JPH02225677A - Film formation - Google Patents

Film formation

Info

Publication number
JPH02225677A
JPH02225677A JP24634389A JP24634389A JPH02225677A JP H02225677 A JPH02225677 A JP H02225677A JP 24634389 A JP24634389 A JP 24634389A JP 24634389 A JP24634389 A JP 24634389A JP H02225677 A JPH02225677 A JP H02225677A
Authority
JP
Japan
Prior art keywords
powder
film
gas
reaction tank
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24634389A
Other languages
Japanese (ja)
Inventor
Tomoyasu Aihara
相原 智康
Chihiro Kawai
千尋 河合
Tadashi Igarashi
五十嵐 廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP24634389A priority Critical patent/JPH02225677A/en
Publication of JPH02225677A publication Critical patent/JPH02225677A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a film in which respective contents of powder and pore are changed continuously or by stages at high speed into a large area by introducing a powder into a reaction vessel to deposit the powder onto the surface of a base material and simultaneously forming a film on the above surface by means of chemical vapor growth. CONSTITUTION:In the course of film formation by a chemical vapor growth method, a powder having a composition or crystalline structure (including amorphous one) similar or dissimilar to that of a film is introduced. The above powder is deposited on the surface of a base material, and simultaneously, the film is formed on the above surface by means of chemical vapor growth. The composition, porosity, and structure of the film can be easily controlled by controlling the composition, crystalline structure, magnetic properties, grain size, shape, and quantity of the powder to be supplied or the composition, quantity, etc., of gaseous raw material. By this method, the uniform film having gradient function or network structure can be obtained at high speed. This film can be used for insulator electric conductor, heat insulator, catalyst support, heat sink, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、化学気相成長(CVD)および粉体の沈着を
同時に生じさせて、緻密ないし多孔質の無機物質または
育機物質による基材表面の単相あるいは多相の被覆又は
薄膜あるいは厚膜を形成させ、組成あるいは気孔の含有
量が均一もしくは連続的又は段階的に変化する、あるい
は膜中に粉体がネットワーク状に分布することができる
成膜方法である。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to the production of substrates made of dense or porous inorganic materials or growth materials by simultaneously producing chemical vapor deposition (CVD) and powder deposition. Forming a single-phase or multi-phase coating on the surface, or forming a thin or thick film in which the composition or pore content changes uniformly, continuously, or stepwise, or in which powder is distributed in a network in the film. This is a film forming method that can be used.

[従来の技術] 従来の金属、セラミックスなどの成膜方法として、例え
ば、“応用物理第54巻“ (昭80年)P6B7〜8
93に記載されているように、超微粒子のガスデポジシ
ョン法がある。この方法はガス中蒸発法などで生成した
金属またはセラミックスの超微粒子(0,1μm以下)
を、気流に乗せて対象物に吹きつけて成膜する方法であ
る。また、他の方法として、窯業協会誌第95@(昭6
2年)P70〜75または特開昭81−1581177
号公報に記載されているPPCVD法(Particl
e Pre−efpHatlon  Aided  C
hemical  Vapor  Depositio
n:超微粒子熱泳動CVD)がある。この方法は、反応
槽内の気相反応で超微粒子を発生させ、熱泳動で基材上
に超微粒子を堆積させて、基材に沈着した超微粒子表面
で、粒子成長反応を進行させることにより超微粒子間を
埋めて成膜する方法である。
[Prior art] As a conventional method for forming films of metals, ceramics, etc., for example, "Applied Physics Vol. 54" (1980) P6B7-8
93, there is a gas deposition method for ultrafine particles. This method uses ultrafine particles (less than 0.1 μm) of metal or ceramics produced by evaporation in gas, etc.
This is a method of forming a film by blowing it onto the target object using an air current. In addition, as another method, Ceramics Association Journal No. 95 @ (Showa 6
2 years) P70-75 or JP-A-81-1581177
The PPCVD method (Particle
e Pre-efpHatlon Aided C
Chemical Vapor Depositio
n: ultrafine particle thermophoresis CVD). This method involves generating ultrafine particles through a gas phase reaction in a reaction tank, depositing the ultrafine particles onto a substrate using thermophoresis, and allowing a particle growth reaction to proceed on the surface of the ultrafine particles deposited on the substrate. This is a method of forming a film by filling in the spaces between ultrafine particles.

[発明が解決しようとするa!題〕 上記従来のガスデポジション法で得られる多孔質膜にお
いては、その気孔の制御が難しく、また、この方法では
、成膜にあたって基材をノズルに対して移動させる必要
があり、膜面積の拡大を図ることが大きく制限されてい
る。
[The invention seeks to solve a! Problem] It is difficult to control the pores in porous films obtained by the conventional gas deposition method described above, and in this method, it is necessary to move the base material relative to the nozzle during film formation, which reduces the film area. Expansion is severely restricted.

