JPH02225425A - Production of hydrocarbon containing magnesia as one component of catalyst - Google Patents

Production of hydrocarbon containing magnesia as one component of catalyst

Info

Publication number
JPH02225425A
JPH02225425A JP8945089A JP4508989A JPH02225425A JP H02225425 A JPH02225425 A JP H02225425A JP 8945089 A JP8945089 A JP 8945089A JP 4508989 A JP4508989 A JP 4508989A JP H02225425 A JPH02225425 A JP H02225425A
Authority
JP
Japan
Prior art keywords
oxide
catalyst
containing gas
methane
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8945089A
Other languages
Japanese (ja)
Inventor
Ikuya Matsuura
松浦 郁也
Yasushi Yoshida
吉田 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP8945089A priority Critical patent/JPH02225425A/en
Publication of JPH02225425A publication Critical patent/JPH02225425A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain >=2C hydrocarbon by using a catalyst comprising highly purified and ultratinely pulverized single crystal magnesium oxide, alkali metal oxide and 3-4 valent metal oxide in bringing a methane-containing gas into contact with an oxygen-containing gas in the presence of catalyst. CONSTITUTION:An oxidative coupling reaction is performed by bringing a methane-containing gas and an oxygen-containing gas both heated at 500-1500 deg.C into contact with complex oxide catalyst to obtain >=2C hydrocarbon such as ethylene, ethane or propylene. The catalyst is composed of (A) highly purified and ultratinely pulverized single crystal magnesium oxide as a carrier, (B) alkali metal oxide and (C) oxide of trivalent metal (e.g. V, Cr, Mn or Fe) or tetravalent metal (e.g. Ti, Mn or Ge) able to be complex oxide of NaCl-type structure together with the components A and B. A small amount of said catalyst is used to afford the aimed substance in high conversion ratio and high selectivity coefficient at relatively low temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、メタン含有ガスおよび酸素含有ガスを触媒の
存在下で接触させることによってエチレン、エタン、プ
ロピレン等の炭素数の2以上の炭化水素を製造するため
の方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention is a method for producing hydrocarbons having a carbon number of 2 or more, such as ethylene, ethane, and propylene, by bringing a methane-containing gas and an oxygen-containing gas into contact with each other in the presence of a catalyst. The present invention relates to a method for manufacturing.

[従来の技術] オレフィン系炭化水素、特にエチレン、プロピレン等低
級オレフィン系炭化水素は、炭素間に2ffl結合をも
ち反応性に富むため、現在石油化学製品の中できわめて
重要な基礎原料の一つである。アメリカおよびカナダで
は湿性天然ガス(エタンおよび高級炭化水素が主成分)
が豊富にかつ安価に得られるので、これを原料とする製
造法が圧倒的であるが、わが国およびヨーロッパではナ
フサを原料とし、これを熱分解する方法が主に採られて
きた。
[Prior art] Olefinic hydrocarbons, especially lower olefinic hydrocarbons such as ethylene and propylene, have 2ffl bonds between carbons and are highly reactive, so they are currently one of the extremely important basic raw materials for petrochemical products. It is. Wet natural gas (mainly ethane and higher hydrocarbons) in the United States and Canada
Since it is available in abundance and at low cost, the manufacturing method that uses naphtha as a raw material is overwhelmingly used, but in Japan and Europe, the method that uses naphtha as a raw material and thermally decomposes it has been mainly adopted.

しかし、昭和48年の石油ショック以来、ナフサあるい
は、湿性天然ガス−辺側型から原料の分散・多様化が各
国とも図られており、そのH力候補の一つが乾性天然ガ
ス(メタンが主成分)を原料とするエチレン製造法であ
る。
However, since the oil crisis in 1971, each country has tried to disperse and diversify their raw materials from naphtha or wet natural gas (side-side type), and one of the H-power candidates is dry natural gas (the main component of which is methane). ) is the raw material for producing ethylene.

乾性天然ガスの可採埋蔵瓜は現状でも石油に匹敵する規
模であり、最近も新しい鉱床の発見が相次いでおり、そ
の究極可採埋蔵量は200〜250兆m′と推定されて
いる。また、この天然ガスは石油資源の偏在に対し、世
界広く分布している。それにもかかわらずこの天然ガス
の利用率は世界的にまだ低い。
Currently, the recoverable reserves of dry natural gas are comparable to those of oil, and new deposits have been discovered one after another recently, and the ultimate recoverable reserves are estimated to be 200 to 250 trillion m'. Furthermore, unlike oil resources, this natural gas is widely distributed around the world. Despite this, the utilization rate of this natural gas is still low worldwide.

このような状況のもとで、各国とも乾性天然ガスを原料
とするエチレン製造法を研究開発中であり、多くの法文
および特許がこれまでに(1Δ出されている。
Under these circumstances, each country is currently researching and developing ethylene production methods using dry natural gas as a raw material, and many legal texts and patents have been issued (1Δ) so far.

すなわち、G、に、Kellerら(J、or Cat
alysis739(1982))は、その転化反応(
酸化カップリング)にマンガン(Mn)、カドミウム(
Cd)などの酸化物を担持したアルミナ触媒が有望であ
ると報告しているが、そのメタンの転化率(5%以下)
およびエチレンおよびエタンの選択率(45%以下)が
極めて低い。また、その反応に必要な温度も比較的高い
(800℃)。It。
That is, in G, Keller et al. (J, or Cat
lysis739 (1982)) is the conversion reaction (
Oxidative coupling), manganese (Mn), cadmium (
It has been reported that alumina catalysts supporting oxides such as Cd) are promising, but their methane conversion rate (5% or less)
and the selectivity for ethylene and ethane (45% or less) is extremely low. Also, the temperature required for the reaction is relatively high (800°C). It.

