JPH0222528A - Method for measuring surface tilt angle of polygon mirror - Google Patents

Method for measuring surface tilt angle of polygon mirror

Info

Publication number
JPH0222528A
JPH0222528A JP17306688A JP17306688A JPH0222528A JP H0222528 A JPH0222528 A JP H0222528A JP 17306688 A JP17306688 A JP 17306688A JP 17306688 A JP17306688 A JP 17306688A JP H0222528 A JPH0222528 A JP H0222528A
Authority
JP
Japan
Prior art keywords
mirror
polygon mirror
light
tilt angle
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17306688A
Other languages
Japanese (ja)
Inventor
Hidetoshi Hara
英俊 原
Yoshihiro Tamura
田村 佳弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17306688A priority Critical patent/JPH0222528A/en
Publication of JPH0222528A publication Critical patent/JPH0222528A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and accurately find the relative surface tilt angle between mirror surfaces by photodetecting a reflected light form the polygon mirror by photodetectors arranged above and below about the scanning direction of the reflected beam. CONSTITUTION:The polygon mirror 1 is irradiated with the light beam 3 from a light source 2 and its reflected beam 4 is photodetected 5. This photodetection part 5 consists of the upper photodetector 51a and lower photodetector 51b about the scanning direction 53 of the beam 4. Then the photodetectors 51a and 51b are moved up and down so that the outputs of the photodetectors 51a and 51b are equal to each other, and their movement positions are read by a measurement and display part 6 to obtain the direction center position of the beam 4. Namely, the direction position of the beam 4 between mirror surfaces is found and the direction position distance DELTAX between the mirror surfaces is found, so that the surface tilt angle theta is found from theta=DELTAX/2L, where L is the distance between a mirror surface of the polygon mirror 1 and the photodetection part 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザプリンタ等の光学式プリンタや、光学
式表示装置等において、光ビームを走査するのに使用す
る多面鏡の各鏡面間における相対的な面倒れ角を測定す
る方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to optical printers such as laser printers, optical display devices, etc., in which a polygonal mirror is used to scan a light beam. This invention relates to a method for measuring relative surface inclination angle.

(従来の技術) レーザプリンタに代表される光学式プリンタは、文字や
画像等の、いわゆる印字情報をもつ光ビームを、高速回
転する多面鏡を使用して感光媒体上に指向し、走査する
ことによって印字を行うものである。
(Prior Art) Optical printers, such as laser printers, use a polygon mirror that rotates at high speed to direct and scan a light beam containing so-called printed information, such as characters and images, onto a photosensitive medium. Printing is performed by

ところで、そのような光学式プリンタにおいては、近年
、画質を向上させないとする要求がますます高くなって
いるが、画質は、一つには、光ビームの走査精度、すな
わち、光ビームの走査ピッチがいつも一定であるかどう
かということにかかっている。そして、この走査精度は
、多面鏡の製作精度や回転時の軸ぶれ等に起因する、各
鏡面間における面倒れ角の差に依存し、面倒れ角に差が
あると光ビームの走査位置にずれができ、ピッチが−様
でなくなってしまう。
By the way, in recent years there has been an increasing demand for improving the image quality of such optical printers, but image quality is determined, in part, by the scanning accuracy of the light beam, that is, the scanning pitch of the light beam. It depends on whether or not it is always constant. This scanning accuracy depends on the difference in the face tilt angle between each mirror surface, which is caused by the manufacturing precision of the polygon mirror and the shaft vibration during rotation, and if there is a difference in the face tilt angle, the scanning position of the light beam will There will be a shift, and the pitch will no longer be -like.

このように、光ビームの走査精度は、多面鏡の製作精度
や回転時の軸ぶれ等に依存するが、製作上、各鏡面間に
おける面倒れ角に差ができないようにしたり、軸ぶれを
完全になくしたりするのは大変難しいことであるので、
多面鏡を製作する、あるいは使用する場合に、面倒れ角
を測定・評価することは不可欠である。したがって、多
面鏡を回転させながら各鏡面間における相対的な面倒れ
角を測定し、その差に基いて光ビームの入射角を変える
などの対策を採るようにしており、そのための面倒れ角
の測定方法がいくつか提案されている。
In this way, the scanning accuracy of the light beam depends on the manufacturing accuracy of the polygon mirror and the axial wobbling during rotation, but during manufacturing, it is necessary to make sure that there is no difference in the surface tilt angle between each mirror surface, and to completely eliminate axial wobbling. It is very difficult to lose it, so
When manufacturing or using a polygon mirror, it is essential to measure and evaluate the angle of inclination. Therefore, while rotating the polygon mirror, measures are taken to measure the relative tilt angle between each mirror surface, and based on the difference, measures are taken such as changing the incident angle of the light beam. Several measurement methods have been proposed.

