JPH02225687A - Production of air permeable porous electroformed die - Google Patents

Production of air permeable porous electroformed die

Info

Publication number
JPH02225687A
JPH02225687A JP4351289A JP4351289A JPH02225687A JP H02225687 A JPH02225687 A JP H02225687A JP 4351289 A JP4351289 A JP 4351289A JP 4351289 A JP4351289 A JP 4351289A JP H02225687 A JPH02225687 A JP H02225687A
Authority
JP
Japan
Prior art keywords
short fibers
mold
electroforming
mandrel
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4351289A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Noda
泰義 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KTX Corp
Original Assignee
KTX Corp
Konan Tokushu Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KTX Corp, Konan Tokushu Sangyo Co Ltd filed Critical KTX Corp
Priority to JP4351289A priority Critical patent/JPH02225687A/en
Publication of JPH02225687A publication Critical patent/JPH02225687A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To produce an air permeable porous electroformed die having prescribed air vents by planting short fibers in the surface of a conductive film formed on the surface of a mandrel and applying electroforming to the film while growing air vents from the tips of the short fibers. CONSTITUTION:Epoxy resin, etc., are poured via an inlet 9b of a reinforcing member 9a onto an intermediate mold formed by using a model, by which a mandrel 9 having crimp pattern 8 is formed. A conductive film 10 is formed on the mandrel 9 surface by means of silver mirror reaction, etc., and short fibers 11 are planted in this conductive film 10 in the prescribed density. It is preferably that these short fibers 11 are nonconductive, and the diameter of fiber is regulated so that it corresponds to the diameter of an air vent. Subsequently, electroforming is applied to the above conductive film 10 surface to form a primary layer 12 of die in which respective tips of the above short fibers 11 are left. Electroforming is further performed, by which a secondary layer 14 of metal mold is laminated and formed on the above primary layer 12 of die while forming and growing air vents from respective short fibers 11 mentioned above. Then, the mandrel 9 is peeled off and the above short fibers 11 are removed, and an air permeable porous electroformed die 1 having the air vents 13 whose number and diameter are precisely controlled and reverse crimp pattern 15 can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、真空成形、圧空成形、ブロー成形、スタンピ
ング成形、ロール成形、リム(RIM)成形、射出成形
その他の各種合成樹脂成形に使用される電鋳金型の製造
方法に関し、詳しくは真空吸引用又は圧空用の通気孔を
備えた通気性ポーラス電鋳金型に係るものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is used in vacuum forming, pressure forming, blow forming, stamping forming, roll forming, rim (RIM) forming, injection molding, and various other synthetic resin forming processes. The present invention relates to a method for manufacturing an electroforming mold, and specifically relates to an air-permeable porous electroforming mold equipped with ventilation holes for vacuum suction or compressed air.

[従来の技術及び発明が解決しようとする課題]従来の
通気性電鋳金型の多くは、−ffl的な電鋳法により形
成した無孔質の電鋳金型に、ドリル加工やレーザ加工に
より多数の通気孔を形成して製造されている。
[Prior art and problems to be solved by the invention] Most of the conventional permeable electroforming molds are non-porous electroforming molds formed by the -ffl electroforming method, and then a large number of holes are formed by drilling or laser processing. It is manufactured by forming ventilation holes.

しかし、これらの加工方法では通気孔の孔径が必要以上
に大きくなりやすく、該通気孔が合成樹脂成形品に転写
するおそれがあった。また、前記通気孔の孔径は電鋳金
型の表面から裏面まで一定であったため、該孔径が大き
いにも拘らず通気抵抗は非常に高く、真空吸引又は圧空
の能力が低下するという問題もあった。
However, with these processing methods, the diameter of the vent hole tends to become larger than necessary, and there is a risk that the vent hole will be transferred to the synthetic resin molded product. In addition, since the diameter of the vent hole was constant from the front surface to the back surface of the electroforming mold, there was a problem that the ventilation resistance was extremely high despite the large hole diameter, and the ability of vacuum suction or compressed air was reduced. .

また、最近ではセラミック粉、金属粉等を成形及び焼結
して製造される通気性セラミック型も開発されている。
Also, recently, breathable ceramic molds manufactured by molding and sintering ceramic powder, metal powder, etc. have been developed.

しかし、この通気性セラミック型の通気孔はセラミック
粉の間隙が複雑に繋ってできたものであり、ストレート
には貫通していないため、やはり相当の通気抵抗があっ
た。
However, the ventilation holes of this breathable ceramic type were formed by intricately connecting gaps between ceramic powders and did not penetrate straight through, so there was still considerable ventilation resistance.