ら(J、^a、chem、soc、1075062(1
985))は、通常の触WE製法により試製したリチウ
ム(Li)−マグネシア(MgO)系触媒を、メタンの
酸化カップリングに用いて検討を行い。Li7wt%/
MgOが最も望ましく、720℃においてメタンの転化
率38%、エチレンおよびエタン選択率(以下、C2−
選択率と略記する)47%を得たと報告している。また
、秋鹿ら(CheIi。
et al. (J, ^a, chem, soc, 1075062 (1
985)) investigated the use of a lithium (Li)-magnesia (MgO)-based catalyst prepared by a conventional catalytic WE manufacturing method for the oxidative coupling of methane. Li7wt%/
MgO is the most desirable, with a methane conversion of 38% at 720°C and ethylene and ethane selectivity (hereinafter referred to as C2-
They reported that they obtained a selectivity rate of 47%. In addition, Akishika et al. (CheIi.

LctL、1165(1988) )は各種の金属酸化
物を担持したマグネシア系触媒を用いて同様な実験を行
い、N a 15m o I 96/M g Oがもっ
とも望ましく、800℃において02−選択率57%、
C2−収率22.4%を得たと報告している。さらに、
特開昭01−207346によると酸化鉛(PbO)あ
るいは、酸化鉛と酸化マンガン(MnO)を担持した触
媒が望ましいとし、750℃においてメタン転化率26
%、C2−選択率41%、C2−収率10.7%が得ら
れたとしている。しかし、これらはいずれも触媒性能の
面から高活性とはいえない。
LctL, 1165 (1988) conducted similar experiments using magnesia-based catalysts supporting various metal oxides, and found that Na 15m o I 96/M g O was the most desirable, with a selectivity of 02-57 at 800°C. %,
It is reported that a C2-yield of 22.4% was obtained. moreover,
According to JP-A-01-207346, a catalyst supporting lead oxide (PbO) or lead oxide and manganese oxide (MnO) is preferable, and the methane conversion rate is 26 at 750°C.
%, C2-selectivity of 41%, and C2-yield of 10.7%. However, none of these can be said to be highly active in terms of catalytic performance.

一方、入場ら(59Lh CATSJ Meeting
 Ab−sLracts、No、AI 29 No、2
.48.(1987))は、アルカリ塩の担持した各種
金属酸化物系触媒を用い、そのうちでL i 20io
1%/ N i O系の活性が最も高<、750℃にお
いてメタンの転化率26.1%、C2−選択率55.8
%、C2〜収率14,6%を得、さらにその反応活性種
がLiNiO2であることがわかったと報告しているが
、本発明のごときアルカリ金属元素(A)と複合化しう
るプラス3価の金属元素(M” )あるいはプラス4価
の金属元素(MN)とのNaCl型構造の複合酸化物(
A、M”02あるいはA2MNO,)がすべて6効との
結論には至っていない。また、同じ法文で入場らは、N
a20mo1%/ N i O系あるいはK  20s
o1%/ N i O系の活性は低い(C2−収率く2
%)とし、さらにNaNiO2あるいはKNi02の存
在を確認していない。
On the other hand, Adira et al. (59Lh CATSJ Meeting
Ab-sLracts, No. AI 29 No. 2
.. 48. (1987)) used various metal oxide catalysts supported by alkali salts, among which L i 20io
1%/NiO system has the highest activity <, methane conversion rate 26.1% at 750°C, C2-selectivity 55.8
%, C2 ~ yield of 14.6%, and furthermore, it was found that the reactive active species was LiNiO2, but it is reported that the reaction active species was found to be LiNiO2. Composite oxide (
A, M”02 or A2MNO,) have not reached the conclusion that all six effects.Also, with the same legal text, Adiri et al.
a20mo1%/NiO type or K20s
o1%/NiO system activity is low (C2-yield
%), and the presence of NaNiO2 or KNi02 was not confirmed.

本発明のように、−数式AM” 02あるいはA2M“
03型の複合酸化物を得ることを1」的とせず、単に各
種の金属酸化物に20mo1%のアルカリ金属を担持し
てその活性試験結果がら有効なものについて若干の考察
を加えたものにすぎない。
According to the invention - the formula AM"02 or A2M"
The aim was not to obtain a 03-type composite oxide, but simply to support 20 mo1% alkali metal on various metal oxides, and to add some consideration to what was effective based on the activity test results. do not have.

また、G、S、[、ancら(Proc、9t!t I
nL、Congr。
Also, G, S, [, anc et al. (Proc, 9t!t I
nL, Congr.

CaLa1.2.944(1,9N) )は、担持量を
変えたLiNiO2系について検討し、L i 18ν
t%/ T i Oz系が最も望ましいとし、そのC2
−収率は11,5%であったが、48時間以内で約17
5以下に失活したと報告している。さらに、彼らは同じ
法文でその反応活性種はLi2Ti03ではなくてLi
Ti0□であると明言している。
CaLa1.2.944(1,9N)) was studied for LiNiO2 systems with different supported amounts, and Li 18ν
t%/T i Oz system is the most desirable, and its C2
- The yield was 11,5%, but within 48 hours about 17
It has been reported that the activity has decreased to below 5. Moreover, in the same legal text, they state that the reactive species is not Li2Ti03 but Li2Ti03.
It is clearly stated that Ti0□.

