JPH02225905A - Burner - Google Patents

Burner

Info

Publication number
JPH02225905A
JPH02225905A JP4541089A JP4541089A JPH02225905A JP H02225905 A JPH02225905 A JP H02225905A JP 4541089 A JP4541089 A JP 4541089A JP 4541089 A JP4541089 A JP 4541089A JP H02225905 A JPH02225905 A JP H02225905A
Authority
JP
Japan
Prior art keywords
combustion
flame
section
mixture
impermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4541089A
Other languages
Japanese (ja)
Other versions
JP2664984B2 (en
Inventor
Seiichi Takahashi
清一 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1045410A priority Critical patent/JP2664984B2/en
Publication of JPH02225905A publication Critical patent/JPH02225905A/en
Application granted granted Critical
Publication of JP2664984B2 publication Critical patent/JP2664984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Gas Burners (AREA)
  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To prevent the blowing-off of flame or vibrating combustion due to an increase in the flow rate of a fuel gas and make it possible to provide stable combustion by making a part of the sidewall section or bottom wall section of a combustion cylinder impermeable. CONSTITUTION:A combustion cylinder 2 consists of sidewall sections 3a, 3b, and 3c, a bottoms section 4 and a connecting section 5, and they are formed with a permeable porous solid body and impermeable refractory body, For instance, the sidewall section 3c is impermeable and other sections are formed with a permeable porous solid body. A mixture 18 of a gas fuel and air, mixture 8 of a volatile oil fuel and air, or nonflammable mixture 8 of the exhaust gases of a low calorie that are generated in a plant process passes through an outer cylinder 1 and divided to mixtures 8a, 8b, and 8c. Those fuel mixtures 8a, 8b, and 8c pass through the porous solid bodies 3a, 3b, and 4 at a low speed below 10m/sec and start self-burning in the inside of the combustion cylinder 2. Since the mixture 8a does not pass through the sidewall section 3c which is a refractory material, the bottom section of the flame 10 is generated from the sidewall section 3a and good flame holding is provided and combustion is stable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、低発熱量ガスのような難燃性ガスの燃焼装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion apparatus for a flame-retardant gas such as a low calorific value gas.

〔従来の技術〕[Conventional technology]

第4図は従来の難燃性ガス燃焼装置の一例を示す縦断面
図、第5図は第4図のv−■断面図である。これらの図
において、燃焼筒(2)は側壁部(3)、底部(4)、
連接部(5)から成る0図示例では側壁部(3)が3分
割されている。そしてこの燃焼筒(2)は、外筒(1)
の内部にあり、燃焼炉(7)の前壁(6)に接続してい
る。外筒(1)は、燃料と空気との混合体(8)を透過
しない、鋼材・耐火材で作られており、燃焼筒(2)は
通気性のある多孔性固体で作られている。
FIG. 4 is a longitudinal cross-sectional view showing an example of a conventional flame-retardant gas combustion device, and FIG. 5 is a cross-sectional view taken along the line v--■ in FIG. 4. In these figures, the combustion tube (2) has a side wall (3), a bottom (4),
In the illustrated example, the side wall portion (3) is divided into three parts, each consisting of a connecting portion (5). And this combustion cylinder (2) is the outer cylinder (1)
and is connected to the front wall (6) of the combustion furnace (7). The outer cylinder (1) is made of steel/refractory material that is impermeable to the fuel-air mixture (8), and the combustion tube (2) is made of a porous solid that is breathable.

燃料と空気との混合体(8a) 、 (8b)は、燃焼
筒(2)の外側から内側へ供給され、燃焼し火炎00)
となる。
The mixtures (8a) and (8b) of fuel and air are supplied from the outside to the inside of the combustion tube (2), and are combusted to produce a flame 00).
becomes.

混合体の一部(8c)は直接、燃焼炉(7)で燃焼する
A portion of the mixture (8c) is burned directly in the combustion furnace (7).

(発明が解決しようとする課題〕 前記従来の燃焼装置においては、燃焼筒(2)の側壁部
(3)を通過する混合体(8′)の流速が速くなると、
側壁部(3)への保炎性能が劣化する。すなわち、火炎
Q(+1の根本が側壁部(3)へ密着せずリフト炎にな
って、いわゆる吹き消えが生じる、という問題点があっ
た。
(Problems to be Solved by the Invention) In the conventional combustion device, as the flow velocity of the mixture (8') passing through the side wall (3) of the combustion tube (2) increases,
The flame holding performance of the side wall portion (3) deteriorates. That is, there was a problem in that the base of the flame Q(+1) did not come into close contact with the side wall portion (3) and became a lift flame, causing what was called a blowout.