そこで、本発明者は上記の問題点を解決すべく、本発明
より先に、電鋳と同時に多数の微小な通気孔を発生及び
成長させてできる通気性ポーラス電鋳金型の発明を完成
している(特開昭60−152692号公報)。本発明
はこの発明の改良に係るものであり、その目的は通気孔
の数及び孔径を容易かつ正確に制御することができる通
気性ポーラス電鋳金型の製造方法を提供することにある
Therefore, in order to solve the above problems, the present inventor completed the invention of an air permeable porous electroforming mold which is made by generating and growing a large number of minute ventilation holes at the same time as electroforming. (Japanese Unexamined Patent Publication No. 152692/1983). The present invention relates to an improvement of this invention, and its purpose is to provide a method for manufacturing an air-permeable porous electroforming mold in which the number and diameter of ventilation holes can be easily and accurately controlled.

1課題を解決するための手段J 上記目的を達成するため、本発明の通気性ポーラス電鋳
金型の製造方法は、マンドレルを形成する工程と、前記
マンドレルの表面に導電被膜を形成する工程と、前記導
電被膜の表面に短繊維を植毛する工程と、前記導電被膜
の表面に電鋳を行うことにより前記短繊維がその先端部
を残して埋まる金型第一層を形成する工程と、前記金型
第一層の表面に電鋳を行うことにより前記短繊維の先端
部から通気孔を発生及び成長させながら金型第二層を積
層形成する工程と、前記金型第一層及び金型第二層を前
記マンドレルから剥離する工程と、前記金型第一層から
前記短繊維を除去する工程とから構成した。
1 Means for Solving the Problems J In order to achieve the above object, the method for manufacturing a breathable porous electroforming mold of the present invention includes a step of forming a mandrel, a step of forming a conductive film on the surface of the mandrel, a step of flocking short fibers on the surface of the conductive coating; a step of electroforming the surface of the conductive coating to form a first layer of a mold in which the short fibers are buried leaving their tips; a step of laminating and forming a second layer of the mold while generating and growing vent holes from the tips of the short fibers by electroforming on the surface of the first layer of the mold; The method consisted of a step of peeling the two layers from the mandrel, and a step of removing the short fibers from the first layer of the mold.

[作用] 上記金型第一層において短繊維が埋った部分は、該短繊
維を除いたときに通気孔として開通する部分であるから
、通気孔が潜在的に発生したということができる。従っ
て、この短繊維の数は通気性ポーラス電鋳金型に形成さ
れる通気孔の数を決定し、短繊維の直径は通気性ポーラ
ス電鋳金型の表面に開口する通気孔の孔径を決定する。
[Function] The portion where the short fibers are buried in the first layer of the mold is a portion that opens as a ventilation hole when the short fiber is removed, so it can be said that a ventilation hole has potentially occurred. Therefore, the number of short fibers determines the number of ventilation holes formed in the air-permeable porous electroforming mold, and the diameter of the short fibers determines the diameter of the ventilation holes opened on the surface of the gas-permeable porous electroforming mold.

前記金型第一層の表面に電鋳を行うと、電鋳金属は該表
面には電着して金型第二層を形成するが、前記短繊維の
先端には電着しない。従って、この短繊維の先端には前
工程において潜在的に発生した通気孔に連続する通気孔
が二次的に発生する9そして、この通気孔は途中で塞が
ることなく電鋳の進行とともに電着方向に成長し、金型
第二層を貫通する。
When electroforming is performed on the surface of the first layer of the mold, the electroformed metal is electrodeposited on the surface to form the second layer of the mold, but is not electrodeposited on the tips of the short fibers. Therefore, at the tip of this short fiber, a vent hole that is connected to the vent hole that was potentially generated in the previous process is generated as a secondary step. direction and penetrate the second layer of the mold.

前記金型第一層及び金型第二層をマンドレルから剥離し
た後、金型第一層から短繊維を除去すれば、前記通気孔
が開通して、通気性ポーラス電鋳金型が完成する。
After the first layer of the mold and the second layer of the mold are peeled off from the mandrel, short fibers are removed from the first layer of the mold to open the ventilation holes and complete a breathable porous electroforming mold.

[実施例] 以下、本発明を具体化した実施例について、第1図〜第
12図を参照して説明する。本実施例は第11図及び第
12図に示すような通気孔13を備えた通気性ポーラス
電鋳金型1を製造する方法に係り、次の工程よりなる。
[Example] Hereinafter, examples embodying the present invention will be described with reference to FIGS. 1 to 12. This example relates to a method for manufacturing a breathable porous electroforming mold 1 having ventilation holes 13 as shown in FIGS. 11 and 12, and includes the following steps.