たとえば、特開昭61−73917号公報には、回転中
の多面鏡に光ビームを照射するとともに、その多面鏡に
よる反射ビームを、その走査方向に関して上側および下
側にそれぞれ固定して設けた受光素子で受光し、両受光
素子間の出力の比から面倒れ角を求める方法が記載され
ている。しかしながら、この方法は、受光素子を固定し
ているために、照射する光ビームの強度分布がガウス分
布でないときには測定誤差が大きくなるという問題があ
る。また、やはり受光素子を固定していることから、測
定精度が、受光素子の光電変換特性に大きく依存すると
いう問題もある。
For example, Japanese Patent Application Laid-Open No. 61-73917 discloses that a rotating polygon mirror is irradiated with a light beam, and the reflected beam from the polygon mirror is received by light receivers fixed at the upper and lower sides in the scanning direction. A method is described in which light is received by an element and the surface tilt angle is determined from the ratio of outputs between both light receiving elements. However, this method has a problem in that since the light receiving element is fixed, measurement errors become large when the intensity distribution of the irradiated light beam is not a Gaussian distribution. Furthermore, since the light-receiving element is still fixed, there is also the problem that measurement accuracy largely depends on the photoelectric conversion characteristics of the light-receiving element.

一方、特開昭62−172318号公報には、オートコ
リメータを介して、回転中の多面鏡の所定の鏡面につい
てその全面にパルス状の光を照射するとともに、各鏡面
による反射光の結像位置の差から面倒れ角を求める方法
が記載されている。
On the other hand, JP-A-62-172318 discloses that pulsed light is irradiated onto the entire surface of a predetermined mirror surface of a rotating polygon mirror via an autocollimator, and the imaging position of the reflected light from each mirror surface is A method for determining the surface inclination angle from the difference between the two is described.

しかしながら、この方法は、多面鏡の各鏡面に対応して
面倒れ角を測定できるという利点はあるものの、高価な
オートコリメータを必要とし、また、装置構成が大がか
りになるという問題がある。しかも、光を鏡面全面に照
射するので、測定が、光ビームの走査に実際に使用され
る、いわゆる有効鏡面以外の部分から反射される光の影
響を受けやすいという問題もある。
However, although this method has the advantage of being able to measure the surface tilt angle corresponding to each mirror surface of a polygon mirror, it requires an expensive autocollimator and has the problem that the device configuration becomes large-scale. Furthermore, since the entire surface of the mirror is irradiated with light, there is a problem in that the measurement is susceptible to the influence of light reflected from portions other than the so-called effective mirror surface that is actually used for scanning the light beam.

(発明が解決しようとする課題) 本発明は、従来の方法の上述した問題点を解決し、回転
中の多面鏡の各鏡面間における相対的な面倒れ角を、簡
単に、しかも高精度で測定する方法を提供することを目
的とするものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of the conventional method, and easily and accurately calculates the relative tilt angle between each mirror surface of a rotating polygon mirror. The purpose is to provide a method for measuring.

(課題を解決するための手段) 上述した目的を達成するための本発明は、光ビームを走
査するための多面鏡の各鏡面間における相対的な面倒れ
角を測定するに際し、 イ、 回転中の上記多面鏡に光ビームを照射し、口、 
上記多面鏡による反射ビームをその反射ビームの走査方
向に関して上側および下側に配置した受光素子で受光し
、 ハ、 各上記鏡面について、 a、 上記上側および下側の受光素子の出力が互いに等
しくなるようにそれら上側および下側の受光素子を上下
方向に移動し、b、 その移動後の位置を上記反射ビー
ムの指向位置として、 二、 各上記鏡面間における上記指向位置間距離を面倒
れ角に換算する、 多面鏡の面倒れ角の測定方法を特徴とするものである。
(Means for Solving the Problems) To achieve the above-mentioned objects, the present invention provides the following features when measuring the relative surface inclination angle between each mirror surface of a polygon mirror for scanning a light beam: (a) during rotation; A light beam is irradiated onto the polygon mirror above the mouth,
The reflected beam from the polygon mirror is received by light receiving elements arranged above and below in the scanning direction of the reflected beam, c. For each of the above mirror surfaces, a. The outputs of the above upper and lower light receiving elements are equal to each other. Move the upper and lower light-receiving elements in the vertical direction as shown in FIG. It is characterized by a method of measuring the face tilt angle of a polygon mirror.