PPCVD法では、ガス中での粉体の生成と基材上での
表面反応との気相反応および粉体の熱泳動などの現象の
熱的な制御を同時に行うことから、それぞれの現象につ
いて同時に最適条件にすることは困難であり、その成膜
速度の高速化には限界があった。さらに任意の組成の多
相膜を得るのが難しく、その#fl織や気孔を任意に制
御するのは困難であり、かつ、基本的に気相反応の遅い
系に対しては高速化は不可能であった。
In the PPCVD method, thermal control of phenomena such as the generation of powder in a gas, the gas phase reaction with the surface reaction on the substrate, and the thermophoresis of the powder is performed at the same time. It is difficult to achieve optimal conditions, and there is a limit to increasing the film formation rate. Furthermore, it is difficult to obtain a multiphase film with an arbitrary composition, it is difficult to arbitrarily control the #fl texture and pores, and it is basically impossible to increase the speed for systems with slow gas phase reactions. It was possible.

本発明は、これら従来の成膜方法では不可能であった組
成、組織、気孔の含有量の制御の容易性を両立させて、
組成、組織、気孔の含有量が連続的または段階的に変化
する、あるいは、均一ないしは膜中に粉体がネットワー
ク状に分布した膜を、高速かつ大面積に得る成膜方法を
提供することを目的とするものである。
The present invention achieves both ease of control of composition, structure, and pore content, which was impossible with these conventional film forming methods, and
It is an object of the present invention to provide a film forming method that can rapidly and over a large area produce a film in which the composition, structure, and pore content change continuously or stepwise, or in which powder is uniform or distributed in a network shape in the film. This is the purpose.

[課題を解決するための手段] 本発明は、化学気相成長法による皮膜形成中に、化学気
相成長による膜と異なるか又は同種の組成あるいは結晶
構造(非晶質を含む)を有する粉体を基材表面に沈着す
るとともに、化学気相成長を同時に生ぜしめ、粉体もし
くは気孔の含有量が一定あるいは連続的又は段階的に変
化させるとともに、粉体として強磁性体を用いた場合に
該粉体が膜中でネットワークを形成することがtiJ能
なことを特徴とする成膜方法である。
[Means for Solving the Problems] The present invention provides a method for forming a film by chemical vapor deposition using a powder having a composition or crystal structure (including amorphous) that is different from or similar to that of a film formed by chemical vapor deposition. When a ferromagnetic material is used as the powder, the content of the powder or pores is constant, continuous, or stepwise changed. This film forming method is characterized in that the powder is capable of forming a network in the film.

第1図ないし第6図は本発明の方法によって作製された
膜の構造を模式的に示す図で、mは化学気相成長でなる
生成物、pは熱泳動法で沈着した粉体、Sは気孔である
Figures 1 to 6 are diagrams schematically showing the structure of membranes produced by the method of the present invention, where m is the product produced by chemical vapor deposition, p is the powder deposited by thermophoresis, and S are stomata.

すなわち、従来の気相反応を利用した成膜法では、膜の
原料としてガスまたは霧化した液体を供給し、粉体の沈
着による成膜法では、膜の原料として粉体のみを供給し
ているが、本発明では、膜の原料として、粉体およびガ
ス(または粉体および霧化した液体)の供給を同時に行
い、粉体を基体上に沈着させるとともに、気相反応を生
じさせるもので、従来の成膜方法とは異なるものである
In other words, in conventional film-forming methods that utilize gas-phase reactions, gas or atomized liquid is supplied as the raw material for the film, whereas in film-forming methods that rely on powder deposition, only powder is supplied as the raw material for the film. However, in the present invention, powder and gas (or powder and atomized liquid) are simultaneously supplied as raw materials for the membrane, and the powder is deposited on the substrate and a gas phase reaction is caused. , which is different from conventional film formation methods.

本発明においては、例えば実施例に示すようなTiCな
どの成膜原料たる粉体をN2などの成膜原料とならない
ガスもしくはNH3などの成膜原料ガスを搬送ガスとし
てエアロゾルの状態で反応槽内に導入する。粉体は1種
でよいが、組成、結晶構造、磁気的性質、形状、粒径等
の異なる2種以上のものを用いることができるし、又、
反応槽への導入は複数の配管によって行らてもよい。
In the present invention, a powder serving as a film forming raw material such as TiC as shown in the examples is placed in an aerosol state in a reaction tank using a gas that is not a film forming raw material such as N2 or a film forming raw material gas such as NH3 as a carrier gas. to be introduced. One type of powder may be used, but two or more types with different compositions, crystal structures, magnetic properties, shapes, particle sizes, etc. can be used, and
The introduction into the reaction tank may be performed through a plurality of piping.

搬送ガスと粉体との混合法としては、あらかじめ生成さ
せた粉体を混合器により混合する方法および粉体をプラ
ズマジェット法、/%イブリヴドプラズマ法、アーク放
電加熱によるガス中蒸発法等のガス中蒸発法等により、
粉体の生成と搬送ガスとの混合を同時に行う方法がある
Methods for mixing the carrier gas and powder include a method of mixing pre-generated powder using a mixer, a plasma jet method, a /% live plasma method, and an evaporation method in gas using arc discharge heating. By evaporation method in gas etc.
There is a method of simultaneously generating powder and mixing it with a carrier gas.