(1)第1図に示すように所望の合成樹脂成形品と同一
形状のモデル2を木、合成樹脂、石膏、ロウその他の各
種材料により形成した後、第2図に示すようにIR#1
な族シボ模様3を備えた牛革、スェード、布、その他の
模様付与材4を前記モデル2の表面に貼り付けてマスタ
ーモデル5を形成する。
(1) As shown in Fig. 1, after forming a model 2 with the same shape as the desired synthetic resin molded product from wood, synthetic resin, plaster, wax, and other various materials, as shown in Fig. 2, IR#1
A master model 5 is formed by pasting cowhide, suede, cloth, or other pattern-imparting material 4 having a grain pattern 3 on the surface of the model 2.

本実施例では牛革を使用した。In this example, cowhide was used.

(2)第3図に示すように、前記マスターモデル5の表
面にシリコンゴムその他の付着性の低い材料を注入して
これを硬化させることにより(注入枠等は図示路)、前
記族シボ模様3が転写してなる二次逆シボ模様6を備え
た中間型7を形成し、第4図に示すように該中間型7を
剥離する。
(2) As shown in FIG. 3, by injecting silicone rubber or other low-adhesive material onto the surface of the master model 5 and curing it (the injection frame etc. are shown), the group grain pattern is created. An intermediate mold 7 having a secondary reverse grain pattern 6 formed by transferring 3 is formed, and the intermediate mold 7 is peeled off as shown in FIG.

(3)第5図に示すように、前記中間型7の表面に隙間
をおいて鉄、アルミニウム等よりなる補強部材9aをあ
てがう。そして、該補強部材9aに設けた注入孔9bか
ら前記隙間へエポキシ樹脂その他の反応硬化性材料を注
入してこれを硬化させることにより、前記二次逆シボ模
様6が転写してなる三次シボ模様8を備えたマンドレル
9を形成し、第6図に示すように該マンドレル9を剥離
する。
(3) As shown in FIG. 5, a reinforcing member 9a made of iron, aluminum, etc. is applied to the surface of the intermediate mold 7 with a gap left therebetween. Then, by injecting an epoxy resin or other reactive hardening material into the gap through the injection hole 9b provided in the reinforcing member 9a and curing it, a tertiary grain pattern is formed by transferring the secondary reverse grain pattern 6. 8 is formed, and the mandrel 9 is peeled off as shown in FIG.

(4)第7図に示すように、前記マンドレル9の表面に
薄い導電被膜10を付着形成する。
(4) As shown in FIG. 7, a thin conductive film 10 is deposited on the surface of the mandrel 9.

この導電被膜10の形成方法としては、銀鏡反応、ペー
スト状銀ラッカー等のスプレー塗布、無電解メツキ、蒸
着メツキ等を例示することができる。
Examples of methods for forming the conductive film 10 include silver mirror reaction, spray application of paste silver lacquer, electroless plating, vapor deposition plating, and the like.

また、この導電被膜10の膜厚は、薄すぎると十分な導
電性が得られず、厚すぎると三次シボ模様8の忠実度が
低下するため、5〜30μmが好ましい。
Further, the thickness of the conductive film 10 is preferably 5 to 30 μm, because if it is too thin, sufficient conductivity will not be obtained, and if it is too thick, the fidelity of the tertiary grain pattern 8 will be reduced.

(5)第8図に示すように、前記導電被膜10の表面に
短繊維11を植毛する。
(5) As shown in FIG. 8, short fibers 11 are planted on the surface of the conductive coating 10.

この短繊維11としては、天然繊維、化学繊維、ガラス
繊維、セラミック繊維等を例示することができる。次の
電鋳工程においてこの短繊維11の先端に電鋳金属が電
着しないよう、該短繊維11の材質は導電性の無いもの
が好ましい。また、この短繊維11は最後の除去工程に
おいて除去され、後述する通気孔13と置き換わるもの
であるから、この除去が容易に行えるよう、該短繊維1
1の材質は溶融点や発火点が後述する電鋳金属の溶融点
より低いもの、溶剤(を鋳金属が溶解しない溶剤)に溶
解するもの等が好ましい。
Examples of the short fibers 11 include natural fibers, chemical fibers, glass fibers, and ceramic fibers. The material of the short fibers 11 is preferably non-conductive so that electroformed metal is not electrodeposited on the tips of the short fibers 11 in the next electroforming step. In addition, since the short fibers 11 are removed in the final removal step and replaced with ventilation holes 13 to be described later, the short fibers 11 are removed in order to facilitate this removal.
Preferably, the material 1 has a melting point or ignition point lower than the melting point of the electroformed metal described later, or a material that can be dissolved in a solvent (a solvent in which cast metal does not dissolve).

