path is created, a "follow-on current" occurs in which the current being transmitted flows into the ground along the discharge path, tripping relays at the substation and causing power outages. In addition, the time from the occurrence of follow-on current to activation of the relay (power outage) is several cycles (approximately 0.1 seconds).
That's about it.

送電線への落雷が全て停電事故になるわけでは
なく、上記の続流が発生してはじめて停電事故に
なるのであるから、停電を早期に回復するために
は、閃絡事故の発生している鉄塔を早急に検出す
る必要がある。
Not all lightning strikes on power transmission lines will cause a power outage, and a power outage will only occur when the following current occurs. Therefore, in order to recover from a power outage early, it is necessary to prevent flash faults from occurring. It is necessary to detect the steel tower as soon as possible.

この発明は以上の如き事情に鑑み閃絡事故鉄塔
を確実且つ安価な手段で検出する特許請求の範囲
に記載の閃絡事故鉄塔の検出装置を提供すること
を目的としている。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a detection device for a steel tower that has suffered a flash fault, as set forth in the claims, which detects a steel tower that has suffered a flash fault in a reliable and inexpensive manner.

以下、この発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は、事故鉄塔1とその隣の非事故鉄塔2
についての続流3の方向を示している。すなわ
ち、事故鉄塔1の特定の碍子4において閃絡事故
が発生したとすると、続流3は鉄塔アームから支
柱5に入つて上下に分流し、一部は塔脚を通じて
大地に流れ込み、他は鉄頂から地線6に流れ込
む。地線6に流れ込む続流3は塔頂において更に
左右に2分され、隣の非事故鉄塔2に流れ込む。
非事故鉄塔2においては地線6から支柱5に入つ
て大地に流れ込むものと、更に地線6を通じて隣
の鉄塔に向つて流れて行くものに分かれる。
Figure 1 shows the accidental steel tower 1 and the non-accidental steel tower 2 next to it.
The direction of follow-on flow 3 is shown. In other words, if a flash fault occurs in a specific insulator 4 of the accident tower 1, the follow-on current 3 enters the tower arm from the tower 5 and is split up and down, with some flowing into the ground through the tower pedestal, and the rest flowing into the ground through the tower pedestal. It flows from the top to ground line 6. The trailing stream 3 flowing into the ground wire 6 is further divided into left and right halves at the top of the tower, and flows into the adjacent non-accident steel tower 2.
In the non-accident steel tower 2, there are two types: one that flows from the ground wire 6 into the support 5 and flows into the ground, and the other that flows further through the ground wire 6 toward the neighboring steel tower.

続流3は交流であるのでその極性は交番するが
事故鉄塔1と非事故鉄塔2における続流3につい
て云えることは、 地線6に流れる続流3の位相が、塔頂の両側
において、事故鉄塔1では反対向きであるのに
対し、非事故鉄塔2では同一の向きである。
Since the follow-on stream 3 is an alternating current, its polarity alternates, but what can be said about the follow-on stream 3 at the accident tower 1 and the non-accident tower 2 is that the phase of the follow-on stream 3 flowing to the ground wire 6 is such that on both sides of the tower top, While the direction is opposite in the accident steel tower 1, the direction is the same in the non-accident steel tower 2.

最上段アーム7と塔頂間の支柱5に流れる続
流3の位相が事故鉄塔1では上向き(塔頂向
き)であるのに対し、非事故鉄塔2では下向き
(大地向き)である。
The phase of the trailing current 3 flowing to the column 5 between the uppermost arm 7 and the tower top is upward (towards the top) in the accidental steel tower 1, whereas it is downward (toward the ground) in the non-accidental steel tower 2.

したがつて、の場合は、続流3の分岐点であ
る塔頂の両側において、地線6に流れる続流3の
位相が一致するか又はほぼ逆位相であるかを判別
することにより、事故鉄塔1と非事故鉄塔2を区
別することができるので、事故鉄塔1を検出する
ことができる。
Therefore, in the case of , it is possible to prevent an accident by determining whether the phases of the trailing stream 3 flowing to the ground wire 6 match or are almost in opposite phases on both sides of the tower top, which is the branching point of the trailing stream 3. Since the steel tower 1 and the non-accidental steel tower 2 can be distinguished, the accidental steel tower 1 can be detected.