本発明においてはチタンについてはその逆であってL1
□Tie、などが活性種と考えており、また、その適正
なアルカリのTiO2に対する担持;も異なる。
In the present invention, the opposite is true for titanium, and L1
□Tie, etc. are considered to be active species, and the appropriate alkali support for TiO2 is also different.

さらに[1本分表特許公報昭GO−502005号によ
ると、N a Mn 0210wt%/ M g O系
触媒についての実施例が示されており、MgOの種類に
より触媒活性がかなり異なるが、そのうち最も活性なも
のでさえ温度800℃においてメタン転化率15.8%
、C2−7−選択率88 、696.02〜7−収率1
4.0%であることが報告されている。しかし、同公報
には、MgOの種類についてはこれらがどのような特性
をもつMgOなのかについての詳細が記載されていない
。また、関連米国特許(26件)を調査したが、いずれ
にもその記載はみあたらない。
Furthermore, [According to Patent Publication No. Sho GO-502005, an example of a NaMn0210wt%/MgO based catalyst is shown, and although the catalytic activity varies considerably depending on the type of MgO, the most Even the active one has a methane conversion rate of 15.8% at a temperature of 800°C.
, C2-7-selectivity 88, 696.02~7-yield 1
It is reported to be 4.0%. However, this publication does not provide details regarding the types of MgO and what characteristics these MgO have. We also searched related US patents (26), but found no mention of this in any of them.

[発明が解決しようとする問題点] 本発明による炭化水素の製造方法の根本原理は温度50
0〜1500℃のメタン含Hガスおよび酸素含有ガスを
触媒の存在下で接触させて炭素数2以上の炭化水素を製
造する、いわゆ、る“メタンの酸化カップリング法”と
いわれている公知の方法であるが、前項に記載したよう
公知の技術では種々の問題がある。すなわち、■、メタ
ンの転化率が低い。■、C2−選択率が低い。
[Problems to be Solved by the Invention] The fundamental principle of the method for producing hydrocarbons according to the present invention is that the temperature
The so-called "oxidative coupling method of methane" is a method of producing hydrocarbons having 2 or more carbon atoms by contacting methane H-containing gas and oxygen-containing gas at 0 to 1500°C in the presence of a catalyst. However, as described in the previous section, the known techniques have various problems. That is, ■, the conversion rate of methane is low. ■, C2-Selectivity is low.

■、C2=収率が低い。■0反応に必要な温度が高い。■, C2=low yield. ■The temperature required for the 0 reaction is high.

などの問題があり、本発明はこれらの問題を一挙に解決
するものである。
There are problems such as these, and the present invention solves these problems all at once.

[問題を解決するための手段] 本発明は、高純度超微粉単結晶酸化マグネシウムを用い
て調製した触媒の存在下で、温度500〜1500℃の
メタン含有ガスおよび、酸素含有ガスを接触−酸化カッ
ブリングさせることによってエチレン、エタンなどの炭
素数2以上の炭化水素を製造する方法に関するものであ
り、前項種々の問題点をすべて解決することができる。
[Means for solving the problem] The present invention involves the catalytic oxidation of methane-containing gas and oxygen-containing gas at a temperature of 500 to 1500°C in the presence of a catalyst prepared using high-purity ultrafine powder single crystal magnesium oxide. This invention relates to a method for producing hydrocarbons having two or more carbon atoms, such as ethylene and ethane, by coupling, and can solve all of the various problems mentioned above.

本発明に使用する触媒についてさらに詳しくは、高純度
超微粉単結晶酸化マグネシウムを担体原料とし、これに
第二成分としてアルカリ金属酸化物、さらに第三成分と
して上記酸化マグネシウムおよびアルカリ金属酸化物と
ともにNaCl型構造の複合酸化物になりつるプラス3
価あるいはプラス4価の金属元素の酸化物を触媒調製後
に生成する添加成分原料を加えて調製されることを特徴
とする。
In more detail about the catalyst used in the present invention, high-purity ultrafine powder single crystal magnesium oxide is used as a carrier raw material, an alkali metal oxide is added as a second component, and NaCl is added as a third component together with the above magnesium oxide and alkali metal oxide. Vine plus 3 becomes a composite oxide with a type structure
It is characterized in that it is prepared by adding an additive component raw material that is produced after preparing a catalyst, such as an oxide of a metal element having a valence of valence or +4.

本発明の触媒調製用担体原料の酸化マグネシウムは、た
とえばマグネシウム蒸気と酸素含有ガスを乱流拡散状態
で接触させマグネシウムを酸化させることにより生成し
た、すなわち、気相酸化法などによる酸化マグネシウム
であり、高純度、超微粉、単結晶、高活性等の性質を有
する(平均粒子径0.O1〜0.2μm1純度〉99.
98%)。この酸化マグネシウム原料としては超微粉で
あるほど本発明には好ましい。
The magnesium oxide that is the carrier raw material for preparing the catalyst of the present invention is produced by, for example, bringing magnesium vapor and oxygen-containing gas into contact with each other in a turbulent diffusion state to oxidize magnesium, that is, by a gas phase oxidation method. It has properties such as high purity, ultra-fine powder, single crystal, and high activity (average particle size 0.01-0.2 μm1 purity>99.
98%). The more fine the magnesium oxide raw material is, the more preferable it is to the present invention.