上記ガス中蒸発法等によれば、粉体の生成速度が速く、
ガス中に活性な粉体を生成時に浮遊させ、生成時の圧力
が粉体の搬送に適した圧力範囲であり、生成時のガスを
そのまま搬送ガスに利用でき、粉体の表面汚染もなく、
好都合である。
According to the above-mentioned evaporation method in gas, etc., the production rate of powder is fast;
Active powder is suspended in the gas at the time of generation, and the pressure at the time of generation is within the pressure range suitable for conveying the powder.The gas at the time of generation can be used as a conveyance gas, and there is no surface contamination of the powder.
It's convenient.

本発明においては、粉体の沈着を熱泳動により行い基材
上に沈着させる。そのためには基材の温度を気相の温度
より低くし、両者の間に10Kcm″1以上の温度勾配
をつける。温度勾配の存在により、ガス中に浮遊してい
る粉体は熱泳動現象により基材に向って移動し、基材上
に沈着する。
In the present invention, the powder is deposited on the substrate by thermophoresis. To do this, the temperature of the base material is lower than that of the gas phase, and a temperature gradient of 10 Kcm or more is created between the two. Due to the existence of the temperature gradient, the powder suspended in the gas is caused by thermophoresis. It migrates towards the substrate and is deposited on the substrate.

本発明において基材は反応槽に導入されたガス(または
霧化した液体)および粉体の流路に接しているか、もし
くは近いことが望ましい。
In the present invention, it is desirable that the substrate be in contact with or close to the flow path of the gas (or atomized liquid) and powder introduced into the reaction tank.

また、粉体を搬送しているガス流束と基材とのなす角度
については、基材の温度および温度勾配が一定であれば
基材上に沈着する粉体の量は基材上で一定であるので、
任意に設定されてもよい。さらに、粉体の熱泳動による
移動速度が重力沈降速度よりも十分に大きく、例えば、
粉体の粒径が4μ履以下の場合には、基材は反応槽内で
、水平、垂直あるいは傾斜するように配置すればよい。
In addition, regarding the angle between the gas flux transporting the powder and the base material, if the temperature and temperature gradient of the base material are constant, the amount of powder deposited on the base material will be constant. So,
It may be set arbitrarily. Furthermore, the movement speed of the powder due to thermophoresis is sufficiently higher than the gravitational sedimentation speed, for example,
When the particle size of the powder is 4 μm or less, the substrate may be placed horizontally, vertically, or inclined in the reaction tank.

次に本発明の実施に適した装置について説明する。Next, an apparatus suitable for carrying out the present invention will be explained.

第7図はその一例である。図中、l、2は粉体搬送ガス
の導入口であり、その流量はニードルバルブ5およびス
トップバルブ8により制御されるようになっている。搬
送ガスは粉体供給装置22により、粉体を混合され、か
つ、任意の温度に制御され、ニードルバルブlOを経て
、ノズル13により反応槽21内に供給される。気相反
応による成膜の原料ガスまたは霧化した原料液体は、ガ
ス導入口3,4よりニードルバルブ6、ストップバルブ
9およびノズル14.15を経て、反応$121内に供
給されるようになっている。基材18は、ヒーター19
により加熱され、反応槽21の基材18に対向する面は
、ヒーター20により加熱され、これらのヒーター 1
9.20を個別に制御して温度勾配を付加させるように
なっている。反応槽21には、圧力計17がある。反応
槽21内のガスはガス排出口16よりストップバルブ1
2およびニードルバルブ7またはストップバルブ11を
経て、コールドトラップ23を経た後、真空ポンプ24
に排出される。
FIG. 7 is an example. In the figure, reference numerals 1 and 2 are inlets for the powder carrier gas, the flow rate of which is controlled by a needle valve 5 and a stop valve 8. The carrier gas is mixed with powder by the powder supply device 22 and controlled to a desired temperature, and is supplied into the reaction tank 21 through the nozzle 13 via the needle valve IO. The raw material gas or atomized raw material liquid for film formation by gas phase reaction is supplied into the reaction chamber 121 from the gas inlets 3 and 4 via the needle valve 6, stop valve 9 and nozzle 14.15. ing. The base material 18 is a heater 19
The surface of the reaction tank 21 facing the base material 18 is heated by the heater 20, and these heaters 1
9.20 are individually controlled to add a temperature gradient. The reaction tank 21 has a pressure gauge 17. The gas in the reaction tank 21 is discharged from the gas outlet 16 through the stop valve 1.
2 and the needle valve 7 or stop valve 11, and after passing through the cold trap 23, the vacuum pump 24
is discharged.

第8図は他の実施装置で、第7図のものとは基材の温度
制御法が異なる。反応槽28はヒーター27により加熱
され、基材25は冷媒導入管2Bを通る冷媒により冷却
され、温度勾配が存在するようになっている。また、基
材25は冷媒導入管26により、反応槽28内に保持さ
れている。なお図中29はガス排出口である。
FIG. 8 shows another implementation device, which differs from the one in FIG. 7 in the method of controlling the temperature of the base material. The reaction tank 28 is heated by the heater 27, and the base material 25 is cooled by the refrigerant passing through the refrigerant introduction pipe 2B, so that a temperature gradient exists. Further, the base material 25 is held in a reaction tank 28 by a coolant introduction pipe 26. Note that 29 in the figure is a gas exhaust port.