(作 用) 本発明においては、回転中の多面鏡の任意の一鏡面に関
して、光ビームを照射するとともに、その反射ビームを
その走査方向に関して上下に配置した受光素子で受光し
、各受光素子の出力が互いに等しくなるよう、それら受
光素子を上下に移動する。そして、その移動後の位置を
上記反射ビームの指向位置とする。
(Function) In the present invention, a light beam is irradiated with respect to an arbitrary mirror surface of a rotating polygon mirror, and the reflected beam is received by light receiving elements arranged above and below in the scanning direction. The light receiving elements are moved up and down so that the outputs are equal to each other. Then, the position after the movement is set as the directional position of the reflected beam.

かかる反射ビームの指向位置を各鏡面についてそれぞれ
求め、各鏡面間における指向位置間距離ΔXと、鏡面か
ら受光素子までの距離りとから、次式に基いて各鏡面間
における面倒れ角θを求める。
The directional position of the reflected beam is determined for each mirror surface, and the surface tilt angle θ between each mirror surface is determined from the distance ΔX between the directional positions between each mirror surface and the distance from the mirror surface to the light receiving element based on the following formula. .

θ=ΔX/2L (実施態様) 第1図において、任意の速度で矢印方向に回転している
多面鏡1(鏡面の数=8)に、光源2がら、レーザビー
ム等の光ビーム3を照射するとともに、多面鏡1による
反射ビーム4を受光部5で受光する。
θ=ΔX/2L (Embodiment) In FIG. 1, a light beam 3 such as a laser beam is irradiated from a light source 2 onto a polygon mirror 1 (number of mirror surfaces = 8) that is rotating in the direction of the arrow at an arbitrary speed. At the same time, the beam 4 reflected by the polygon mirror 1 is received by the light receiving section 5.

受光部5は、第2図に示すように、反射ビームの走査方
向53に関して、北側に位置する受光素子51aと、下
側に位置する受光素子51bとからなっていて、軌跡5
2を描いて走査される反射ビームをこれら上下の受光素
子51a、51bで同時に受光することができるように
なっている。
As shown in FIG. 2, the light receiving section 5 consists of a light receiving element 51a located on the north side and a light receiving element 51b located on the lower side with respect to the scanning direction 53 of the reflected beam.
The reflected beam that is scanned in a pattern of 2 can be simultaneously received by these upper and lower light receiving elements 51a and 51b.

受光部5の操作方向位置により、鏡面内の測定位置が決
定される。
The measurement position within the mirror surface is determined by the position of the light receiving section 5 in the operating direction.

さて、受光部5からは、第3図に示すように、受光素子
51aからの出力aと、受光素子51bからの出力すと
が得られる。そこで、これら両川力a、bをオシロスコ
ープ8で見ながら、両者が互いに等しくなるよう、受光
素子51a、51bを同時に上下方向に移動させる。こ
のとき、出力a、bと各鏡面との対応は次のようにして
とる。
As shown in FIG. 3, the light receiving section 5 obtains an output a from the light receiving element 51a and an output from the light receiving element 51b. Therefore, while observing these forces a and b with the oscilloscope 8, the light receiving elements 51a and 51b are simultaneously moved in the vertical direction so that both forces are equal to each other. At this time, the correspondence between the outputs a and b and each mirror surface is determined as follows.

すなわち、第1図〜第3図において、まず、受光素子5
1a、51bの出力a、bを同期信号発生部7の加算回
路71で加算し、第3図にCで示す信号を得る。次に、
この信号Cを整形回路72で整形してパルス信号dとな
し、さらにそのパルス信号dをカウンタ回路73でカウ
ントして4ビット信号を作り、この4ビット信号に基い
て同期信号発生回路74で多面鏡1の回転周期に等しい
周期をもつ同期信号eを得る。この同期信号eにトリガ
をかけ、信号a、bをオシロスコープ8で見ることによ
って、それら信号a、bと多面鏡1の各鏡面とを対応付
けることができる。
That is, in FIGS. 1 to 3, first, the light receiving element 5
The outputs a and b of the outputs 1a and 51b are added by an adder circuit 71 of the synchronizing signal generating section 7 to obtain a signal shown as C in FIG. next,
This signal C is shaped into a pulse signal d by a shaping circuit 72, and the pulse signal d is further counted by a counter circuit 73 to create a 4-bit signal. A synchronization signal e having a period equal to the rotation period of mirror 1 is obtained. By applying a trigger to this synchronization signal e and viewing the signals a and b with the oscilloscope 8, it is possible to associate the signals a and b with each mirror surface of the polygon mirror 1.