また、の場合は、塔頂に近い支柱5部分と、
塔脚に近い支柱5部分に流れる続流3の向きを判
別することにより、同様に事故鉄塔1を検出する
ことができる。ただ、この場合、塔脚は通常4本
であるので、続流は各塔脚に分流することにな
る。
In addition, in the case of , the 5 parts of the support near the top of the tower,
The accidental steel tower 1 can be similarly detected by determining the direction of the trailing current 3 flowing to the portion of the column 5 near the tower foot. However, in this case, since there are usually four tower legs, the subsequent flow will be divided into each tower leg.

以上、地線6に流れる続流3の方向を判別する
場合も支柱5に流れる続流3の方向を判別する場
合も、閃絡事故発生時に続流3が分流する分岐部
分の両側においてその流れの向きを判別すること
により、事故鉄塔1を検出することができるもの
である。
As described above, both when determining the direction of the trailing current 3 flowing to the ground wire 6 and when determining the direction of the trailing current 3 flowing to the support column 5, the flow of trailing current 3 on both sides of the branch part where the trailing current 3 branches off when a flash fault occurs. By determining the direction of the accident steel tower 1, it is possible to detect the accidental steel tower 1.

次に、続流3の位相の向きを判別する手段を、
上記の場合について説明する。
Next, the means for determining the phase direction of the follow-on flow 3 is
The above case will be explained.

第2図に示すように、支柱5の塔部を挟むごと
く頭部の両側において、地線6に同一の特性をも
つた変流器8,8′を1個づつ取付ける。各変流
器8,8′の出力端子A,B,a,b間にそれぞ
れ負荷抵抗RLを接続し、地線6に流れる続流3
を各出力端子A,B,a,b,に二次電流として
取出す。いま、各変流器8,8′の出力端子B,
bを基準レベルにとると、事故鉄塔1における出
力端子A,bに現れる二次電流の波形は、第3図
に示すように、位相がほぼ逆位相(180度の位相
差)となる。一方、非事故鉄塔2においては、第
4図に示すように位相が一致する。
As shown in FIG. 2, one current transformer 8, 8' having the same characteristics is attached to the ground wire 6 on both sides of the head of the column 5 so as to sandwich the tower portion thereof. A load resistance R L is connected between the output terminals A, B, a, and b of each current transformer 8, 8', and a follow-on current 3 flowing to the ground wire 6
is taken out as a secondary current to each output terminal A, B, a, b. Now, the output terminals B of each current transformer 8, 8'
If b is taken as the reference level, the waveforms of the secondary currents appearing at the output terminals A and b in the accidental tower 1 have almost opposite phases (180 degree phase difference), as shown in FIG. On the other hand, in the non-accident steel tower 2, the phases match as shown in FIG.

上記の続流3には、多少の直流成分が重畳され
ていることが多いが、基本的には50または60Hzの
商用周波数の交流成分より成り、数サイクル程度
持続した後、変電所等における継電器の作動によ
り遮断される。また、続流の大きさは、送電容
量、鉄塔、地線の接地抵抗などによるが、数
100A〜数10KAである。また、上記の変流器8,
8′は、地線6の囲りに容易に取付けられるよう
コアを分割できるようにしたものが望ましい。
The follow-on current 3 mentioned above often has some direct current component superimposed on it, but basically it consists of an alternating current component at a commercial frequency of 50 or 60 Hz, and after it lasts for several cycles, it is It is shut off by the operation of . In addition, the size of the follow-on current depends on the power transmission capacity, the tower, the grounding resistance of the ground wire, etc.
It is 100A to several 10KA. In addition, the current transformer 8,
It is desirable that the core of the core 8' can be divided so that it can be easily attached around the ground wire 6.