また本発明の触媒調製用添加成分原料の一つであり、触
媒調製後に複合酸化物の構成成分であるアルカリ金属酸
化物を生成する原料としては、リチウム(Lf)、ナト
リウム(Na)、あるいはカリウム(K)の酸化物、水
酸化物、炭酸塩、硝酸塩、酢酸塩、アルコキシドまたは
アセチルアセトナートなどが使用される。これらのアル
カリ金属酸化物を触媒に添加することにより、C2−収
率が飛躍的に増大する。
In addition, lithium (Lf), sodium (Na), or potassium is one of the raw materials for additive components for preparing the catalyst of the present invention, and the raw materials for producing the alkali metal oxide, which is a component of the composite oxide after preparing the catalyst, include lithium (Lf), sodium (Na), or potassium. The oxide, hydroxide, carbonate, nitrate, acetate, alkoxide or acetylacetonate of (K) is used. By adding these alkali metal oxides to the catalyst, the C2 yield increases dramatically.

上記酸化マグネシウムおよびアルカリ金属酸化物ととも
にNaCl型構造の複合酸化物になりうるプラス3価あ
るいはプラス4価の金属元素の酸化物を触媒調製後に生
成する原料としては、それらの一種以上の金属元素の酸
化物、水酸化物、硝酸塩、酢酸塩、アルコキシドまたは
アセチルアセトナートなどが使用される。これらの金属
酸化物を触媒に加えることによって、前述のアルカリ金
属酸化物とともにNaCl型構造の複合酸化物を形成し
、触媒活性種となる。
The raw materials for producing after catalyst preparation an oxide of a metal element with a valence of +3 or 4 which can form a composite oxide with an NaCl type structure together with the above-mentioned magnesium oxide and alkali metal oxide include one or more of these metal elements. Oxides, hydroxides, nitrates, acetates, alkoxides or acetylacetonates are used. By adding these metal oxides to the catalyst, a composite oxide having an NaCl type structure is formed together with the alkali metal oxide described above, and becomes a catalytically active species.

上記酸化マグネシウムおよびアルカリ金属酸化物ととも
にNaCIW構造の複合酸化物になりうるプラス3価の
金属元素としては、バナジウム(■)、クロム(Cr)
、マンガン(M n )、鉄(F e)  コバルト(
Co)、ニッケル(Ni)、ガリウム(G a ) 、
イツトリウム(Y)およびインジウム(In)、をあげ
ることかでき、また同じくプラス4価の金属元素として
は、チタン(TK)、マンガン(M n )、ゲルマニ
ウム(Ge)、ジルコニウム(Zr)、スズ(Sn)、
およびハフニウム(J(f)をあげることができる。
Examples of positive trivalent metal elements that can form a composite oxide with the NaCIW structure together with the above magnesium oxide and alkali metal oxides include vanadium (■) and chromium (Cr).
, manganese (M n ), iron (Fe) cobalt (
Co), nickel (Ni), gallium (Ga),
Yttrium (Y) and indium (In) can be mentioned, and examples of positive tetravalent metal elements include titanium (TK), manganese (M n ), germanium (Ge), zirconium (Zr), and tin ( Sn),
and hafnium (J(f)).

これらの触媒調製用添加成分原料は触媒調製後において
、アルカリ金属元素(A)とNaCl型構造の複合酸化
物になりつるプラス3価の金属元素(Ml)との原子比
A/M”が1であるように、あるいはアルカリ金属元素
(A)とNaCl型構造の複合酸化物になりうるプラス
4価の金属元素(M” )との原子A/M′vが2であ
るように調合され、触媒調製後にはそれぞれAM” 0
2あるいはA 2 M” 03が生成される。
After preparing the catalyst, these raw materials for additive components for catalyst preparation have an atomic ratio A/M of 1 between the alkali metal element (A) and the trivalent metal element (Ml), which forms a composite oxide with an NaCl type structure. or so that the atomic A/M'v of the alkali metal element (A) and the positive tetravalent metal element (M") which can form a composite oxide of NaCl type structure is 2, After catalyst preparation, each AM” 0
2 or A 2 M''03 is generated.

また、高純度超微粉単結晶酸化マグネシウムの量は触媒
:A?!後において5パ一セント以上95パーセント以
下となるように調合される。触媒の調製方法は、通常行
われている方法に従って行えば良いが、さらに詳しく説
明すると、以下の方法に従うことが望ましい。
Also, the amount of high-purity ultrafine powder single crystal magnesium oxide is catalyst: A? ! Later, it is formulated to have a concentration of 5% or more and 95% or less. The catalyst may be prepared according to a commonly used method, but to explain in more detail, it is preferable to follow the following method.

まず、当該プラス3価あるいはプラス4価の金属塩水溶
液に水酸化アルカリを加え、それぞれの水酸化物を沈澱
させ、よく水洗いした後、この水酸化物を水に懸濁させ
る。これに当該アルカリ塩をA/M”原子比−1あるい
はA/M”−2になるように加え、撹拌しながら蒸発乾
固させた後、焼成する。
First, an alkali hydroxide is added to the aqueous solution of the +3-valent or +4-valent metal salt to precipitate each hydroxide, and after thoroughly washing with water, the hydroxide is suspended in water. The alkali salt is added to this so that the atomic ratio of A/M" is -1 or A/M"-2, and the mixture is evaporated to dryness with stirring, and then fired.

このようにして得られたAM’02型あるいはA2MN
03型複合酸化物色酸化マグネシウムとのNaCl型複
合酸化物を調製するためには、上記重量比になるように
両者を混合し、エチルアルコールなどの有機溶媒中に懸
濁させ、よく撹拌しながら蒸発乾固させた後、焼成する
AM'02 type or A2MN obtained in this way
03 Type Composite Oxide Color In order to prepare a NaCl type composite oxide with magnesium oxide, the two are mixed at the above weight ratio, suspended in an organic solvent such as ethyl alcohol, and evaporated with thorough stirring. After drying, it is fired.