(課題を解決するための手段] 本発明は、前記従来の課題を解決するために、難燃性ガ
スの燃焼装置において、一端が燃焼室の前壁に接続され
た外筒と、同外筒内に収められ、一部が多孔性固体製、
他の一部が不透過性耐火物製で、一端が閉塞して底壁を
形成するとともに、他端が開放されて上記燃焼室の前壁
に連接された燃焼筒とを具えたことを特徴とする燃焼装
置を提案するものである。
(Means for Solving the Problems) In order to solve the above-mentioned conventional problems, the present invention provides a combustion apparatus for flame-retardant gas, which includes an outer cylinder whose one end is connected to the front wall of a combustion chamber; made of a partially porous solid;
The other part is made of an impermeable refractory material, and includes a combustion tube having one end closed to form a bottom wall and the other end being open and connected to the front wall of the combustion chamber. This paper proposes a combustion device that achieves this.

〔作用〕[Effect]

本発明においては、燃焼筒の側壁部または底壁部の一部
を不透過性にしたので、燃料ガス混合体が吹き出す、火
炎が吹き飛んだり、不安定な振動燃焼をしたすせず、安
定する。
In the present invention, a part of the side wall or bottom wall of the combustion tube is made impermeable, so the fuel gas mixture does not blow out, the flame blows out, or unstable oscillating combustion occurs, resulting in stable combustion. .

〔実施例〕〔Example〕

第1図は本発明の第1実施例を示す縦断面図、第2図は
第1図のff−ff断面図である。これらの図において
、前記第4図および第5図によって説明した従来のもの
と同様の部分については、同一の符号を付け、詳しい説
明を省略する。
FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line ff-ff in FIG. In these figures, the same parts as those of the conventional device explained with reference to FIGS. 4 and 5 are given the same reference numerals, and detailed explanation will be omitted.

本実施例では、燃焼筒(2)は側壁部(3a) 、 (
3b)(3c)、底部(4)、連接部(5)から成り、
透過性の多孔性固体と、不透可性の耐火物とで形成され
ている。
In this embodiment, the combustion tube (2) has side wall portions (3a), (
Consisting of 3b) (3c), a bottom part (4), and a connecting part (5),
It is made of a permeable porous solid and an impermeable refractory.

図示例では側壁部(3c)が不透過性で、他は透過性の
多孔性固体である。ただし、側壁部(3b)または底部
(4)が不透過性でも良いし、側壁部(3a) 、 (
3b)が不透過性でも良い、外筒(1)は、内部に燃焼
筒(2)があり、燃焼炉(7)の前壁(6)に接続して
いる。
In the illustrated example, the side wall portion (3c) is impermeable, and the rest is a permeable porous solid. However, the side wall portion (3b) or the bottom portion (4) may be impermeable, and the side wall portion (3a), (
The outer cylinder (1), of which 3b) may be impermeable, has a combustion tube (2) inside it and is connected to the front wall (6) of the combustion furnace (7).

ガス燃料と空気との混合体、揮発性油燃料と空気との混
合体、または工場プロセスで発生する低カロリ(150
0kcal/Nm3以下を目安とする)の廃ガス等の難
燃性の混合体(8)は、外筒(1)を通り、混合体(8
a) 、 (8b) 、 (8c)に分岐される。コノ
燃料混合体(8a) 、 (8b) 、 (8c)は、
10m/s以下の低流速で多孔性固体(3a) 、 (
3b) 、 (4)を通過し、燃焼筒(2)の内側で自
燃を開始する。側壁部(3c)は耐火材で、混合体(8
a)を通さないので、火炎Go)の根本は側壁部(3c
)から発生し、保炎が良く安定に燃焼する。連接部(5
)を通った混合体(8c)は燃焼炉(7)内で燃焼する
Gaseous fuel and air mixtures, volatile oil fuel and air mixtures, or low calorie (150
A flame-retardant mixture (8) such as waste gas of 0kcal/Nm3 or less passes through the outer cylinder (1), and the mixture (8) passes through the outer cylinder (1).
It is branched into a), (8b), and (8c). Conofuel mixtures (8a), (8b), (8c) are
Porous solid (3a) at a low flow rate of 10 m/s or less, (
3b) and (4), and starts self-combustion inside the combustion tube (2). The side wall part (3c) is made of fireproof material, and the mixture (8
Since it does not pass through a), the root of the flame Go) is on the side wall (3c
) and burns stably with good flame retention. Connecting part (5
) is combusted in a combustion furnace (7).