[作 用〕 本発明においては、成膜速度などの成膜状態および膜特
性を制御する場合、その因子として原料ガスの表面反応
速度、粉体のガス中での熱泳動速度、供給する粉体の組
成、結晶構造、磁気的性質、形状、粒径等に代表される
粉体の種類および粉体の反応槽への供給量がある。表面
反応速度は、基材温度、圧力、原料ガス供給量、原料ガ
ス組成等により変化する。熱泳動速度は、主として温度
勾配により変化する。
[Function] In the present invention, when controlling the film forming state and film properties such as the film forming rate, the factors include the surface reaction rate of the raw material gas, the thermophoretic velocity of the powder in the gas, and the powder to be supplied. There are different types of powder represented by the composition, crystal structure, magnetic properties, shape, particle size, etc., and the amount of powder to be supplied to the reaction tank. The surface reaction rate changes depending on the substrate temperature, pressure, raw material gas supply amount, raw material gas composition, etc. Thermophoretic velocity changes primarily due to temperature gradients.

第1図、第2図及び第3図に示すような膜の相対密度、
気孔の大きさ、気孔の含有率等の気孔の制御及び膜の組
織の制御は、表面反応速度及び熱泳動速度または粉体の
供給量さらには供給する粉体の形状、粒径の選択により
行える。
The relative density of the membrane as shown in FIGS. 1, 2 and 3,
Control of pores, such as pore size and pore content, and control of membrane structure can be achieved by selecting the surface reaction rate, thermophoresis rate, the amount of powder supplied, and the shape and particle size of the powder to be supplied. .

膜の組織については、粉体の結晶構造、磁気的性質の選
択によっても選択でき、粉体として強磁性体を用いた場
合には第4図に示すように、粉体が膜中で連なりネット
ワークを形成される、膜の組成の制御は、表面反応速度
及び熱泳動速度または粉体の供給量更には供給する粉体
の組成の選択により行える。以上の制御を連続的又は段
階的に変化させることにより、第5図及び第6図に示す
ような覆々の傾斜機能材料たる膜を作製できる。更に成
膜速度については、表面反応速度及び熱泳動速度又は粉
体の供給量により制御できる。膜は表面反応による生成
物と沈着による粉体との混合物となるので、表面反応に
よる柱状晶等の成長を粉体により制御することができる
。また、膜の大面積化については、一般のCVD法で行
われている範囲については可能である。更に、成膜速度
については、熱泳動による粉体の沈着により従来のCV
D法よりも高速化される。
The structure of the film can also be selected by selecting the crystal structure and magnetic properties of the powder. When a ferromagnetic material is used as the powder, as shown in Figure 4, the powder forms a network in the film. The composition of the film formed can be controlled by selecting the surface reaction rate, the thermophoresis rate, the amount of powder supplied, and the composition of the supplied powder. By changing the above-mentioned control continuously or stepwise, it is possible to produce a film which is a functionally graded material with a wide range of features as shown in FIGS. 5 and 6. Furthermore, the film formation rate can be controlled by the surface reaction rate, thermophoresis rate, or the amount of powder supplied. Since the film is a mixture of products from the surface reaction and powder from the deposition, the growth of columnar crystals and the like due to the surface reaction can be controlled by the powder. Furthermore, it is possible to increase the area of the film to the extent that it is possible to do so using a general CVD method. Furthermore, the film formation rate is lower than that of conventional CV due to powder deposition by thermophoresis.
It is faster than the D method.

[実施例] 実施P41 前記第7図における粉体供給袋rl122としては、ア
ーク放電加熱によるガス中蒸発法により粉体の供給と粉
体の搬送ガスとの混合を行った。すなわち、アーク放電
によりTiを溶融蒸発させ、ガス導入口 1よりN2ガ
スを導入することにより、50〜100nsの粒径をも
つTEN超微粒子を合成した。
[Example] Implementation P41 As the powder supply bag rl122 in FIG. 7, powder was supplied and the powder was mixed with a carrier gas by an in-gas evaporation method using arc discharge heating. That is, by melting and vaporizing Ti by arc discharge and introducing N2 gas through gas inlet 1, ultrafine TEN particles having a particle size of 50 to 100 ns were synthesized.

次に、該TIN超微粒子をN2ガスにより反応槽21へ
導入する。一方、ガス導入管3,4よりTiCl4、N
H3、N2ガスの混合物を反応槽21へ導入し、反応槽
内部を750〜1000℃、20〜20QTorrに保
持した。
Next, the TIN ultrafine particles are introduced into the reaction tank 21 using N2 gas. On the other hand, TiCl4, N
A mixture of H3 and N2 gases was introduced into the reaction tank 21, and the inside of the reaction tank was maintained at 750 to 1000°C and 20 to 20 QTorr.

反応槽2■はヒーター20.19により温度調節され、
Tg>Ts CTg:ガス温度、Ts:基材温度)にな
るようガス−基材間に温度勾配を設け、Al2O3基材
上にTAN超微粒子を熱泳動により沈着させて、沈着し
たTIN超微粒子上でTiCl4、NH3、N2の反応
によりTiN膜を析出させた。
The temperature of reaction tank 2■ is controlled by heater 20.19.
A temperature gradient is created between the gas and the substrate so that Tg>Ts (CTg: gas temperature, Ts: substrate temperature), and TAN ultrafine particles are deposited on the Al2O3 substrate by thermophoresis, and then the TIN ultrafine particles are deposited on the deposited TIN ultrafine particles. A TiN film was deposited by the reaction of TiCl4, NH3, and N2.