また、本発明によるエチレンその他の炭化水素の製造方
法は、乾性天然ガス等メタン含有ガスおよび空気などの
酸素含有ガスを上記触媒の存在下で接触反応を行わせる
。反応は通常触媒を充填した管型流通反応器(固定床型
)に、上記混合ガスを必要に応じHe、N2、Arなど
の希釈ガスを混合して導入させ、反応を連続的に行わせ
る。反応圧力は一般に常圧〜20 kgr/cd G 
、好ましくは常圧〜5kgr/ cJ G 、また、反
応温度は500〜1500℃、好ましくは650〜85
0℃にて行われる。
Further, in the method for producing ethylene and other hydrocarbons according to the present invention, a methane-containing gas such as dry natural gas and an oxygen-containing gas such as air are subjected to a catalytic reaction in the presence of the above catalyst. The reaction is usually carried out continuously by introducing the above-mentioned mixed gas mixed with a diluent gas such as He, N2, Ar, etc. as necessary into a tubular flow reactor (fixed bed type) filled with a catalyst. The reaction pressure is generally normal pressure to 20 kgr/cd G
, preferably normal pressure to 5 kgr/cJ G, and reaction temperature 500 to 1500°C, preferably 650 to 85
It is carried out at 0°C.

なお、反応装置としては流動床型反応器なども使用でき
、上記の固定床型反応器に限定するものではない。この
ような方法でメタン含有ガスの酸化カップリングを行う
ことにより、エチレン等の炭化水素が少量の触媒で、か
つ比較的低温で高転化率、高選択率にて製造できる。
Incidentally, a fluidized bed reactor or the like can also be used as the reaction apparatus, and the reactor is not limited to the above-mentioned fixed bed reactor. By performing oxidative coupling of methane-containing gas in this manner, hydrocarbons such as ethylene can be produced with a small amount of catalyst and at a relatively low temperature with a high conversion rate and high selectivity.

[作 用] すでに高純度超微粉単結晶酸化マグネシウムにアルカリ
金属酸化物(A70)と原子番号21(Sc)〜2+1
(Ni)あるいは原子番号57(La)〜71. c、
 L u、 )のプラス3価をとりうる金属元素酸化物
(M”20i)を担持した触媒が高活性であることを見
いだし、特許出願中(特許出願番号昭62−31212
7号)であるが、その理由は触媒調製時の焼成初期にA
M“O7が形成され、これと同じNaCl型構造を持つ
MgOに固溶するためにメタンの酸化カップリング反応
を促進させるものと考えられる。これを元にさらに鋭意
検討を進めた結果、アルカリ金属酸化物(A20)およ
びプラス3価あるいはプラス4価の金属元素酸化物(そ
れぞれM1□03あるいはMlvO2)からなる複合酸
化物(それぞれAM” O□あるいはA2M“0.)を
担持した同酸化マグネシウム系触媒がメタンの酸化カッ
プリング反応に対してきわめて有効であることを見いだ
した。
[Effect] Already high-purity ultrafine powder single crystal magnesium oxide with alkali metal oxide (A70) and atomic number 21 (Sc) ~ 2+1
(Ni) or atomic number 57 (La) to 71. c,
It was discovered that a catalyst supporting a metal element oxide (M''20i) that can have a positive trivalent valence of L u,
No. 7), but the reason is that A
It is thought that M"O7 is formed and forms a solid solution in MgO, which has the same NaCl type structure, promoting the oxidative coupling reaction of methane.Based on this, further intensive studies revealed that the alkali metal Magnesium oxide based composite oxide (AM"O□ or A2M"0., respectively) consisting of an oxide (A20) and a positive trivalent or positive tetravalent metal element oxide (M1□03 or MlvO2, respectively) It has been found that the catalyst is extremely effective for the oxidative coupling reaction of methane.

[実施例] 以下に実施例および比較例を示す。[Example] Examples and comparative examples are shown below.

実施例1〜9 まず、AM″0□型の複合酸化物の合成法について説明
する。
Examples 1 to 9 First, a method for synthesizing an AM″0□ type composite oxide will be described.

LiCr0.、LiMn0□、LiFeO2、LiCo
0.  LiNiO2は硝酸塩水溶液(Cr  (NO
3)  3  ・9H20、Mn  (NOx  )−
6H20、Fe  (NO3)  2  ’982 0
sCo  (NO3)  2  ・6H20、N j 
 (NO3) 2 ・6H20)に水酸化リチウムを加
え、それぞの水酸化物を沈澱させ、よく水洗した後この
水酸化物を水に懸濁させ、これに硝酸リチウムをLi/
Mの原子比が1になるように加え、撹拌しながら蒸発乾
固させた。これを400℃で焼成し、さらに800℃で
4時間焼成して調製した。また、Li1nO,は1.和
光製I n 203  (99,9%純度)と硝酸リチ
ウムをL i / I n原子比が1になるように水の
なかに加え良く混合しながら蒸発乾固したものを400
℃で焼成しさらに800℃で4時間焼成した。
LiCr0. , LiMn0□, LiFeO2, LiCo
0. LiNiO2 is a nitrate aqueous solution (Cr (NO
3) 3 ・9H20, Mn (NOx)-
6H20, Fe (NO3) 2 '982 0
sCo (NO3) 2 ・6H20, N j
Add lithium hydroxide to (NO3) 2 ・6H20) to precipitate each hydroxide, wash thoroughly with water, suspend this hydroxide in water, and add lithium nitrate to it.
M was added so that the atomic ratio was 1, and the mixture was evaporated to dryness with stirring. This was prepared by firing at 400°C and further firing at 800°C for 4 hours. Moreover, Li1nO, is 1. Wako In 203 (99.9% purity) and lithium nitrate were added to water so that the Li/In atomic ratio was 1, and mixed well and evaporated to dryness.
It was fired at 800°C for 4 hours.