本実施例では、側壁部(3c)が不透過性なので、火炎
が保炎する。供給する燃料混合体(8)の流量が増え、
流速が増加しても、火炎が吹き飛んだり、不安定な振動
燃焼することがない、保炎性を更に良くするには、側壁
部(3b) 、 (3c)を同時に不透過性にするなど
して、不透過な部分を調整すれば良い。
In this embodiment, since the side wall portion (3c) is impermeable, the flame is held stable. The flow rate of the supplied fuel mixture (8) increases,
In order to further improve the flame stability, which prevents the flame from blowing out or unstable oscillating combustion even when the flow velocity increases, it is possible to make the side walls (3b) and (3c) impermeable at the same time. Then just adjust the opaque parts.

上記実施例の作用効果を更に詳しく説明する。The effects of the above embodiment will be explained in more detail.

第6図はガスバーナにおける燃料ガス流量、燃焼速度と
火炎の状況との関係を示す図である。ガスバーナでは、
火炎が上流に向かって伝播する速度(燃焼速度)と燃料
ガスが下流に向かって流れる流速とが釣合った時には安
定燃焼するが、ガス流速の方が速いと吹き消え(リフト
炎)になり、反応に火炎伝播速度の方が速いと逆火を起
こす、したがって、燃料流量(ガス流速)を増加させる
場合、燃焼速度が一定のままだと吹き消えてしまうので
、安定燃焼させるためには、ガスの燃焼速度を強制的に
増加させる必要がある。
FIG. 6 is a diagram showing the relationship between the fuel gas flow rate, combustion speed, and flame condition in the gas burner. In the gas burner,
When the speed at which the flame propagates upstream (burning speed) and the flow speed at which the fuel gas flows downstream are balanced, stable combustion occurs, but if the gas flow speed is faster, the flame blows out (lift flame). If the flame propagation velocity is faster than the reaction, flashback will occur. Therefore, when increasing the fuel flow rate (gas flow velocity), if the combustion velocity remains constant, it will blow out, so in order to achieve stable combustion, it is necessary to It is necessary to forcibly increase the burning rate of

ガスは、供給温度を高くしておくと、燃焼速度が増加す
る6本発明が対象とする難燃性ガス燃焼装置では、ガス
予熱器は使用せず、高温の多孔性セラミック材を通過さ
せてガスを加熱するものである。ところが、多孔性セラ
ミックの表面は80〜90%は空間で残りが実体的なセ
ラミック材(固体)である、したがって、輻射熱を受け
てセラミック材が昇温しでいても、ガス流量が多ければ
ガス(常温〜100°C)は僅かしか昇温せず、燃焼速
度は増加しない(保炎性能が劣化する。)。
When the gas is supplied at a high temperature, the combustion rate increases.6 In the flame-retardant gas combustion device targeted by the present invention, a gas preheater is not used, and the gas is passed through a high-temperature porous ceramic material. It heats gas. However, the surface of porous ceramic is 80-90% empty and the rest is solid ceramic material. Therefore, even if the ceramic material begins to heat up due to radiant heat, if the gas flow rate is large, the gas (room temperature to 100°C), the temperature increases only slightly and the combustion rate does not increase (flame holding performance deteriorates).

そこで、セラミック材を通過するガスを十分に加熱昇温
させるためには、セラミック材の量を増やし、輻射熱を
蓄熱しておけば良い、そのために多孔セラミックのメッ
シェを細かくしたり、層を厚くすることも考えられるが
、前者ではバーナ表面積が増え大形化するし、後者では
圧損が増えるので好ましくない。
Therefore, in order to sufficiently heat and raise the temperature of the gas passing through the ceramic material, it is necessary to increase the amount of ceramic material and store the radiant heat. To do this, the porous ceramic mesh should be made finer or the layer thicker. Although this is possible, the former would increase the burner surface area and become larger, and the latter would increase pressure loss, which is not preferable.