上記短繊維11の数は、通気性ポーラス電鋳金型1に形
成される通気孔13の数(通気孔13の総数及び単位面
積当りの数)を決定する。従って、この短繊維11の数
を通気性ポーラス電鋳金型1の大きさや原シボ模様3の
微細度等に応じて適宜決定することにより、通気孔13
の数を所望の数に正確に設定することができる。また、
この短繊維11をマンドレル9の一部分に植毛しないこ
とにより、通気性ポーラス電鋳金型1に通気孔13の無
い部分を形成することもできる。
The number of short fibers 11 determines the number of vent holes 13 formed in the breathable porous electroforming mold 1 (total number of vent holes 13 and number per unit area). Therefore, by appropriately determining the number of these short fibers 11 according to the size of the breathable porous electroforming mold 1, the fineness of the original grain pattern 3, etc., the ventilation holes 13
can be set exactly to the desired number. Also,
By not flocking the short fibers 11 to a portion of the mandrel 9, it is also possible to form a portion of the air-permeable porous electroforming mold 1 without the ventilation holes 13.

また、上記短繊維」1の直径は、通気性ポーラス電鋳金
型1の表面に開口する通気孔13の孔径を決定する。従
って、この短繊維11の直径を選べば、従来の方法では
加工が非常に難しかっな孔径1〜30μmの通気孔から
孔径500μm程度の通気孔まで、容易かつ正確に形成
することができる。
Furthermore, the diameter of the short fibers 1 determines the diameter of the ventilation holes 13 that open on the surface of the air-permeable porous electroforming mold 1. Therefore, by selecting the diameter of the short fibers 11, it is possible to easily and accurately form vent holes ranging from a hole diameter of 1 to 30 μm, which is extremely difficult to process using conventional methods, to a hole diameter of about 500 μm.

また、この短繊維11の長さは、次の工程で形成する金
型第一層12の厚さより長く、該短繊維11の直径の2
0倍より短ければ特に限定されないが、直径の2〜10
倍が一般的である。
Further, the length of the short fibers 11 is longer than the thickness of the first layer 12 of the mold to be formed in the next step, and is 2 times the diameter of the short fibers 11.
There is no particular limitation as long as it is shorter than 0 times, but it is 2 to 10 times the diameter.
twice is common.

上記短繊維11の植毛方法としては、公知の種々の静電
植毛法を採用することができる。例えば、下向きにした
マンドレル9の導電液WA10に正電極(図示時)を接
続するとともに、その下方に対峙させた負電極(図示時
)に短繊維11を置き、画電極に直流高電圧をかければ
、前記短繊維11は上方へ引き寄せられて導電被膜10
に垂直に付着する。このとき、予め導電被膜10に接着
剤を薄く塗布しておき、該接着剤に短繊維11を接着し
てもよいが、該接着剤の厚さ分だけ前記三次シボ模様6
の忠実度が低下する。そこで、前記短繊維11に溶融温
度の低い化学繊維等を使用するとともに、マンドレル9
及び導電被膜10を短繊維11の溶融温度より高温に加
熱しておき、該導電被膜10に直接短繊維11を熱溶着
した方が好ましい。
As a method for flocking the short fibers 11, various known electrostatic flocking methods can be employed. For example, connect the positive electrode (as shown) to the conductive liquid WA10 of the mandrel 9 facing downward, place the short fiber 11 on the negative electrode (as shown) facing downward, and apply a high DC voltage to the picture electrode. For example, the short fibers 11 are drawn upward and the conductive coating 10
Attach perpendicular to. At this time, an adhesive may be thinly applied to the conductive coating 10 in advance, and the short fibers 11 may be adhered to the adhesive, but the tertiary grain pattern 6 may be attached by an amount corresponding to the thickness of the adhesive.
fidelity is reduced. Therefore, a chemical fiber or the like having a low melting temperature is used for the short fibers 11, and the mandrel 9
It is also preferable to heat the conductive film 10 to a higher temperature than the melting temperature of the short fibers 11 and heat-weld the short fibers 11 directly to the conductive film 10.

(6)第9図に示すように、前記導電被膜10の表面に
電鋳を行うことにより前記短繊維11がその先端部を残
して埋まる金型第一層12を形成する。
(6) As shown in FIG. 9, electroforming is performed on the surface of the conductive coating 10 to form a mold first layer 12 in which the short fibers 11 are buried, leaving only their tips.

この工程における電鋳法としては、公知の一般的な電鋳
金属、電鋳浴及び電鋳条件よりなる電鋳法を採用するこ
とができる。本実施例では、スルファミン酸ニッケルと
硼酸とピンホール抑制用の界面活性剤とを主成分とする
電鋳浴に、前記マンドレル9と電鋳金属としてのニッケ
ル電極(図示時)とを浸漬し、導電被膜10(カソード
)と前記ニッケル電極(アノード)との間に直流電圧を
通電して一般的な電鋳を行った。
As the electroforming method in this step, an electroforming method comprising a known general electroforming metal, electroforming bath, and electroforming conditions can be adopted. In this example, the mandrel 9 and the nickel electrode (as shown) as the electroformed metal are immersed in an electroforming bath mainly composed of nickel sulfamate, boric acid, and a surfactant for suppressing pinholes. General electroforming was performed by applying a DC voltage between the conductive film 10 (cathode) and the nickel electrode (anode).