一方、NaFeO2、NaNf021.NaInk2は
水酸化リチウムの代りに水酸化ナトリウムを、硝酸リチ
ウムの代りに硝酸ナトリウムを用いて上記と同様に調製
した。いずれも800℃で焼成後の酸化物は目的の複合
酸化物にな−)でいることをXRDによって確認した。
On the other hand, NaFeO2, NaNf021. NaInk2 was prepared in the same manner as above using sodium hydroxide instead of lithium hydroxide and sodium nitrate instead of lithium nitrate. In both cases, it was confirmed by XRD that the oxides after firing at 800°C turned into the desired composite oxides.

これらのAM” O□型複合酸化物と高純度超微粉単結
晶酸化マグネシウム(平均粒径0.08μm)を重量比
−1に混合したエチルアルコールに懸濁させ、よく撹拌
しながら蒸発乾固させた後800℃で4時間焼成した。
These AM" O□ type composite oxides and high-purity ultrafine powder single crystal magnesium oxide (average particle size 0.08 μm) were suspended in ethyl alcohol mixed at a weight ratio of -1, and evaporated to dryness with thorough stirring. After that, it was baked at 800°C for 4 hours.

これらのAM”02/MgO系触媒0.1.[を固定床
型流通反応器中に入れ、CM、:Q2 :He=2:1
:3の混合ガスを50m1 / mln、lat*の条
件で流通させた。
These AM''02/MgO-based catalysts 0.1.
:3 mixed gas was passed under the conditions of 50 ml/mln, lat*.

反応温度600℃から900℃において得られた生成物
をそれぞれガスクロマトグラフィー・−で分析した結果
、エチレン、エタン、少量のプロピレン、二酸化炭素、
−酸化炭素、水であった。
Analysis of the products obtained at reaction temperatures of 600°C to 900°C using gas chromatography revealed that ethylene, ethane, a small amount of propylene, carbon dioxide,
- Carbon oxide, water.

C2−炭化水素の生成率が最も高い値を示した反応温度
における結果を表1に示す。
Table 1 shows the results at the reaction temperature at which the C2-hydrocarbon production rate showed the highest value.

表1 実施例10〜17 L i 2 T i O) 、L l 2 Z r O
5L l 2SnOtは四塩化チタン、四塩化ジルコニ
ウム、四塩化錫を水に加えたのち、水酸化リチウムで中
和し生成した水酸化物をよく水洗し、この水酸化物と硝
酸リチウムモル比1:2(Li/M原子比−2)を水に
懸濁させ撹拌しながら蒸発乾固させた。この乾燥物を4
00℃で焼成後さらに800℃で4時間焼成した。
Table 1 Examples 10 to 17 L i 2 T i O), L l 2 Z r O
5L l 2SnOt is prepared by adding titanium tetrachloride, zirconium tetrachloride, and tin tetrachloride to water, then neutralizing it with lithium hydroxide, thoroughly washing the generated hydroxide with water, and mixing the hydroxide with lithium nitrate in a molar ratio of 1: 2 (Li/M atomic ratio -2) was suspended in water and evaporated to dryness with stirring. This dried product is 4
After firing at 00°C, it was further fired at 800°C for 4 hours.

Li2Hf0.とLi2GeO3は、和光製の酸化ハフ
ニウム(97%)または酸化ゲルマニウム(99,99
9999%)に目的比の硝酸リチウムを加え水に懸濁さ
せてよく撹拌しながら蒸発乾固したのち400℃で焼成
さらに800℃で4時間焼成した。
Li2Hf0. and Li2GeO3 are hafnium oxide (97%) or germanium oxide (99,99%) manufactured by Wako.
9999%) was added with a desired ratio of lithium nitrate, suspended in water, and evaporated to dryness with thorough stirring, then calcined at 400°C and further calcined at 800°C for 4 hours.

一方、Na、2Tie、  Na2ZrO,、Na25
nO,は水酸化リチウムの代りに水酸化ナトリウムを、
硝酸リチウムの代わりに硝酸ナトリウムを用いて上記と
同様にして調製した。
On the other hand, Na, 2Tie, Na2ZrO,, Na25
nO, is sodium hydroxide instead of lithium hydroxide,
It was prepared in the same manner as above using sodium nitrate instead of lithium nitrate.

すべての酸化物は目的の複合酸化物になっているり(を
XRDにより確認した。
It was confirmed by XRD that all the oxides were the desired composite oxides.

これらのA2MNO*型複合酸化物色高純度超微粉単結
晶酸化マグネシウム(平均粒径0,05μm)を重量比
−1に混合し、エチルアルコールに懸濁させ、よく撹拌
しながら乾燥させた後800℃で4時間焼成した。
These A2MNO* type composite oxide colored high-purity ultrafine powder single crystal magnesium oxide (average particle size 0.05 μm) were mixed at a weight ratio of -1, suspended in ethyl alcohol, dried with thorough stirring, and then heated at 800°C. It was baked for 4 hours.