比較品として、超微粒子の導入プロセスのないもの(C
VD反応のみ)、反応ガスの導入プロセスのないもの(
超微粒子の沈着のみ)およびガス温度と基材温度に差の
ないものについても作成した。得られたサンプルについ
ては成膜速度の測定を行った。
As a comparative product, one without the process of introducing ultrafine particles (C
VD reaction only), without reaction gas introduction process (
(only ultrafine particle deposition) and one with no difference in gas temperature and substrate temperature were also created. The film formation rate of the obtained sample was measured.

結果を表1に示す。The results are shown in Table 1.

表1 実施例2 前記第7図において粉体供給方法としては、粉体供給装
置に予め入れておいたTiC超微粒子を、ガス導入口1
より導入したN2ガスと混合させ、前記第8図における
反応槽28へ導入させる。一方、ガス導入口 3より5
iC14、N2ガスを、ガス導入口4よりNH3ガスを
それぞれ反応槽28へ導入し、反応槽28内をヒーター
27により1500〜1800℃、30〜200Tor
rに保持した。A120z基板25は冷媒導入管26に
所定量の空気を流すことにより冷却され、Tg>Ts(
Tg:ガス温度、Ts:基材温度)になるようガス−基
材間に温度勾配を設け、A、1203基板上にTiC超
微粒子を熱泳動により沈着させて、沈着したTi−C超
微粒子上で、5ie14、NH3、N2の反応によりS
i3N+膜を析出させた。これにより、5i3Na中に
TiCHi微粒子が分散した緻密な膜を得た。作製した
膜については、成膜速度、X線回折による生成相同定を
行った。結果を表2に示す。
Table 1 Example 2 In the powder supply method shown in FIG.
The mixed gas is mixed with the N2 gas introduced into the reactor tank 28 shown in FIG. 8. On the other hand, gas inlet 3 to 5
iC14, N2 gas and NH3 gas are respectively introduced into the reaction tank 28 from the gas inlet 4, and the inside of the reaction tank 28 is heated to 1500-1800°C and 30-200 Torr by the heater 27.
It was held at r. The A120z board 25 is cooled by flowing a predetermined amount of air through the refrigerant introduction pipe 26, and Tg>Ts(
A temperature gradient is provided between the gas and the substrate so that Tg: gas temperature, Ts: substrate temperature), and TiC ultrafine particles are deposited on the A, 1203 substrate by thermophoresis, and the TiC ultrafine particles are deposited on the deposited Ti-C ultrafine particles. Then, by the reaction of 5ie14, NH3, and N2, S
An i3N+ film was deposited. As a result, a dense film in which TiCHi fine particles were dispersed in 5i3Na was obtained. Regarding the produced film, the film formation rate and the produced phase were identified by X-ray diffraction. The results are shown in Table 2.

表2 実施例3 前記第7図において粉体供給方法としては粉体供給装置
に予め入れておいたSIC超微粒子(α−5iC)を、
ガス導入口 lより導入したH2ガスと混合させ、前記
第7図における反応槽28へ導入する。一方、ガス導入
口 3よりCH35iC1:+ガスと反応槽28へ導入
し、反応槽内をヒーター27により1200〜1800
℃、80Torrに保持した。
Table 2 Example 3 In FIG. 7, the powder supply method was as follows: SIC ultrafine particles (α-5iC) placed in the powder supply device in advance
It is mixed with H2 gas introduced through the gas inlet 1 and introduced into the reaction tank 28 shown in FIG. 7. On the other hand, CH35iC1:+ gas is introduced into the reaction tank 28 from the gas inlet 3, and the inside of the reaction tank is heated at 1200 to 1800 by the heater 27.
The temperature was maintained at 80 Torr.

Al2O3基板25は冷媒導入管2Bに所定量の空気を
流すことにより冷却されTg>Tta(Tg:ガス温度
、TS:基板温度)になるようにガス−基板間に温度勾
配を設けAl2O3基板上に粉体供給装置より導入した
SiC超微粒子を熱泳動により沈着させて、沈着したS
iC超微粒子上でCH38tCI3の熱分解反応により
SjCを析出させた。
The Al2O3 substrate 25 is cooled by flowing a predetermined amount of air through the coolant introduction pipe 2B, and a temperature gradient is created between the gas and the substrate so that Tg>Tta (Tg: gas temperature, TS: substrate temperature). The SiC ultrafine particles introduced from the powder supply device are deposited by thermophoresis, and the deposited S
SjC was precipitated by thermal decomposition reaction of CH38tCI3 on iC ultrafine particles.

作製した膜については成膜速度、相対密度の測定、Xv
a回折による生成相の同定を行った。
Regarding the produced film, the film formation rate, relative density measurement, and Xv
The generated phase was identified by a-diffraction.

表3に結果を示す。Table 3 shows the results.