本実施例では、混合体が吹き出さない所(不透過部)を
増したため、その不透過部(燃焼筒側壁)が輻射熱を蓄
熱することになり、その表面は火炎温度と同等の高温度
に保たれる。したがって、その表面の近傍を流れるガス
の境界層は昇温し、ガスの燃焼速度が増加する。こうし
て保炎性能が良くなり安定するのである。
In this example, the area where the mixture does not blow out (impermeable area) is increased, so the impermeable area (side wall of the combustion tube) stores radiant heat, and its surface reaches a high temperature equivalent to the flame temperature. It is maintained. Therefore, the temperature of the boundary layer of gas flowing near its surface increases, and the burning rate of the gas increases. In this way, flame holding performance is improved and stability is achieved.

次に第3図は、本発明の第2実施例を示す縦断面図であ
る。第3図でも、前記従来のもの、および第1実施例に
おける説明と同様の部分については同一の符号を付け、
詳しい説明を省略する。
Next, FIG. 3 is a longitudinal sectional view showing a second embodiment of the present invention. Also in FIG. 3, the same reference numerals are given to the parts similar to those described in the conventional structure and the first embodiment,
Detailed explanation will be omitted.

本実施例では、燃焼炉(7)の前壁(6)と接続して、
末広がりの外筒(lla) 、 (llb) 、 (1
1,c)があり、外筒の内側に燃焼筒(2)がある、燃
焼筒(2)は、末広がりの側壁部(13a) 、 (1
3b) 、 (13c) 、底部(4)および連接部(
5)から成る0図示例では、側壁部(13a) 、 (
13b)および底部(4)が多孔性固体で形成されて透
過性があり、側壁部(13e)および連接部(5)が耐
火材等で形成され、不透過性である。
In this embodiment, it is connected to the front wall (6) of the combustion furnace (7),
External cylinder that widens at the end (lla), (llb), (1
1, c), and there is a combustion tube (2) inside the outer tube.
3b), (13c), bottom (4) and connecting part (
In the illustrated example consisting of 5), the side wall portion (13a), (
13b) and the bottom part (4) are made of porous solid and are permeable, and the side wall part (13e) and the connecting part (5) are made of refractory material or the like and are impermeable.

燃料ガス混合体(8)は、多孔性面体製の側壁部(13
a) 、 (13b)および底部(4)を通過し、燃焼
筒(2)の内側で自燃を開始し、燃焼可能な温度に保た
れる。
The fuel gas mixture (8) has a side wall portion (13) made of a porous face piece.
a), (13b) and the bottom (4), starts self-combustion inside the combustion tube (2), and is maintained at a temperature that allows combustion.

側壁部(13c)は不透過性なので、燃料ガス混合体(
8)が通過せず、火炎0Φの根元が側壁部(13c)か
ら発生し、保炎性の良い燃焼となる。
Since the side wall portion (13c) is impermeable, the fuel gas mixture (
8) does not pass through, and the root of the flame 0Φ is generated from the side wall portion (13c), resulting in combustion with good flame stability.

〔発明の効果〕〔Effect of the invention〕

本発明においては、燃焼筒の一部が不透過性耐火物製で
、その良好な保炎性のため、燃料ガスの流量が増加して
も、火炎の吹き飛びや振動燃焼のない安定燃焼ができる
In the present invention, a part of the combustion tube is made of impermeable refractory material, and its good flame stability allows stable combustion without flame blow-off or oscillating combustion even when the flow rate of fuel gas increases. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す縦断面図、第2図は
第1図の■−■断面図である。第3図は本発明の第2実
施例を示す縦断面図である。第4図は従来の難燃性ガス
燃焼装置の一例を示す縦断面図、第5図は第4図のV−
■断面図である。第6図はガスバーナにおける燃焼ガス
流量、燃焼速度と火炎の状況との関係を示す図である。 (1)・・・外筒、(2)・・・燃焼筒。 (3)、 (3a) 、 (3b) 、 (3c) −
側壁部。 (4)・・・底部、(5)・・・連接部。 (6)・・・燃焼炉前壁、   (刀・・・燃焼炉(8
)、 (8a) 、 (8b) 、 (8c) ・= 
(燃料ガス)混合体。 OI・・・火炎。 (lla)、(llb)、(lte) ・・・外筒。 (13a) 、 (13b) 、 (13c) ・・・
側壁部。
FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line -■ in FIG. FIG. 3 is a longitudinal sectional view showing a second embodiment of the present invention. FIG. 4 is a vertical cross-sectional view showing an example of a conventional flame-retardant gas combustion device, and FIG.
■It is a sectional view. FIG. 6 is a diagram showing the relationship between the combustion gas flow rate, combustion speed, and flame condition in a gas burner. (1)...outer cylinder, (2)...combustion cylinder. (3), (3a), (3b), (3c) −
Side wall. (4)...Bottom part, (5)...Connection part. (6)...Front wall of combustion furnace, (Sword...Furnace (8)
), (8a), (8b), (8c) ・=
(fuel gas) mixture. OI...flame. (lla), (llb), (lte)...outer cylinder. (13a), (13b), (13c)...
Side wall.