触媒の活性評価試験は実施例1〜9と同一条件で行った
The catalyst activity evaluation test was conducted under the same conditions as Examples 1 to 9.

C2−炭化水素の生成率が最も高い値を示した反応温度
での結果を表2に示した。
Table 2 shows the results at the reaction temperature at which the C2-hydrocarbon production rate showed the highest value.

表 2 実施例 18〜24 LiNiO2、LtlnO2または Li25nO,と
高純度超微粉単結晶酸化マグネシウム(平均粒径0.0
5μm)との調合ff1m比を10ノ9Q、20780
あるいは80/20と変えた以外はそれぞれ実施例6.
8または16と同一の方法で調製した。
Table 2 Examples 18 to 24 LiNiO2, LtlnO2 or Li25nO, and high purity ultrafine powder single crystal magnesium oxide (average particle size 0.0
5μm) and the formulation ff1m ratio is 10 no 9Q, 20780
Or Example 6 except that it was changed to 80/20.
8 or 16.

触媒の活性評価試験は実施例1〜9と同一条件で行った
The catalyst activity evaluation test was conducted under the same conditions as Examples 1 to 9.

C2−炭化水素の生成率が最も高い直を示した反応温度
での結果を表3に示した。
Table 3 shows the results at the reaction temperature at which the C2-hydrocarbon production rate was highest.

(、Ill 7 F−11,03t −h/啜)表3 比較例 1〜3 硝酸マグネシウム水溶液にアンモニア水を加えて水酸化
マグネシウムとし、これを800℃で焼成して液相決裂
酸化マグネシウム(平均粒径0.02μm)を得た。こ
の液相決裂酸化マグネシウムを用いた以外、実施例6と
同様にして50%LiNiO2−50%液相法製MgO
系触媒を得た。
(, Ill 7 F-11,03t -h/sip) Table 3 Comparative Examples 1 to 3 Aqueous ammonia was added to an aqueous solution of magnesium nitrate to obtain magnesium hydroxide, which was fired at 800°C to produce liquid phase-ruptured magnesium oxide (average A particle size of 0.02 μm) was obtained. 50%LiNiO2-50% liquid phase MgO
A system catalyst was obtained.

また、高純度超微粉単結晶酸化マグネシウムの代りに市
販シリカゲルを用いた以外、実施例6と同様にして50
%LiNiO2−50%5i02系触媒を得た。
In addition, 50%
%LiNiO2-50%5i02 type catalyst was obtained.

さらに、高純度超微粉単結晶酸化マグネシウム(平均粒
径0.05μm)にも何も担持しない触媒含め、これら
38の触媒を用い、実施例1〜つと同一条件で活性評価
試験を行った。
Furthermore, an activity evaluation test was conducted under the same conditions as in Examples 1 to 3 using these 38 catalysts, including high-purity ultrafine powder single crystal magnesium oxide (average particle size 0.05 μm) and a catalyst with no support.

C2−炭化水素の生成率が最も高い値を示した反応温度
での結果を表4に示した。
Table 4 shows the results at the reaction temperature at which the C2-hydrocarbon production rate showed the highest value.

表 [発明の効果] 以上の説明から明らかなように、炭素数2以上の炭化水
素を本発明の方法に従って製造することにより、以下の
効果を挙げることができる。
Table [Effects of the Invention] As is clear from the above description, the following effects can be achieved by producing a hydrocarbon having 2 or more carbon atoms according to the method of the present invention.

■、メタンの転化率が高い。■、C2−選択率が高い。■High conversion rate of methane. ■, C2-high selectivity.

■C2−収率が高い。■1反応に必要な温度がきわめて
低い。
■High C2-yield. (1) The temperature required for reaction is extremely low.

Claims (2)

【特許請求の範囲】[Claims] (1)温度500〜1500℃のメタン含有ガスおよび
酸素含有ガスを触媒の存在下で接触させて炭素数2以上
の炭化水素を製造する方法(酸化カップリング)におい
て、 [1]高純度超微粉単結晶酸化マグネシウム[2]アル
カリ金属酸化物 [3]上記酸化マグネシウムおよびアルカリ金属酸化物
とともにNaCl型構造の複合酸化 物になりうるプラス3価の金属元素の酸化 物 からなる複合酸化物触媒を用いることを特徴とする炭素
数2以上の炭化水素の製造方法。
(1) In a method (oxidative coupling) of producing a hydrocarbon having 2 or more carbon atoms by contacting a methane-containing gas and an oxygen-containing gas at a temperature of 500 to 1500°C in the presence of a catalyst, [1] High-purity ultrafine powder Single crystal magnesium oxide [2] Alkali metal oxide [3] A composite oxide catalyst consisting of an oxide of a positive trivalent metal element that can form a composite oxide with a NaCl type structure together with the above magnesium oxide and alkali metal oxide is used. A method for producing a hydrocarbon having 2 or more carbon atoms, characterized in that:
(2)温度500〜1500℃のメタン含有ガスおよび
酸素含有ガスを触媒の存在下で接触させて炭素数2以上
の炭化水素を製造する方法において、[1]高純度超微
粉単結晶酸化マグネシウム[2]アルカリ金属酸化物 [3]上記酸化マグネシウムおよびアルカリ金属酸化物
とともにNaCl型構造の複合酸化 物になりうるプラス4価の金属元素の酸化 物 からなる複合酸化物触媒を用いることを特徴とする炭素
数2以上の炭化水素の製造方法。
(2) In a method for producing a hydrocarbon having two or more carbon atoms by contacting a methane-containing gas and an oxygen-containing gas at a temperature of 500 to 1500°C in the presence of a catalyst, [1] High-purity ultrafine powder single crystal magnesium oxide [ 2) Alkali metal oxide [3] A composite oxide catalyst consisting of an oxide of a positive tetravalent metal element that can form a composite oxide with an NaCl type structure together with the above magnesium oxide and alkali metal oxide is used. A method for producing hydrocarbons having 2 or more carbon atoms.
JP8945089A 1989-02-28 1989-02-28 Production of hydrocarbon containing magnesia as one component of catalyst Pending JPH02225425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8945089A JPH02225425A (en) 1989-02-28 1989-02-28 Production of hydrocarbon containing magnesia as one component of catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8945089A JPH02225425A (en) 1989-02-28 1989-02-28 Production of hydrocarbon containing magnesia as one component of catalyst