上記金型第一層12において短繊維11が埋った部分は
、該知識tillを除いたときに通気孔13として開通
する部分であるから、通気孔が潜在的に発生しなという
ことができる。なお、この金型第一層12に前記通気孔
13以外の予定していない通気孔が発生することはない
。すなわち、本発明によれば通気孔13の形成を完全に
制御することができる。
The portion where the short fibers 11 are buried in the mold first layer 12 is the portion that opens as the ventilation hole 13 when the knowledge till is removed, so it can be said that no ventilation hole is potentially generated. Note that no unplanned ventilation holes other than the ventilation holes 13 are generated in the first layer 12 of the mold. That is, according to the present invention, the formation of the ventilation holes 13 can be completely controlled.

(7)第10図に示すように、前記金型第一層12の表
面に電鋳を行うことにより、前記短繊維11の先端部か
ら通気孔13を二次的に発生及び成長させながら金型第
二層14を積層形成する。
(7) As shown in FIG. 10, by performing electroforming on the surface of the first layer 12 of the mold, the vent holes 13 are secondarily generated and grown from the tips of the short fibers 11, and the metal mold is A second mold layer 14 is laminated.

この工程における電鋳は公知の一般的な電鋳法と異なり
、ピンホール抑制用の界面活性剤を含まない特殊な電鋳
浴を使用し、必要により電鋳条件も変えて行う0本実施
例では、スルファミン酸ニッケルと硼酸を主成分とし界
面活性剤を含まない電鋳浴に、前記マンドレル9と電鋳
金属としてのニッケル電極(図示路)とを浸漬し、導電
被膜10(カソード)と前記ニッケル電極(アノード)
との間に直流電圧を通電して電鋳を行った。また、その
電流は電鋳初期において小さく途中から増加して行った
が、これに限定されることはない。
The electroforming in this process differs from the known general electroforming method in that a special electroforming bath that does not contain a surfactant to suppress pinholes is used, and the electroforming conditions are changed as necessary. Now, the mandrel 9 and the nickel electrode (as shown) as the electroformed metal are immersed in an electroforming bath containing nickel sulfamate and boric acid as main components and containing no surfactant, and the conductive coating 10 (cathode) and the electroforming bath are immersed in the bath. Nickel electrode (anode)
Electroforming was performed by applying DC voltage between the two. Further, although the current was small at the beginning of electroforming and increased from the middle, it is not limited to this.

この工程において電鋳金属は、前記金型第一層12の表
面には電着するが、前記短繊維11の先端には電着しな
い。従って、該短繊維11の先端には前工程において潜
在的に発生している通気孔に連続する通気孔13が二次
的に発生する。そして、前記電鋳浴又は電鋳条件がこの
通気孔13の成長を促進するため、該通気孔13は途中
で塞がることなく電鋳の進行とともに電着方向に成長し
、金型第二層14を貫通する。このとき、通気孔13は
成長に伴って拡径するが、その拡径の仕方及び程度はt
鋳条件の変更により自在に制御することができる。
In this step, the electroformed metal is electrodeposited on the surface of the first layer 12 of the mold, but not on the tips of the short fibers 11. Therefore, vent holes 13 are secondarily generated at the tips of the short fibers 11, which are continuous with the vent holes potentially generated in the previous step. Since the electroforming bath or the electroforming conditions promote the growth of the vent holes 13, the vent holes 13 grow in the electrodeposition direction as the electroforming progresses without being blocked midway, and the mold second layer 14 penetrate. At this time, the diameter of the vent hole 13 expands as it grows, but the manner and extent of the diameter expansion are t.
It can be freely controlled by changing the casting conditions.

(8)第11図に示すように、前記金型第一層12及び
金型第二層14を前記マンドレル9から剥離し、該金型
第一層12に導電被膜10が付着してきた場合には該導
電被膜10を化学的に又は物理的に除去する。
(8) As shown in FIG. 11, when the first mold layer 12 and the second mold layer 14 are peeled off from the mandrel 9 and the conductive coating 10 is attached to the first mold layer 12, The conductive coating 10 is removed chemically or physically.

(9)最後に、同第11図に示すように、前記金型第一
層12から短繊維11を除去して通気孔13を開通させ
れば、通気性ポーラス電鋳金型1が完成する。
(9) Finally, as shown in FIG. 11, the short fibers 11 are removed from the mold first layer 12 to open the ventilation holes 13, thereby completing the breathable porous electroforming mold 1.