上記の二次電流における位相の一致又は不一致
の判別は、適宜な論理IC等による判別装置(回
路)によるが、その判別装置は送電線に流れる電
流の誘導ノイズの影響、雷サージスイツチングサ
ージの侵入を防ぎ誤動作や電気的な損傷を避ける
ために、鉄塔から適宜距離をおいた地上において
行なう。そのため、変流器8,8′の二次電流を
発光手段である発光ダイオード12により光信号
に変換すると共に一端を発光ダイオード12に対
向させた光フアイバ9を介在させ受光手段(図示
せず)を有する判別装置10に伝送することが望
ましい。第5図は上記の二次電流Iを光信号i
(第6図参照)に変換し、光フアイバ9を介して
判別装置10に信号を送達するための回路であ
り、二次電流Iをスイツチングダイオード11及
び発光手段である発光ダイオード12により半波
整流し、光コネクタ13を介して光フアイバ9に
光信号iを送出するようになつている。なお、第
5図において、16は放電ギヤツプ素子、14は
双方向ツエナーダイオード、15は電流制限抵抗
である。
Determination of whether the phases of the secondary currents match or do not match is determined by a determination device (circuit) using an appropriate logic IC, etc.; To prevent intrusion, malfunctions, and electrical damage, conduct the work on the ground at an appropriate distance from the tower. Therefore, the secondary current of the current transformers 8, 8' is converted into an optical signal by a light emitting diode 12 serving as a light emitting means, and an optical fiber 9 with one end facing the light emitting diode 12 is interposed to provide a light receiving means (not shown). It is desirable to transmit the information to the discriminating device 10 having the following. Figure 5 shows the above secondary current I as an optical signal i.
(See Fig. 6) and sends the signal to the discrimination device 10 via the optical fiber 9. The optical signal i is rectified and sent to the optical fiber 9 via the optical connector 13. In FIG. 5, 16 is a discharge gap element, 14 is a bidirectional Zener diode, and 15 is a current limiting resistor.

以上のように、この発明は、閃絡事故を生じて
いる鉄塔において続流の分岐部の両側に変流器を
取付るという簡単な構造によつて続流の向きを検
出し、その向きについて二次電流の位相が同じで
あるか、ほぼ逆位相であるかによつて判別するこ
とにより、事故鉄塔を早く検出することができる
効果を奏するものである。
As described above, the present invention detects the direction of the follow-on current using a simple structure in which current transformers are installed on both sides of the branch part of the follow-on flow in the steel tower where the flash fault occurs, and determines the direction of the follow-on flow. By determining whether the phases of the secondary currents are the same or substantially opposite, it is possible to quickly detect an accidental tower.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は続流の向きの説明図、第2図は続流の
検出装置の回路図、第3図及び第4図は上記検出
装置の出力波形図、第5図はこの発明の装置の回
路図、第6図は第5図の入力・出力波形図であ
る。 図中使用する番号は、1……事故鉄塔、2……
非事故鉄塔、3……続流、5……支柱、6……地
線、8,8′……変流器、9……光フアイバ、1
0……判別装置、12……発光ダイオードを示
す。
FIG. 1 is an explanatory diagram of the direction of the following current, FIG. 2 is a circuit diagram of the following current detection device, FIGS. 3 and 4 are output waveform diagrams of the above detection device, and FIG. 5 is a diagram of the device of the present invention. The circuit diagram, FIG. 6, is an input/output waveform diagram of FIG. The numbers used in the diagram are 1...accident tower, 2...
Non-accident steel tower, 3... Follow-up, 5... Support, 6... Ground wire, 8, 8'... Current transformer, 9... Optical fiber, 1
0...discrimination device, 12...indicates a light emitting diode.

Claims (1)

【特許請求の範囲】 1 支柱の頭部を挟むごとく架空地線に取付けら
れた同一の特性を持つ2個の変流器と、前記2個
の変流器が検出した2つの波形の位相が一致する
か又はほぼ逆位相であるかを判別する判別装置と
を具備したことを特徴をする閃絡事故鉄塔の検出
装置。 2 変流器は発光手段を有し、判別装置は受光手
段を有し、前記発光手段と受光手段との間に光フ
アイバを介在させた請求項1記載の閃絡事故鉄塔
の検出装置。
[Claims] 1. Two current transformers with the same characteristics are installed on the overhead ground wire so as to sandwich the head of the support, and the phases of the two waveforms detected by the two current transformers are 1. A detection device for a steel tower in a flash fault, characterized by comprising a discriminating device for discriminating whether the phases match or are substantially opposite in phase. 2. The detection device for a steel tower in a flash fault according to claim 1, wherein the current transformer has a light emitting means, the discrimination device has a light receiving means, and an optical fiber is interposed between the light emitting means and the light receiving means.
JP55122780A 1980-09-02 1980-09-02 Method and device for detecting flash accident iron tower Granted JPS5746622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55122780A JPS5746622A (en) 1980-09-02 1980-09-02 Method and device for detecting flash accident iron tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55122780A JPS5746622A (en) 1980-09-02 1980-09-02 Method and device for detecting flash accident iron tower