Publications (1)

Publication Number Publication Date
JPH02225425A true JPH02225425A (en) 1990-09-07

Family

ID=12709592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8945089A Pending JPH02225425A (en) 1989-02-28 1989-02-28 Production of hydrocarbon containing magnesia as one component of catalyst

Country Status (1)

Country Link
JP (1) JPH02225425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532104A (en) * 2009-06-29 2012-12-13 フイナ・テクノロジー・インコーポレーテツド Oxidative coupling method of methane
JP2012532105A (en) * 2009-06-29 2012-12-13 フイナ・テクノロジー・インコーポレーテツド Hydrocarbon oxidative coupling method
CN102962044A (en) * 2012-11-26 2013-03-13 中国科学院山西煤炭化学研究所 Solid base catalyst for synthetizing carbonic acid glyceride by transesterification method, and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532104A (en) * 2009-06-29 2012-12-13 フイナ・テクノロジー・インコーポレーテツド Oxidative coupling method of methane
JP2012532105A (en) * 2009-06-29 2012-12-13 フイナ・テクノロジー・インコーポレーテツド Hydrocarbon oxidative coupling method
CN102962044A (en) * 2012-11-26 2013-03-13 中国科学院山西煤炭化学研究所 Solid base catalyst for synthetizing carbonic acid glyceride by transesterification method, and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR102339869B1 (en) Methane oxidation coupling catalyst and its preparation method and application
KR101508776B1 (en) A method for Producing 1,3-Butadiene from n-Butene using Continuous-flow Dual-bed Reactor
US6521808B1 (en) Preparation and use of a catalyst for the oxidative dehydrogenation of lower alkanes
JP5483114B2 (en) A method for producing a multicomponent bismuth molybdate catalyst with pH adjustment and a method for producing 1,3-butadiene using the same.
CN103028446B (en) Magnesia-zirconia complex carrier for catalyst for oxidative dehydrogenation of n-buane, and method of producing the same
KR20140108264A (en) Zinc and/or manganese aluminate catalyst useful for alkane dehydrogenation
US20150112109A1 (en) Multimetallic mixed oxides, its preparation and use for the oxidative dehydrogenation of ethane for producing ethylene
TWI642477B (en) Improved selective ammoxidation catalysts
US8809226B2 (en) Method of producing carrier for catalyst for oxidative dehydrogenation of n-butane, method of producing carrier-supported magnesium orthovanadate catalyst, and method of producing n-butene and 1, 3-butadiene using said catalyst
JPH01153649A (en) Production of hydrocarbon
Xie et al. An important principle for catalyst preparation—spontaneous monolayer dispersion of solid compounds onto surfaces of supports
JPH02225425A (en) Production of hydrocarbon containing magnesia as one component of catalyst
US20100249252A1 (en) Zr-fe catalysts for fischer-tropsch synthesis
KR20120103041A (en) Method of producing zirconia carrier for catalyst for oxidative dehydrogenation of n-butane, method of producing zirconia carrier-supported magnesium orthovanadate catalyst, and method of producing n-butene and 1,3-butadiene using said catalyst
KR101419995B1 (en) Method of Producing Magnesia-zirconia Mixed Carrier for Catalyst for Oxidative Dehydrogenation of n-Butane, Method of Producing Magnesium-zirconia Carrier-Supported Magnesium Orthovanadate Catalyst, and Method of Producing n-Butene and 1,3-Butadiene Using Said Catalyst
KR101248697B1 (en) Method of Producing Magnesia-zirconia Carrier for Catalyst for Oxidative Dehydrogenation of n-Butane, Method of Producing Magnesia-zirconia Carrier-Supported Magnesium Orthovanadate Catalyst, and Method of Producing n-Butene and 1,3-Butadiene Using Said Catalyst
CN109718768A (en) A kind of vanadium silver molybdenum oxide catalyst, preparation method and applications
KR101341242B1 (en) Magnesium orthovanadate-magnesia-zirconia catalyst prepared by a single-step sol-gel method for oxidative dehydrogenation of n-butane, preparation method thereof, and method for producing n-butene and 1,3-butadiene using said catalyst
JPH02225426A (en) Production of hydrocarbon
JP2004141764A (en) Catalyst for oxidative dehydrogenation of alkane, its production method, and method of producing olefin using the catalyst
WO2019083408A1 (en) Catalyst for producing ethylene by oxidative dehydrogenation of ethane
WO2019171228A1 (en) Catalyst and method related thereto for synthesis of hydrocarbons from syngas
CN109718754A (en) A kind of vanadium silver nickel metal oxide catalyst, preparation method and applications
JPS62123184A (en) Production of maleic anhydride