この短繊維11の除去方法としては、短繊維11を溶剤
により溶解する方法、同じく燃焼させる方法、同じく溶
剤や加熱により軟化させて空気圧により押し出す方法等
を例示することができる。
Examples of methods for removing the short fibers 11 include a method of dissolving the short fibers 11 with a solvent, a method of burning the short fibers, and a method of softening the short fibers with a solvent or heating and extruding them using air pressure.

以上のようにして完成した通気性ポーラス電鋳金型1の
表面には、第12図に示すように、前記三次シボ模様8
が転写してなる四次逆シボ模様15が形成される。また
、本発明によれば、通気孔13の数を制御することによ
り、前記四次シボ模様15の模様単位毎に1個又は2個
以上の通気孔13を開口形成することができる。そのた
め、この通気性ポーラス電鋳金型1を使用して、例えば
合成樹脂シートを真空成形、真空圧空成形、スタンピン
グ成形又はロール成形したり、合成樹脂パリソンをブロ
ー成形したり、合成樹脂をリム成形又は射出成形したり
する等の各種合成樹脂成形をしたときに、合成樹脂成形
品に四次シボ模様15を細部まで転写して忠実度の高い
三次シボ模様(図示路)を形成することができる。
As shown in FIG.
A quaternary reverse grain pattern 15 is formed by transferring. Further, according to the present invention, by controlling the number of ventilation holes 13, one or more ventilation holes 13 can be formed for each pattern unit of the quaternary grain pattern 15. Therefore, this breathable porous electroforming mold 1 can be used, for example, to perform vacuum forming, vacuum pressure forming, stamping molding, or roll forming of synthetic resin sheets, blow molding of synthetic resin parisons, rim forming or When molding various synthetic resins such as injection molding, the quaternary grain pattern 15 can be transferred to the synthetic resin molded product in detail to form a highly faithful tertiary grain pattern (as shown).

さらに、通気性ポーラス電鋳金型1の表面に開口する通
気孔13の孔径を非常に小さくすることができるため、
合成樹脂成形品に該通気孔13が転写するおそれもない
。また、この通気孔13の孔径は金型第二層14から次
第に拡径するため、該通気孔13による通気抵抗は低く
、真空吸引又は圧空の能力が低下する心配もない。
Furthermore, since the diameter of the vent hole 13 that opens on the surface of the breathable porous electroforming mold 1 can be made very small,
There is no fear that the vent hole 13 will be transferred to the synthetic resin molded product. Further, since the diameter of the vent hole 13 gradually increases from the mold second layer 14, the ventilation resistance due to the vent hole 13 is low, and there is no fear that the ability of vacuum suction or compressed air will deteriorate.

次に、上記通気性ポーラス電鋳金型1のバックアップ例
について、第13図〜第15図を参照して説明する。各
バックアップ例とも、通気性ポーラス電鋳金型1の背面
周囲に支持枠16を取着し、該支持枠16の下端に底板
17を取り付けているが、通気性ポーラス電鋳金型1の
背面全体の支持方法が異なる。
Next, a backup example of the air permeable porous electroforming mold 1 will be described with reference to FIGS. 13 to 15. In each backup example, a support frame 16 is attached around the back side of the breathable porous electroforming mold 1, and a bottom plate 17 is attached to the lower end of the support frame 16. The support methods are different.

第13図に示す例は、通気性ポーラス電鋳金型1の背面
形状に倣う支持板18を支持枠16内において縦横に組
んだものであり、該支持板18には空気穴19が設けら
れている。
In the example shown in FIG. 13, support plates 18 that follow the shape of the back surface of the breathable porous electroforming mold 1 are assembled vertically and horizontally within a support frame 16, and the support plates 18 are provided with air holes 19. There is.

第14図に示す例は、通気性ポーラス電鋳金型1の背面
にスタッドボルト20を止着し、該スタッドボルト20
を支持枠16内に取着した補強板21に固定して支持し
たものである。さらに、通気性ポーラス電鋳金型1と補
強板21の間に形成される冷却室22に繊維体23を充
填し、補強板21の下から冷却室22へ冷却水を供給す
るとともに、冷却室22がら空気を冷却水とともに真空
吸引するようにして、通気性ポーラス電鋳金型1の強制
冷却を可能にしている(特願昭62−270045号)
In the example shown in FIG.
is fixed to and supported by a reinforcing plate 21 attached within the support frame 16. Furthermore, the cooling chamber 22 formed between the breathable porous electroforming mold 1 and the reinforcing plate 21 is filled with a fibrous body 23, and cooling water is supplied from below the reinforcing plate 21 to the cooling chamber 22. Air is vacuum-suctioned together with cooling water to enable forced cooling of the porous electroforming mold 1 (Japanese Patent Application No. 62-270045).
.