表3 表3のように基板とガスの各温度及び基板−ガス間の温
度勾配を制御することにより、多孔質から緻密質までの
s I CHIを任意の相対密度で、かつ短時間に得る
ことができる。
Table 3 By controlling the temperature of the substrate and the gas and the temperature gradient between the substrate and the gas as shown in Table 3, it is possible to obtain s I CHI from porous to dense in any relative density and in a short time. Can be done.

実施例4 前記第7図における粉体供給装置22としては、アーク
放電加熱によるガス中蒸発法により粉体の供給と粉体の
搬送ガスとの混合を行った。溶融蒸発させる金属として
は、強磁性体であるCOl又は常磁性体であるMoを使
用した。即ち、アーク放電によりCo1又はMoを溶融
蒸発させ、ガス導入口よりA「ガスを導入することによ
り、平均粒径4Qn*のCO又はMo超微粒子を合成し
た。
Example 4 As the powder supply device 22 in FIG. 7, powder was supplied and mixed with a carrier gas by an in-gas evaporation method using arc discharge heating. As the metal to be melted and evaporated, COI, which is a ferromagnetic material, or Mo, which is a paramagnetic material, was used. That is, by melting and vaporizing Co1 or Mo by arc discharge and introducing gas A from the gas inlet, CO or Mo ultrafine particles having an average particle size of 4Qn* were synthesized.

次に生成したCOl又はMo超微粒子をA「ガスととも
に前記第8図における反応槽28へ導入させる。一方、
ガス導入口 3によりTt  (C3HrO)4% A
rガスを反応槽28へ導入し、反応槽2B内をヒーター
27により 500℃、100Torrに保持した。A
l2O3基板25は冷媒導入管26に所定量の空気を流
すことにより冷却され、Tg>Ts (Tg:ガス温度
、TS:基材温度)になるようガス−基材間に温度勾配
を設け、Al2O3基板上にCOl又はMo超微粒子を
熱泳動により沈着させて、沈着した超微粒子上で、Ti
 (C3HrO)4の熱分解により”rtoz膜を析出
させた。これによりCO超微粒子がネットワーク状に分
散した緻密なTiO2膜、又はMo超微粒子が均一に分
散した緻密なTiO2膜を得た。作製した膜については
シート抵抗値、膜厚、EDXによる金属超微粒子の含有
量の測定を行った。結果を表4に示す。
Next, the generated COI or Mo ultrafine particles are introduced into the reaction tank 28 in FIG.
Tt (C3HrO) 4% A by gas inlet 3
R gas was introduced into the reaction tank 28, and the inside of the reaction tank 2B was maintained at 500° C. and 100 Torr by the heater 27. A
The l2O3 substrate 25 is cooled by flowing a predetermined amount of air through the refrigerant introduction pipe 26, and a temperature gradient is created between the gas and the base material so that Tg>Ts (Tg: gas temperature, TS: base material temperature). COI or Mo ultrafine particles are deposited on the substrate by thermophoresis, and Ti is deposited on the deposited ultrafine particles.
An rtoz film was precipitated by thermal decomposition of (C3HrO)4. This produced a dense TiO2 film in which ultrafine CO particles were dispersed in a network, or a dense TiO2 film in which ultrafine Mo particles were uniformly dispersed. Fabrication The sheet resistance value, film thickness, and content of ultrafine metal particles were measured using EDX for the resulting film.The results are shown in Table 4.

表4 CO超微粒子がネットワーク状にTiO2に分布してい
るため、Moの場合に比較して、高い電気伝導性を有す
ることがわかる。
Table 4 It can be seen that because the CO ultrafine particles are distributed in TiO2 in a network, it has higher electrical conductivity than in the case of Mo.

実施例5 前記第7図において粉体供給方法としては、粉体供給装
置に予め入れておいたTiC超微粒子を、ガス導入口1
より導入したN2ガスと混合させ、前記第8図における
反応槽2Bへ導入させる。一方、ガス導入口 3よりS
IC+4、N2ガスを、ガス導入口4よりNH,ガスを
それぞれ反応槽28へ導入し、反応槽28内をヒーター
27により150G −1800℃、30〜200 T
orrに保持した。Si:+N*基板25は冷媒導入管
2Bに所定量の空気を流すことにより冷却され、Tg>
Ts(Tg:ガス温度、Ts二二基湿温度になるようガ
ス−基材間に温度勾配を設け、Si3N4基材上にTi
C超微粒子を熱泳動により沈着させて、沈着したTiC
超微粒子上で、5iC1+、NH3、N2の反応により
Si3N4膜を析出させた。TiC超微粒子の供給量お
よび反応槽2B内のガス温度とSi3N4基板との間の
温度勾配を制御することにより、TiCと5t3N4の
組成が連続的に変化する傾斜機能材料たる膜を高速に成
膜できた。作製した膜については、X線回折による生成
相同定および膜断面のEPMA組成分析を行った。結果
を表5に、またEPMA組成分析結果を第9図、第10
図に示す。
Example 5 In the powder supply method shown in FIG.
The mixture is mixed with the N2 gas introduced into the reactor tank 2B in FIG. 8. On the other hand, S from gas inlet port 3
IC+4 and N2 gas, NH gas and gas are respectively introduced into the reaction tank 28 from the gas inlet 4, and the inside of the reaction tank 28 is heated at 150G -1800℃, 30-200T by the heater 27.
It was held at orr. Si:+N* The substrate 25 is cooled by flowing a predetermined amount of air through the refrigerant introduction pipe 2B, and Tg>
Ti
The deposited TiC particles are deposited by thermophoresis.
A Si3N4 film was deposited on the ultrafine particles by a reaction of 5iC1+, NH3, and N2. By controlling the supply amount of TiC ultrafine particles and the temperature gradient between the gas temperature in the reaction tank 2B and the Si3N4 substrate, a film that is a functionally graded material in which the composition of TiC and 5t3N4 changes continuously can be rapidly formed. did it. Regarding the produced film, the produced phase was identified by X-ray diffraction and the EPMA composition analysis of the film cross section was performed. The results are shown in Table 5, and the EPMA composition analysis results are shown in Figures 9 and 10.
As shown in the figure.