Publications (2)

Publication Number Publication Date
JPS5746622A JPS5746622A (en) 1982-03-17
JPH0222604B2 true JPH0222604B2 (en) 1990-05-21

Family

ID=14844419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55122780A Granted JPS5746622A (en) 1980-09-02 1980-09-02 Method and device for detecting flash accident iron tower

Country Status (1)

Country Link
JP (1) JPS5746622A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136664A (en) * 1983-01-27 1984-08-06 Furukawa Electric Co Ltd:The Monitoring method of transmission line
JPS59136665A (en) * 1983-01-27 1984-08-06 Furukawa Electric Co Ltd:The Monitoring method of transmission line
JPS59142479A (en) * 1983-02-02 1984-08-15 Furukawa Electric Co Ltd:The Transmission line monitoring method
JPS59143972A (en) * 1983-02-07 1984-08-17 Furukawa Electric Co Ltd:The Monitoring method of power transmission line
JPS60263870A (en) * 1984-06-12 1985-12-27 Hitachi Cable Ltd Detecting device for accident point
JPS61101437U (en) * 1984-12-08 1986-06-28
JPS6241333U (en) * 1985-07-19 1987-03-12
US5478639A (en) * 1993-05-12 1995-12-26 Teraoka Seisakusho Co., Ltd. Adhesive tape for preventing implosion of cathode ray tube
JP5851207B2 (en) * 2011-11-05 2016-02-03 中部電力株式会社 Ground fault detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141731A (en) * 1980-04-01 1981-11-05 Nishimu Denshi Kogyo Kk Method of detecting transmission line spark accident iron tower

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141731A (en) * 1980-04-01 1981-11-05 Nishimu Denshi Kogyo Kk Method of detecting transmission line spark accident iron tower

Also Published As

Publication number Publication date
JPS5746622A (en) 1982-03-17

Similar Documents

Publication Publication Date Title
US5986860A (en) Zone arc fault detection
US20180233895A1 (en) Localized application of high impedance fault isolation in multi-tap electrical power distribution system
US5886861A (en) Apparatus providing response to arc faults in a power distribution cable protected by cable limiters
CN104502807B (en) Cable line fault localization method and device, system
US20110031813A1 (en) Method and Circuit Arrangement for Connecting at Least One String of a Photovoltaic System to an Inverter
Dunki-Jacobs The reality of high-resistance grounding
JPS6084919A (en) Protecting relay
KR102436136B1 (en) IoT sensor module for sensing electric arc of power line
JPH0222604B2 (en)
KR101612488B1 (en) Hybrid transformer
US4796147A (en) Method for detecting voltage losses in a low voltage distribution system
KR102436137B1 (en) IoT system for sensing electric arc of power line
KR102454527B1 (en) IoT sensor module for sensing electric arc of power line
CA2741382C (en) Measuring transient electrical activity in aircraft power distribution systems
CN104917158B (en) Switch cabinet arc light detects protection system
CN109038513B (en) A kind of intelligent processing method of the broken string ground connection for failure phase transfer earthing or grounding means
US3745415A (en) Circuit breaker panelboard with grounded neutral protection
JP7285639B2 (en) Ground fault current interrupter
US11181567B2 (en) Apparatus for isolating high impedance fault in multi-tap electrical power distribution system
JPH09236629A (en) Method and device for detecting earth steel tower of power transmission line
KR102454529B1 (en) IoT system for sensing electric arc of power line
KR102457490B1 (en) IoT sensor module for monitoring strain insulator of power line
CN106199150A (en) Cable protective layer protector monitoring system
US11769998B2 (en) Electric transmission line ground fault prevention systems using dual, high sensitivity monitoring devices
JPS62126361A (en) Method and apparatus for detecting trouble of transmission/distribution line