第15図に示す例は、通気性ポーラス電鋳金型1の裏面
に金属粒状体24を充填し、該金属粒状体24の相互接
触部を金属接合材により接合したものである(特願昭6
2−335707号)。
In the example shown in FIG. 15, metal granules 24 are filled on the back side of the air-permeable porous electroforming mold 1, and mutually contacting parts of the metal granules 24 are bonded with a metal bonding material (Japanese patent application No. 6
2-335707).

なお、本発明は前記実施例の構成に限定されるものでは
なく、例えば以下のように発明の趣旨から逸脱しない範
囲で任意に変更して具体化することもできる。
It should be noted that the present invention is not limited to the configuration of the above-mentioned embodiments, and may be modified and embodied as desired without departing from the spirit of the invention, for example, as described below.

(1)マンドレル9の表面は模様の無い鏡面であっても
よい。この場合、通気性ポーラス電鋳金型1の表面も鏡
面となり、前記通気孔13は該鏡面の転写性を向上させ
る。
(1) The surface of the mandrel 9 may be a mirror surface without a pattern. In this case, the surface of the breathable porous electroforming mold 1 also becomes a mirror surface, and the vent holes 13 improve the transferability of the mirror surface.

(2)マンドレル9の形成方法は前記実施例の工程に限
定されず、公知のいろいろな方法により形成することが
できる。
(2) The method for forming the mandrel 9 is not limited to the steps of the above embodiments, and can be formed by various known methods.

(3)本発明により製造された通気性ポーラス電鋳金型
lは、各種合成tM#成形用の金型として使用すること
ができ、特定の成形方法には限定されない。
(3) The air-permeable porous electroforming mold l produced according to the present invention can be used as a mold for various synthetic tM# moldings, and is not limited to a specific molding method.

[発明の効果] 本発明の通気性ポーラス金型の製造方法は、上記の通り
構成されているので、通気孔の数及び孔径を容易かつ正
確に制御することができ、特に孔径の小さい通気孔でも
容易に形成することができるという優れた効果を奏する
[Effects of the Invention] Since the method for manufacturing an air-permeable porous mold of the present invention is configured as described above, the number and diameter of the ventilation holes can be easily and accurately controlled. However, it has an excellent effect of being easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜12図は本発明を具体化した通気性ポーラス電鋳
金型の製造方法の実施例を示し、第1図はモデルの断面
図、第2図はマスターモデルの断面図、第3図は該マス
ターモデルにシリコンゴムを注入して中間型を形成した
ときの断面図、第4図は該中間型の断面図、第5図は該
中間型にエポキシ樹脂を注入してマンドレルを形成した
ときの断面図、第6図は該マンドレルの断面図、第7図
は該マンドレルに導電被膜を形成したときの断面図、第
8図は該マンドレルに短繊維を植毛したときの拡大断面
図、第9図は前記導電被膜に金型第一層を!鋳形成した
ときの拡大断面図、第1.0図は該金型第一層に金型第
二層を電鋳形成したときの断面図、第11図は前記短繊
維を除去して通気孔を開通させた通気性ポーラス電鋳金
型の拡大断面図、第12図は該通気性ポーラス電鋳金型
の部分拡大斜視図である。 第13図は前記通気性ポーラス電鋳金型のバッファ・ン
ブ例を示す断面図、第14図は別のバックアップ例を示
す断面図、第15図はさらに別のバックアップ例を示す
断面図である。 1・・・通気性ポーラス電鋳金型、 9・・・マンドレル、  10・・・導電被膜、11・
・・短繊維、     12・・・金型第一層13・・
・通気孔、    14・・・金型第二層。
Figures 1 to 12 show an embodiment of the method for manufacturing a breathable porous electroforming mold embodying the present invention, Figure 1 is a sectional view of the model, Figure 2 is a sectional view of the master model, and Figure 3 is a sectional view of the master model. Figure 4 is a cross-sectional view of the intermediate mold formed by injecting silicone rubber into the master model, and Figure 5 is a cross-sectional view of the intermediate mold formed by injecting epoxy resin into the intermediate mold. FIG. 6 is a cross-sectional view of the mandrel, FIG. 7 is a cross-sectional view when a conductive film is formed on the mandrel, FIG. 8 is an enlarged cross-sectional view when short fibers are implanted on the mandrel, and FIG. Figure 9 shows the first layer of the mold on the conductive film! FIG. 1.0 is an enlarged cross-sectional view of the mold after forming the mold by electroforming, FIG. FIG. 12 is an enlarged partial perspective view of the porous electroforming mold. FIG. 12 is a partially enlarged perspective view of the porous electroforming mold. FIG. 13 is a sectional view showing an example of the buffer chamber of the permeable porous electroforming mold, FIG. 14 is a sectional view showing another backup example, and FIG. 15 is a sectional view showing still another backup example. DESCRIPTION OF SYMBOLS 1... Breathable porous electroforming mold, 9... Mandrel, 10... Conductive coating, 11.
...short fiber, 12...mold first layer 13...
・Vent hole, 14...Mold second layer.