Claims (1)

【特許請求の範囲】[Claims] 難燃性ガスの燃焼装置において、一端が燃焼室の前壁に
接続された外筒と、同外筒内に収められ、一部が多孔性
固体製、他の一部が不透過性耐火物製で、一端が閉塞し
て底壁を形成するとともに、他端が開放されて上記燃焼
室の前壁に連接された燃焼筒とを具えたことを特徴とす
る燃焼装置。
In a flame retardant gas combustion device, there is an outer cylinder whose one end is connected to the front wall of the combustion chamber, and which is housed within the outer cylinder, with a part made of porous solid and the other part made of impermeable refractory material. 1. A combustion device comprising: a combustion tube made of aluminum, one end of which is closed to form a bottom wall, and the other end of which is open and connected to the front wall of the combustion chamber.
JP1045410A 1989-02-28 1989-02-28 Flame retardant low calorific value gas combustion device Expired - Fee Related JP2664984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1045410A JP2664984B2 (en) 1989-02-28 1989-02-28 Flame retardant low calorific value gas combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1045410A JP2664984B2 (en) 1989-02-28 1989-02-28 Flame retardant low calorific value gas combustion device

Publications (2)

Publication Number Publication Date
JPH02225905A true JPH02225905A (en) 1990-09-07
JP2664984B2 JP2664984B2 (en) 1997-10-22

Family

ID=12718486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1045410A Expired - Fee Related JP2664984B2 (en) 1989-02-28 1989-02-28 Flame retardant low calorific value gas combustion device

Country Status (1)

Country Link
JP (1) JP2664984B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053231A3 (en) * 2004-11-12 2006-11-23 Applied Materials Inc Reactor design to reduce particle deposition during process abatement
US7682574B2 (en) 2004-11-18 2010-03-23 Applied Materials, Inc. Safety, monitoring and control features for thermal abatement reactor
US8095240B2 (en) 2004-11-18 2012-01-10 Applied Materials, Inc. Methods for starting and operating a thermal abatement system
WO2011094294A3 (en) * 2010-01-28 2012-06-14 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9850815B2 (en) 2014-07-08 2017-12-26 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10047671B2 (en) 2009-02-26 2018-08-14 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10047673B2 (en) 2014-09-09 2018-08-14 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US10103737B2 (en) 2014-11-12 2018-10-16 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10415434B2 (en) 2011-11-02 2019-09-17 8 Rivers Capital, Llc Integrated LNG gasification and power production cycle
US10533461B2 (en) 2015-06-15 2020-01-14 8 Rivers Capital, Llc System and method for startup of a power production plant
US10634048B2 (en) 2016-02-18 2020-04-28 8 Rivers Capital, Llc System and method for power production including methanation
US10731571B2 (en) 2016-02-26 2020-08-04 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US10794274B2 (en) 2013-08-27 2020-10-06 8 Rivers Capital, Llc Gas turbine facility with supercritical fluid “CO2” recirculation
US10914232B2 (en) 2018-03-02 2021-02-09 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US11125159B2 (en) 2017-08-28 2021-09-21 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US11549433B2 (en) 2019-10-22 2023-01-10 8 Rivers Capital, Llc Control schemes for thermal management of power production systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950012A (en) * 1982-09-09 1984-03-22 Motonori Oda Manufacture of ash for activated carbon using waste pine enchroached by pine weevil
JPS6349616A (en) * 1986-08-19 1988-03-02 Toyo Mach Kk Hot air device by exhaust gas combustion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950012A (en) * 1982-09-09 1984-03-22 Motonori Oda Manufacture of ash for activated carbon using waste pine enchroached by pine weevil
JPS6349616A (en) * 1986-08-19 1988-03-02 Toyo Mach Kk Hot air device by exhaust gas combustion