表5 [発明の効果] 本発明においては、従来の成膜方法と異なり、供給する
粉体の組成、結晶構造、磁気的性質、粒径、形状、量ま
たは原料ガス組成、量などの制御により、膜の組成、気
孔率あるいは組織を容易に制御し、均一なあるいは傾斜
機能を有する、あるいはネットワーク組織を有する膜を
高速に得ることができる。そして、本発明により作製さ
れる膜は、絶縁体、導電体、断熱体、触媒用担体、ヒー
トシンクあるいは異種材料接合の中間材等に効果的に利
用できる。
Table 5 [Effects of the invention] In the present invention, unlike conventional film forming methods, by controlling the composition, crystal structure, magnetic properties, particle size, shape, amount, or source gas composition and amount of the supplied powder, By easily controlling the composition, porosity, or structure of the film, it is possible to rapidly obtain a film that is uniform, has a functionally graded function, or has a network structure. The film produced according to the present invention can be effectively used as an insulator, a conductor, a heat insulator, a catalyst carrier, a heat sink, an intermediate material for joining different materials, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は本発明の方法で作製した膜構造の
模式図、第7図は本発明の実施に適する反応装置の説明
図、第8図は本発明の実施に適する他の例の反応装置の
説明図、第9図および第10図は実施例のEPMA組成
分析結果を示すグラフである。 厘・・・化学気相成長でなる生成物、 p・・・熱泳動法で沈着した粉体、S・・・気孔、1.
2.3.4・・・ガス導入口、 5.8.7.10・・・ニードルバルブ、8.9,11
.12・・・ストップバルブ、13・・・ガスおよび粉
体を供給するノズル、14.15・・・膜原料ガスを供
給するノズル、16・・・ガス排出口、17・・・圧力
計、18・・・基材、19・・・基材温度調整用ヒータ
ー 20・・・基材の対向面の加熱ヒーター、21・・・反
応槽、22・・・粉体供給装置、23・・・コールドト
ラップ、24・・・真空ポンプ、25・・・基材、2B
・・・冷媒導入管、27・・・基材の対向面の加熱用ヒ
ーター28・・・反応槽、29・・・ガス排出口。 オ 1 図 第2図 才 図 第 図 第 図
Figures 1 to 6 are schematic diagrams of membrane structures produced by the method of the present invention, Figure 7 is an explanatory diagram of a reaction apparatus suitable for implementing the present invention, and Figure 8 is another example suitable for implementing the present invention. 9 and 10 are graphs showing the results of EPMA composition analysis of Examples.厘... product formed by chemical vapor deposition, p... powder deposited by thermophoresis, S... pores, 1.
2.3.4...Gas inlet, 5.8.7.10...Needle valve, 8.9,11
.. 12... Stop valve, 13... Nozzle for supplying gas and powder, 14.15... Nozzle for supplying membrane raw material gas, 16... Gas discharge port, 17... Pressure gauge, 18 ...Base material, 19... Heater for adjusting base material temperature 20... Heater for heating the opposing surface of the base material, 21... Reaction tank, 22... Powder supply device, 23... Cold Trap, 24... Vacuum pump, 25... Base material, 2B
... Refrigerant introduction pipe, 27 ... Heater for heating the opposing surface of the base material 28 ... Reaction tank, 29 ... Gas discharge port. E 1 Figure 2 Figure 2 Figure 2 Figure 2

Claims (9)

【特許請求の範囲】[Claims] (1)化学気相成長法による皮膜形成中に、反応槽内に
1種類以上の粉体を導入し、基材表面に粉体を沈着する
とともに、化学気相成長による膜を同時に形成せしめる
ことを特徴とする成膜方法。
(1) During film formation by chemical vapor deposition, one or more types of powder are introduced into the reaction tank to deposit the powder on the surface of the substrate and simultaneously form a film by chemical vapor deposition. A film forming method characterized by:
(2)反応槽内に導入する粉体が化学気相成長による膜
と異なるか、同一種類である組成又は結晶構造(非晶質
を含む)である請求項(1)記載の成膜方法。
(2) The film forming method according to claim 1, wherein the powder introduced into the reaction tank has a composition or crystal structure (including amorphous) that is different from or the same as that of the film formed by chemical vapor deposition.
(3)反応槽内に導入する粉体が強磁性体であり、該粉
体に膜中でネットワークを形成せしめる請求項(1)記
載の成膜方法。
(3) The film forming method according to claim (1), wherein the powder introduced into the reaction tank is a ferromagnetic material, and the powder is caused to form a network in the film.
(4)基材表面における膜の形成において、膜中に気孔
を形成せしめる請求項(1)記載の成膜方法。
(4) The film forming method according to claim (1), wherein in forming the film on the surface of the substrate, pores are formed in the film.
(5)粉体もしくは気孔が均一に分散するか、あるいは
連続的又は段階的に含有量が変化する粉体もしくは気孔
を含有せしめる請求項(1)、(2)、(3)又は(4
)記載成膜方法。
(5) Claims (1), (2), (3) or (4) in which the powder or pores are uniformly dispersed or contain powder or pores whose content changes continuously or stepwise.
) Described film formation method.
(6)反応槽内へエアロゾルとした粉体を導入する請求
項(1)ないし(5)のいずれかに記載の成膜方法。
(6) The film forming method according to any one of claims (1) to (5), further comprising introducing aerosolized powder into the reaction tank.
(7)粉体を反応槽内において気相反応により生成せし
める請求項(1)ないし(5)のいずかに記載の成膜方
法。
(7) The film forming method according to any one of claims (1) to (5), wherein the powder is produced by a gas phase reaction in a reaction tank.
(8)粉体を熱泳動法により基材表面に沈着させる請求
項(1)ないし(5)のいずれかに記載の成膜方法。
(8) The film forming method according to any one of claims (1) to (5), wherein the powder is deposited on the surface of the substrate by thermophoresis.
(9)気相と基材表面に形成される温度勾配が10Kc
m^−^1以上であり、かつ気相の温度が基材表面より
も高い請求項(8)記載の成膜方法。
(9) The temperature gradient formed between the gas phase and the substrate surface is 10Kc
8. The film forming method according to claim 8, wherein the temperature of the gas phase is higher than m^-^1 and the temperature of the gas phase is higher than the surface of the substrate.
JP24634389A 1988-09-27 1989-09-25 Film formation Pending JPH02225677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24634389A JPH02225677A (en) 1988-09-27 1989-09-25 Film formation

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP23975488 1988-09-27
JP63-239754 1988-09-27
JP63-279396 1988-11-07
JP63-280274 1988-11-08
JP63-280273 1988-11-08
JP24634389A JPH02225677A (en) 1988-09-27 1989-09-25 Film formation

Publications (1)

Publication Number Publication Date
JPH02225677A true JPH02225677A (en) 1990-09-07

Family

ID=26534404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24634389A Pending JPH02225677A (en) 1988-09-27 1989-09-25 Film formation

Country Status (1)

Country Link
JP (1) JPH02225677A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206890A (en) * 2004-01-23 2005-08-04 Tohoku Univ Method of producing cobalt-doped titanium dioxide film, cobalt-doped titanium dioxide film, and multilayer structure
JP2020525648A (en) * 2017-06-27 2020-08-27 ペーエスツェー テクノロジーズ ゲーエムベーハー Method for producing fibers and foams containing silicon carbide and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206890A (en) * 2004-01-23 2005-08-04 Tohoku Univ Method of producing cobalt-doped titanium dioxide film, cobalt-doped titanium dioxide film, and multilayer structure
JP2020525648A (en) * 2017-06-27 2020-08-27 ペーエスツェー テクノロジーズ ゲーエムベーハー Method for producing fibers and foams containing silicon carbide and use thereof

Similar Documents

Publication Publication Date Title
US5835677A (en) Liquid vaporizer system and method
JP3118493B2 (en) Liquid material CVD equipment
JP2003522839A (en) Condensation film formation method
EP0948664A1 (en) Liquid vaporizer system and method
KR101301967B1 (en) Plasma Nano-powder Synthesizing and Coating Device and Method of the same
JPH04228574A (en) Chemical evaporation method using supercritical fluid solution
KR20020089341A (en) Device and method for depositing one or more layers onto a substrate
TW201920751A (en) Turbulent flow spiral multi-zone precursor vaporizer
JP2001512533A (en) Fluid bed reactor for depositing a substance on a surface by chemical vapor deposition, and a method for forming a coated substrate using the same
JPH0149671B2 (en)
Wood et al. Coating particles by chemical vapor deposition in fluidized bed reactors
JPH0382765A (en) Article having fine particle and/or equi-axed particle fabric coating
JPH02225677A (en) Film formation
Frey Chemical vapor deposition (CVD)
JPH02185026A (en) Selective forming method of al thin-film
US20210178670A1 (en) Additive manufacturing systems and methods of forming components using same
JP2801485B2 (en) Composite and method for producing the same
JPS62112781A (en) Chemical vapor deposition apparatus
JPS6149390B2 (en)
JP2721222B2 (en) Source gas supply device for plasma CVD
CN216998556U (en) Vapor deposition apparatus with uniform atmosphere field and temperature field
Funakubo et al. Preparation of niobium nitride films by CVD
JP2780100B2 (en) Chemical vapor deposition method and apparatus mixed with magnetic minute objects
Ren et al. Proposal and research on using tungsten carbonyl-CVD process for making W-coating PFMs and W-tubes
Wang et al. Chemical Vapor Deposition and Its Application in VO2 Synthesis