Claims (1)

【特許請求の範囲】[Claims] 1、マンドレル(9)を形成する工程と、前記マンドレ
ル(9)の表面に導電被膜(10)を形成する工程と、
前記導電被膜(10)の表面に短繊維(11)を植毛す
る工程と、前記導電被膜(10)の表面に電鋳を行うこ
とにより前記短繊維(11)がその先端部を残して埋ま
る金型第一層(12)を形成する工程と、前記金型第一
層(12)の表面に電鋳を行うことにより前記短繊維(
11)の先端部から通気孔(13)を発生及び成長させ
ながら金型第二層(14)を積層形成する工程と、前記
金型第一層(12)及び金型第二層(14)を前記マン
ドレル(9)から剥離する工程と、前記金型第一層(1
2)から前記短繊維(11)を除去する工程とからなる
通気性ポーラス電鋳金型の製造方法。
1. A step of forming a mandrel (9), and a step of forming a conductive film (10) on the surface of the mandrel (9),
A step of implanting short fibers (11) on the surface of the conductive coating (10), and electroforming the surface of the conductive coating (10) so that the short fibers (11) are buried with their tips remaining. The short fibers (
11) forming and laminating a second mold layer (14) while generating and growing a vent hole (13) from the tip of the mold, and forming the first mold layer (12) and the second mold layer (14). from the mandrel (9), and peeling off the mold from the first layer (1).
2) A method for manufacturing an air-permeable porous electroforming mold, which comprises the step of removing the short fibers (11) from the mold.
JP4351289A 1989-02-25 1989-02-25 Production of air permeable porous electroformed die Pending JPH02225687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4351289A JPH02225687A (en) 1989-02-25 1989-02-25 Production of air permeable porous electroformed die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4351289A JPH02225687A (en) 1989-02-25 1989-02-25 Production of air permeable porous electroformed die

Publications (1)

Publication Number Publication Date
JPH02225687A true JPH02225687A (en) 1990-09-07

Family

ID=12665789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4351289A Pending JPH02225687A (en) 1989-02-25 1989-02-25 Production of air permeable porous electroformed die

Country Status (1)

Country Link
JP (1) JPH02225687A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305449A1 (en) 2009-09-10 2011-04-06 Moltex Co Porous electroformed shell for patterning and manufacturing method thereof
EP2405033A1 (en) 2010-07-07 2012-01-11 Moltex Co Porous electroformed shell for patterning and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2305449A1 (en) 2009-09-10 2011-04-06 Moltex Co Porous electroformed shell for patterning and manufacturing method thereof
KR101038088B1 (en) * 2009-09-10 2011-06-01 주식회사 몰텍스 Method of manufacturing a porous electroformed shell for patterning using fiber and the porous electroformed shell thereof
EP2405033A1 (en) 2010-07-07 2012-01-11 Moltex Co Porous electroformed shell for patterning and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2647410B2 (en) Manufacturing method of filter
JP3100337B2 (en) Porous electroformed shell and manufacturing method thereof
JPH02225687A (en) Production of air permeable porous electroformed die
KR100996655B1 (en) Method of manufacturing a holey electroformed shell for patterning
US2280866A (en) Production of spray metal negatives of models
JP2529512B2 (en) Method for manufacturing porous mold by electroforming
JP3429175B2 (en) Manufacturing method of porous electroformed shell
KR900007535B1 (en) Method of manufacturing an electrocast shell having permeability
JP3298287B2 (en) Manufacturing method of electroforming mold
JP2716323B2 (en) Porous mold and method for producing the same
JPS58116123A (en) Manufacture of simple mold
JPH0625884A (en) Production of porous electrocasting mold
JP4016278B2 (en) Mold and mold manufacturing method
US2217164A (en) Process for producing facsimiles
JPH0625885A (en) Porous electroformed die and its production
JP2943470B2 (en) Electroforming mold and manufacturing method thereof
KR100996656B1 (en) Holey electroformed shell for patterning
JPH01100290A (en) Production of electroformed mold for forming back skin-toned surface
JPH02225688A (en) Production of electroformed die
JPH02223413A (en) Manufacture of molded product of synthetic resin
JP2505395B2 (en) Method for manufacturing resin mold
JP3270742B2 (en) Manufacturing method of mold by electroforming
JP2962663B2 (en) Method for producing electroformed body having micro holes
JPS6150157B2 (en)
JPH047107A (en) Manufacture of urethane resin molded item with decorative film