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053231A3 (en) * 2004-11-12 2006-11-23 Applied Materials Inc Reactor design to reduce particle deposition during process abatement
US7682574B2 (en) 2004-11-18 2010-03-23 Applied Materials, Inc. Safety, monitoring and control features for thermal abatement reactor
US8095240B2 (en) 2004-11-18 2012-01-10 Applied Materials, Inc. Methods for starting and operating a thermal abatement system
US10975766B2 (en) 2009-02-26 2021-04-13 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US9869245B2 (en) 2009-02-26 2018-01-16 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10018115B2 (en) 2009-02-26 2018-07-10 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10047671B2 (en) 2009-02-26 2018-08-14 8 Rivers Capital, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
WO2011094294A3 (en) * 2010-01-28 2012-06-14 Palmer Labs, Llc System and method for high efficiency power generation using a carbon dioxide circulating working fluid
EA024796B1 (en) * 2010-01-28 2016-10-31 Палмер Лэбс, Ллк System and method for high efficiency power generation using a carbon dioxide circulating working fluid
US10415434B2 (en) 2011-11-02 2019-09-17 8 Rivers Capital, Llc Integrated LNG gasification and power production cycle
US10794274B2 (en) 2013-08-27 2020-10-06 8 Rivers Capital, Llc Gas turbine facility with supercritical fluid “CO2” recirculation
US10711695B2 (en) 2014-07-08 2020-07-14 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US11365679B2 (en) 2014-07-08 2022-06-21 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US9850815B2 (en) 2014-07-08 2017-12-26 8 Rivers Capital, Llc Method and system for power production with improved efficiency
US10047673B2 (en) 2014-09-09 2018-08-14 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US11231224B2 (en) 2014-09-09 2022-01-25 8 Rivers Capital, Llc Production of low pressure liquid carbon dioxide from a power production system and method
US10103737B2 (en) 2014-11-12 2018-10-16 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US11473509B2 (en) 2014-11-12 2022-10-18 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US10533461B2 (en) 2015-06-15 2020-01-14 8 Rivers Capital, Llc System and method for startup of a power production plant
US11208323B2 (en) 2016-02-18 2021-12-28 8 Rivers Capital, Llc System and method for power production including methanation
US10634048B2 (en) 2016-02-18 2020-04-28 8 Rivers Capital, Llc System and method for power production including methanation
US11466627B2 (en) 2016-02-26 2022-10-11 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US10731571B2 (en) 2016-02-26 2020-08-04 8 Rivers Capital, Llc Systems and methods for controlling a power plant
US11125159B2 (en) 2017-08-28 2021-09-21 8 Rivers Capital, Llc Low-grade heat optimization of recuperative supercritical CO2 power cycles
US10914232B2 (en) 2018-03-02 2021-02-09 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US11560838B2 (en) 2018-03-02 2023-01-24 8 Rivers Capital, Llc Systems and methods for power production using a carbon dioxide working fluid
US10961920B2 (en) 2018-10-02 2021-03-30 8 Rivers Capital, Llc Control systems and methods suitable for use with power production systems and methods
US11549433B2 (en) 2019-10-22 2023-01-10 8 Rivers Capital, Llc Control schemes for thermal management of power production systems and methods

Also Published As

Publication number Publication date
JP2664984B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JPH02225905A (en) Burner
KR940011377A (en) Recuperative glass furnaces, methods of operation thereof, and methods of reducing the emission of harmful substances in the waste gases leaving the glass furnaces
GB1508459A (en) Method of firing and furnace therefor
JPH08208240A (en) Glass-melting oven
JP3638170B2 (en) High temperature furnace oxygen gas burner
JPH0449449Y2 (en)
JPS5623616A (en) Burning method for low nox
JP2831224B2 (en) Combustion equipment
JPS5888506A (en) Double combustion type burner
JPS6122115A (en) Combustion controlling method utilizing combustion exhaust gas
JPS6287709A (en) Pulverized coal burner using low calorie gas as assist fuel
JP2664971B2 (en) Flame retardant low calorific value gas combustion device
JP3370839B2 (en) Radiant tube burner and atmosphere firing furnace using the same
JP2953237B2 (en) boiler
JPS62228430A (en) Method for heating steel material
RU1778440C (en) Energy technological unit
JP3049939B2 (en) Combustion equipment
JP2004093118A (en) Tubular flame burner
JP2002022145A (en) Burner
SU737709A1 (en) Shaft furnace for thermal disinfection of domestic and industrial waste
JPH0443683Y2 (en)
JP3499963B2 (en) Regenerative alternating burner
RU1770704C (en) Apparatus for heat treatment of semidispersed material
SU559069A1 (en) Gas speed burner
JPS5837408A (en) Pulverized coal combustion method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees