JPH0222566B2 - - Google Patents

Info

Publication number
JPH0222566B2
JPH0222566B2 JP52097886A JP9788677A JPH0222566B2 JP H0222566 B2 JPH0222566 B2 JP H0222566B2 JP 52097886 A JP52097886 A JP 52097886A JP 9788677 A JP9788677 A JP 9788677A JP H0222566 B2 JPH0222566 B2 JP H0222566B2
Authority
JP
Japan
Prior art keywords
correction
signal
distortion
value
minimum value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP52097886A
Other languages
Japanese (ja)
Other versions
JPS5432051A (en
Inventor
Yoshizumi Eto
Yasuhiro Hirano
Masayoshi Sunada
Harumitsu Shimizu
Yoshio Horiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Ltd
Priority to JP9788677A priority Critical patent/JPS5432051A/en
Publication of JPS5432051A publication Critical patent/JPS5432051A/en
Publication of JPH0222566B2 publication Critical patent/JPH0222566B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • H04B3/14Control of transmission; Equalising characterised by the equalising network used

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の利用分野】[Field of application of the invention]

本発明は、たとえば遠隔地における計測データ
を電話線で伝送するテレメトリシステムなどにお
いて搬送回線を有する伝送路の群遅延歪を補正す
る伝送路歪補正装置に関するものである。
The present invention relates to a transmission line distortion correction device for correcting group delay distortion of a transmission line having a carrier line in, for example, a telemetry system that transmits measured data at a remote location over a telephone line.

【従来技術】[Prior art]

自動等化装置と呼ばれる伝送路歪補正装置は2
値データを伝送する変復調装置(通常MODEM
と呼ばれる)と共に発展してきた。 従来は、受信信号をたとえばトランスバーサル
フイルタのような周波数特性が可変となるような
補正手段に供給し、その出力において符号間干渉
が最小となるようタツプ係数を変化させ伝送路で
発生する歪を補正する技術が用いられていた。 上記従来技術においては、特定時刻t=nτ(n
=±1,±2,……)の受信インパルス波形の値
を検出し、これを記憶すること、さらに符号間干
渉の量を測定するための演算を行うことなどの複
雑な動作が要求され、これを実現する装置の規模
が大きくなるなどの欠点があつた。
There are 2 transmission line distortion correction devices called automatic equalizers.
A modem (usually MODEM) that transmits value data
) has developed together with Conventionally, the received signal is supplied to a correction means with variable frequency characteristics, such as a transversal filter, and the tap coefficient is changed to minimize intersymbol interference at the output, thereby eliminating distortion occurring in the transmission path. A corrective technique was used. In the above conventional technology, specific time t=nτ(n
It requires complex operations such as detecting and storing the values of the received impulse waveform (=±1, ±2, ...), and performing calculations to measure the amount of intersymbol interference. There were drawbacks such as the large scale of the equipment to achieve this.

【発明の目的】 本発明は搬送回線を有する伝送路の群遅延歪に
対応した量を簡単に検出する手段を備えた伝送路
歪補正装置を供給することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a transmission line distortion correction device having means for easily detecting an amount corresponding to group delay distortion of a transmission line having a carrier line.

【発明の総括説明】[General explanation of the invention]

本発明においては、既知の時刻にステツプ信号
を送信し、受信波形の最大値、最小値を検出し、
これらの線形結合で得られる値を所定の値に近づ
けるように可変周波特性を有する補正手段を制御
している。
In the present invention, a step signal is transmitted at a known time, the maximum value and minimum value of the received waveform are detected,
A correction means having variable frequency characteristics is controlled so that the value obtained by linear combination of these approaches a predetermined value.

【実施例】【Example】

以下、本発明を実施例を参照して詳細に説明す
る。 送信側より既知の時刻にデータと一緒に同期信
号に相当するステツプ信号を送信すると、その受
信波形f(t)は一般に第1図に示すように、振
動を伴う。この振動は送信されるステツプ信号の
帯域が本来有限であることに起因するものと、伝
送路の歪に起因するものとの合計である。自動等
化を必要とするような大きな歪を有する伝送路を
想定すると、受信波形中の振動はもともと存在し
ているものよりは伝送路で発生するものの方がは
るかに大きいと言える。 ここで振動も含めた受信波形の最大値をf(t)
max,最小値をf(t)minとする。本発明にお
いてはこのf(t)max,f(t)minあるいは両
者の和、差などを検出し、これらの値が所定の値
に近づくように可変周波数特性を有する補正手段
を制御するものである。上記の値が伝送路の群遅
延歪に対応する量であることを以下に示す。 伝送路としては最も良く使用されている電話回
線を考えると、振幅および群遅延に対する歪の大
半は電話回線が搬送回線を経由する際に発生す
る。そこで搬送回線のリンク数(リンク数とは、
搬送回線において変調された信号が復調される区
間の数をいい、送信部から受信部までの複数の搬
送中継局を経るときは複数のリンクが形成され
る。このリンク数が大きい程、群遅延歪が大き
い)を変数としてf(t)max,f(t)minを示
すと第2図のようになる。なお、mリンクの搬送
回線を経由した信号をnリンクの歪を補正する補
正手段で補正した場合には、等価的に(m−n)
リンクの歪をもつた信号となる。この(m−n)
リンクを残留リンク数と定義する。ここで残留リ
ンク数0(すなわち伝送路で歪が加わらない場合)
でも、これらの値は1.09または−0.09であり、1
または0にならないのは、ステツプ信号が帯域制
限されていることによる振動に起因する。なお、
図の計算における帯域制限は、理想低減フイルタ
特性を想定した。 いま、伝送路で発生する歪を補正手段で補正し
た後の受信波形から上記の値を検出する場合を考
える。前述したように、伝送路で発生する歪と補
正手段で補正した量の差、すなわち残留リンク数
は、第2図に示すとおり、これが正となるのは補
正が不足している場合であり、負となるのは補正
が過剰の場合である。 第2図で、f(t)maxは、補正が不足してい
れば1.2程度、補正が過剰になれば1.0に収束して
いるので、f(t)maxが1.09に近づくように補
正手段の特性を制御してやれば残留歪が0になり
適正な補正が行われることになる。同様にf(t)
minに着目すれば、これが−0.09に近づくように
制御してやればよい。 第3図にはf(t)max−f(t)minを示す。
これよりf(t)max−f(t)minが最小になる
ように、この場合には1.18(1.09+0.09)に近づく
ように制御してやればよいことがわかる。 第4図にはf(t)max+f(t)minを示す。
これよりf(t)max+f(t)minが1.0(1.09−
0.09)に近づくように制御してやればよいことが
わかる。 なお、上記の数値は一例であり、帯域制限に用
いるフイルタの特性によつて異なる値になるう
る。 以上述べたように、ステツプ受信波形の最大
値、最小値あるいはこれらの和、差などが、伝送
路歪の補正後の残留歪の大小に対応するのでこれ
を検出し、これが所定の値に近づくように補正手
段を制御してやればよい。 第5図に本発明の伝送路歪補正装置の全体構成
例を示す。入力端子1に与えられた受信信号(通
常は搬送波信号である場合が多い)は、周波数に
対する振幅、群遅延特性が可変となるような補正
手段2aで伝送路歪の逆特性を付加される。補正
済信号は復調手段3で搬送波信号からのベースバ
ンド信号に復調される。復調信号中のステツプ信
号の最大値、最小値は最大値・最小値検出手段4
で検出され、線形結合手段5で上記最大値と最小
値の和または差に変換される。もし、最大値また
は最小値を直接用いる場合には、線形結合手段5
は省略する。6は制御手段で、5の出力を用いて
補正手段2aの周波数特性を変化させるものであ
る。 次に第5図の補正手段2aの具体的構成を説明
する。入力端子1に歪を有する信号が与えられ
る。19〜22は種々の補正量を有する補正要素
であり、たとえば19は1リンク相当、20は2
リンク相当、21は3リンク相当……の歪の逆特
性の周波数特性を有するものである。19〜22は通
常のアクテイブフイルタ、トランスバーサルフイ
ルタなどを用いて実現できる。23はスイツチで
制御手段6で制御され、各補正要素の内最適のも
のを出力端子24にとり出す。 また最大値、最小値検出手段4の具体例は図に
示すとおりであり、端子8に与えられた復調信号
をダイオード9,10を介してコンデンサ11,
12に導く。コンデンサ11,12はステツプ信
号が与えられる直前にスイツチ13,14を短絡
することで基準電位15と同電位にされる。基準
電位15の値はステツプ信号の中間レベル、たと
えば第1図における0.5の値である。このように
すればステツプ信号受信後、端子16には最大
値、端子17には最小値が得られる。 線形結合手段5は、たとえば最大値と最小値の
和を用いる場合には、図に示すように、加算回路
25、レベル比較判定回路26により構成する。
レベル比較判定回路26では、1.0と言う値の基
準レベル信号と加算回路25の出力信号とを比較
し、この出力信号が1.0より大であれば第4図か
ら明らかなように補正が不足しているから、補正
手段2aの補正量を増加させる信号を端子27よ
り発生する。一方、この出力信号が1.0より小で
ああれば補正が過剰であるから、補正手段2aの
補正量を減少させる信号を端子27より発生す
る。そして、この信号に従つて制御手段6でこの
出力信号が1.0に近づくように補正手段2aの補
正量(すなわち周波数特性)を変化させる制御を
行ない、最終的には出力端子7に補正済信号を得
る。 また、最大値あるいは最小値を単独で用いる場
合も、上述のように所定の値との大小を判定する
ことで補正の過不足がわかる。 また、最大値と最小値の差を用いる場合は、第
3図より明らかなように補正量を増すことで上記
差が小さくなれば補正量不足であり、上記差が大
きくなれば補正量過剰であることがわかる。 制御手段6は、スイツチ選択判定回路28から
成り、例えば初期設定として、スイツチ23が補
正要素19に接続されるような制御信号が端子2
9に発生する。そして、線形結合手段5より補正
量を増加させる信号が端子27に入力された場合
には、補正要素20にスイツチが接続される様な
制御信号を端子29に発生する。以下、同様に補
正量を増加させる信号が入力された場合には、順
次、補正要素21,22が選択される様に端子2
9にスイツチの制御信号を発生させ、所望の動作
を実現する。 第6図は他の構成例であり、受信信号をまず復
調手段3で復調したのち補正手段2bでその歪を
補正するものである。補正手段2bは第5図の補
正手段2aと同様の構成であるが、補正手段2
a,2bの一方は搬送波信号を、他方はベースバ
ンド信号を補正するものであり、具体的な補正の
ための特性は異なるが、いずれも伝送路で発生す
る歪と逆の周波数特性を実現すればよい。
Hereinafter, the present invention will be explained in detail with reference to Examples. When a step signal corresponding to a synchronizing signal is transmitted from the transmitting side together with data at a known time, the received waveform f(t) generally accompanies vibration as shown in FIG. This vibration is the sum of vibrations caused by the fact that the band of the transmitted step signal is inherently finite and vibrations caused by distortion in the transmission path. Assuming a transmission line with large distortions that require automatic equalization, it can be said that the vibrations generated in the transmission line are much larger than those that originally exist in the received waveform. Here, the maximum value of the received waveform including vibration is f(t)
max, and the minimum value is f(t)min. In the present invention, this f(t)max, f(t)min, or the sum or difference between the two is detected, and a correction means having variable frequency characteristics is controlled so that these values approach a predetermined value. be. It will be shown below that the above value corresponds to the group delay distortion of the transmission path. Considering the telephone line, which is the most commonly used transmission path, most of the distortion in amplitude and group delay occurs when the telephone line passes through a carrier line. Therefore, the number of links in the transport line (the number of links is
It refers to the number of sections in which a signal modulated on a carrier line is demodulated, and multiple links are formed when the signal passes through multiple carrier relay stations from the transmitter to the receiver. The larger the number of links, the larger the group delay distortion) is used as a variable to show f(t)max and f(t)min as shown in FIG. Note that when a signal that has passed through an m-link carrier line is corrected by a correction means that corrects the distortion of n links, it is equivalently (m-n)
The result is a signal with link distortion. This (m-n)
Links are defined as the number of residual links. Here, the number of residual links is 0 (i.e., when no distortion is added to the transmission path)
But these values are 1.09 or -0.09, 1
Otherwise, the reason why it does not become 0 is due to vibrations caused by band-limiting of the step signal. In addition,
The band limit in the calculations in the figure assumes ideal reduction filter characteristics. Now, let us consider the case where the above value is detected from the received waveform after the distortion generated in the transmission path is corrected by the correction means. As mentioned above, the difference between the distortion generated in the transmission path and the amount corrected by the correction means, that is, the number of residual links, is positive when the correction is insufficient, as shown in Figure 2. It becomes negative when the correction is excessive. In Figure 2, f(t)max converges to about 1.2 if the correction is insufficient, and converges to 1.0 if the correction is excessive, so the correction means should be adjusted so that f(t)max approaches 1.09. If the characteristics are controlled, the residual distortion will be reduced to 0 and appropriate correction will be performed. Similarly f(t)
If we focus on min, we can control it so that it approaches -0.09. FIG. 3 shows f(t)max-f(t)min.
From this, it can be seen that control should be performed so that f(t) max - f(t) min becomes the minimum, in this case approaching 1.18 (1.09 + 0.09). FIG. 4 shows f(t)max+f(t)min.
From this, f(t)max+f(t)min is 1.0(1.09−
0.09). Note that the above numerical values are just examples, and may vary depending on the characteristics of the filter used for band limitation. As mentioned above, the maximum value, minimum value, sum, difference, etc. of the step reception waveform correspond to the magnitude of residual distortion after correction of transmission line distortion, so this is detected and this value approaches a predetermined value. The correction means may be controlled in such a manner. FIG. 5 shows an example of the overall configuration of the transmission line distortion correction device of the present invention. A received signal (usually a carrier wave signal) applied to the input terminal 1 is given an inverse characteristic of transmission line distortion by a correction means 2a whose amplitude and group delay characteristics with respect to frequency are variable. The corrected signal is demodulated by the demodulating means 3 into a baseband signal from the carrier signal. The maximum value and minimum value of the step signal in the demodulated signal are determined by maximum value/minimum value detection means 4.
and is converted into the sum or difference of the maximum value and minimum value by the linear combination means 5. If the maximum or minimum value is used directly, the linear combination means 5
is omitted. Reference numeral 6 denotes a control means that uses the output of 5 to change the frequency characteristics of the correction means 2a. Next, the specific configuration of the correction means 2a shown in FIG. 5 will be explained. A distorted signal is applied to the input terminal 1. 19 to 22 are correction elements having various correction amounts; for example, 19 corresponds to 1 link, and 20 corresponds to 2 links.
21 corresponds to a link, 21 corresponds to a 3 link, etc., and has a frequency characteristic that is the opposite of the distortion characteristic. 19 to 22 can be realized using a normal active filter, transversal filter, etc. 23 is a switch which is controlled by the control means 6, and outputs the optimum correction element to the output terminal 24. A specific example of the maximum value/minimum value detection means 4 is as shown in the figure.
Lead to 12. Capacitors 11 and 12 are brought to the same potential as reference potential 15 by shorting switches 13 and 14 immediately before the step signal is applied. The value of reference potential 15 is the intermediate level of the step signal, for example the value of 0.5 in FIG. In this way, after receiving the step signal, the maximum value can be obtained at terminal 16 and the minimum value can be obtained at terminal 17. For example, when using the sum of the maximum value and the minimum value, the linear combination means 5 is constituted by an addition circuit 25 and a level comparison/judgment circuit 26, as shown in the figure.
The level comparison/judgment circuit 26 compares the reference level signal with a value of 1.0 with the output signal of the adder circuit 25. If this output signal is larger than 1.0, as is clear from FIG. 4, the correction is insufficient. Therefore, a signal is generated from the terminal 27 to increase the correction amount of the correction means 2a. On the other hand, if this output signal is smaller than 1.0, the correction is excessive, and therefore a signal is generated from the terminal 27 to reduce the amount of correction by the correction means 2a. Then, according to this signal, the control means 6 performs control to change the correction amount (that is, the frequency characteristic) of the correction means 2a so that this output signal approaches 1.0, and finally outputs the corrected signal to the output terminal 7. obtain. Furthermore, even when the maximum value or the minimum value is used alone, the excess or deficiency of correction can be determined by determining the magnitude with respect to a predetermined value as described above. In addition, when using the difference between the maximum value and the minimum value, as is clear from Figure 3, if the above difference becomes smaller by increasing the correction amount, the correction amount is insufficient, and if the above difference becomes large, the correction amount is excessive. I understand that there is something. The control means 6 consists of a switch selection determination circuit 28, and for example, as an initial setting, a control signal such that the switch 23 is connected to the correction element 19 is sent to the terminal 2.
Occurs on 9th. When a signal for increasing the amount of correction is input from the linear combination means 5 to the terminal 27, a control signal is generated to the terminal 29 to connect a switch to the correction element 20. Thereafter, when a signal that increases the correction amount is similarly input, the terminal 2
9 to generate a control signal for the switch to realize the desired operation. FIG. 6 shows another configuration example in which the received signal is first demodulated by the demodulating means 3 and then its distortion is corrected by the correcting means 2b. The correction means 2b has the same structure as the correction means 2a in FIG.
One of a and 2b corrects the carrier signal, and the other corrects the baseband signal, and although the specific characteristics for correction are different, both of them must realize frequency characteristics that are opposite to the distortion generated in the transmission path. Bye.

【発明の効果】【Effect of the invention】

以上説明したごとく本発明においては受信ステ
ツプ信号の最大値または最小値またはそれらの
和、差などを検出し、この検出値が所定の値に近
づくよう補正手段の周波数特性を変化させてい
る。したがつて、従来技術のように特定時刻の受
信波形の値を検出、記憶する必要がなく動作が安
定である。また、検出すべき値は1または2種類
であり、従来技術のような多くの検出値による複
雑な演算処理が不要で装置が簡単に実現できる、
などの効果を有する。
As explained above, in the present invention, the maximum value or minimum value, or the sum or difference thereof, of the received step signal is detected, and the frequency characteristics of the correction means are changed so that the detected value approaches a predetermined value. Therefore, unlike the prior art, there is no need to detect and store the value of the received waveform at a specific time, and the operation is stable. In addition, there are only one or two types of values to be detected, and the device can be easily realized without the need for complex arithmetic processing using many detected values as in the conventional technology.
It has the following effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はステツプ信号の受信波形図、第2図、
第3図、第4図はそれぞれ受信ステツプ信号の最
大値、最小値およびその線形結合値の伝送路歪に
対する変化を示す図、第5図及び第6図はそれぞ
れ本発明の実施例を示す図である。
Figure 1 is a received waveform diagram of the step signal, Figure 2 is
FIGS. 3 and 4 are diagrams showing changes in the maximum value, minimum value, and linear combination value of the received step signal, respectively, with respect to transmission line distortion, and FIGS. 5 and 6 are diagrams each showing an embodiment of the present invention. It is.

Claims (1)

【特許請求の範囲】[Claims] 1 搬送回線を有する伝送路の群遅延歪を補正す
る伝送路歪補正装置において、上記搬送回線のリ
ンク数に対応した群遅延歪を補正するための複数
の補正要素とこの各補正要素の一つを選択するス
イツチを有する補正手段と、上記補正手段の出力
信号の最大値及び最小値の少なくとも一つを検出
する検出手段と、上記最大値、最小値、上記最大
値と最小値の和及び上記最大値と最小値の差のう
ちの一つを基準レベル信号と比較する線形結合手
段と、上記線形結合手段の出力が上記リンク数が
零のときに得られる値に近づくように上記補正手
段のスイツチを切換える信号を出力する制御手段
とから成る伝送路歪補正装置。
1. In a transmission line distortion correction device for correcting group delay distortion of a transmission line having a carrier line, a plurality of correction elements for correcting group delay distortion corresponding to the number of links of the carrier line, and one of each of the correction elements. a correction means having a switch for selecting the output signal; a detection means for detecting at least one of the maximum value and the minimum value of the output signal of the correction means; the maximum value, the minimum value, the sum of the maximum value and the minimum value, and the linear combination means for comparing one of the differences between the maximum value and the minimum value with a reference level signal; and correction means for adjusting the output of the linear combination means to approach a value obtained when the number of links is zero. A transmission line distortion correction device comprising a control means for outputting a signal for switching a switch.
JP9788677A 1977-08-17 1977-08-17 Corrector for transmission line distortion Granted JPS5432051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9788677A JPS5432051A (en) 1977-08-17 1977-08-17 Corrector for transmission line distortion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9788677A JPS5432051A (en) 1977-08-17 1977-08-17 Corrector for transmission line distortion

Publications (2)

Publication Number Publication Date
JPS5432051A JPS5432051A (en) 1979-03-09
JPH0222566B2 true JPH0222566B2 (en) 1990-05-21

Family

ID=14204222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9788677A Granted JPS5432051A (en) 1977-08-17 1977-08-17 Corrector for transmission line distortion

Country Status (1)

Country Link
JP (1) JPS5432051A (en)

Also Published As

Publication number Publication date
JPS5432051A (en) 1979-03-09

Similar Documents

Publication Publication Date Title
US4688245A (en) Method and circuit arrangement for compensating cross-talk and/or echo signals
CA2046399A1 (en) Equalizer for radio receive signal
AU609715B2 (en) Adaptive filter for producing an echo cancellation signal in a transceiver system for duplex digital communication through one single pair of conductors
US4243956A (en) Automatic equalizer for a synchronous digital transmission signal
US5113142A (en) QAM demodulator having automatic adaptive equalizer
EP0122637B1 (en) Automatic adaptive equalizer
JPH04369932A (en) Echo canceller and transmitter using the same
JPH03173228A (en) Modem equipment
JPH0447721A (en) Automatic equalizer
JPH0222566B2 (en)
KR950012821B1 (en) Nonrecursive digital filter shaped equalizer
US5530721A (en) Equalizer and terminal device for mobile communications
US4837780A (en) Transmit line buildout circuits
JPS6057729B2 (en) Transmission line distortion correction device
JPS5836857B2 (en) Analog facsimile line automatic equalizer
JPS6057730B2 (en) Transmission line distortion correction device
JP3099867B2 (en) Amplitude equalizer
JP3094422B2 (en) Automatic adaptive equalizer
JPS6310613B2 (en)
CA1266896A (en) Transmit line buildout circuits
JP2526475B2 (en) Demodulator with cross polarization interference canceller
JPS58220530A (en) Automatic equalizer
JP2646858B2 (en) Cross polarization interference compensator
JPS6359566B2 (en)
JPS61112437A (en) Automatic equalization system