さて、上述したように、2つの受光素子51a、51b
の出力が互いに等しくなるよう、それら両受光素子51
a、51bを上下方向に移動する。
Now, as mentioned above, the two light receiving elements 51a and 51b
Both light receiving elements 51
a and 51b in the vertical direction.

そして、その移動位置を測定・表示部6で読み取れば、
それが反射ビーム4の指向中心位置である。
Then, if the movement position is read by the measurement/display unit 6,
This is the directional center position of the reflected beam 4.

なお、受光素子51a、51bの移動は、受光部5に付
設した、たとえばマイクロメータヘッドによって、また
、移動距離の測定・表示は、たとえばリニアゲージによ
ってそれぞれ行うことができる。
The light receiving elements 51a and 51b can be moved by, for example, a micrometer head attached to the light receiving part 5, and the distance of movement can be measured and displayed by, for example, a linear gauge.

かかる反射ビームの指向位置を各鏡面についてそれぞれ
求め、各鏡面間における指向位置間距離ΔXを求めれば
、それと、多面鏡1の鏡面と受光部5との間の距離りか
ら、上述した式、すなわち、式、 θ=ΔX/2L に基いて面倒れ角を求めることができる。
If the directional position of the reflected beam is determined for each mirror surface and the distance ΔX between the directional positions between each mirror surface is determined, then from this and the distance between the mirror surface of the polygon mirror 1 and the light receiving section 5, the above formula, i.e. , the surface inclination angle can be determined based on the formula, θ=ΔX/2L.

(発明の効果) 本発明は、多面鏡による反射ビームをその反射ビームの
走査方向に関して上側および下側に配置した受光素子で
受光し、各鏡面について、上記上側および下側の受光素
子の出力が互いに等しくなるようにそれら上側および下
側の受光素子を上下方向に移動するとともに、その移動
後の位置を反射ビームの指向位置とし、鏡面間における
指向位置間距離を面倒れ角に換算するから、鏡面の任意
の位置について鏡面間の相対的な面倒れ月を、簡単に、
しかも精度よく求めることができるようになり、上述し
た従来の方法のように、光ビームの強度分布や受光素子
の特性に起因する測定誤差を生ずるようなことがないし
、高価なオートコリメータを必要とすることもない。
(Effects of the Invention) In the present invention, a beam reflected by a polygon mirror is received by light-receiving elements arranged above and below in the scanning direction of the reflected beam, and for each mirror surface, the outputs of the above-mentioned upper and lower light-receiving elements are The upper and lower light-receiving elements are moved in the vertical direction so that they are equal to each other, and the position after the movement is used as the directional position of the reflected beam, and the distance between the directional positions between the mirror surfaces is converted into a surface tilt angle. Easily calculate the relative surface tilt between mirror surfaces for any position of the mirror surfaces.
Moreover, it can be determined with high precision, and unlike the conventional methods mentioned above, there is no measurement error caused by the intensity distribution of the light beam or the characteristics of the photodetector, and there is no need for an expensive autocollimator. There's nothing to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施態様を示す概略ブロック図、
第2図は、受光部と反射ビームの走査方向との関係を示
す、受光部の概略正面図、第3図は、上記第1図に示し
た実施態様Gこおける各部の信号とそのタイミングを示
すチャートである。 1:多面鏡 2:光源 3:光ビーム 4:反射ビーム 5:受光部 51a:上側受光素子 51b:下側受光素子 52 :反射ビームの走査軌跡 53 :反射ビームの走査方向 6:測定・表示部 7:同期信号発生部 71:加算器 72:整形回路 73:カウンタ回路 74 : 同期信号発生回路 ニオシロスコープ
FIG. 1 is a schematic block diagram showing one embodiment of the present invention;
Fig. 2 is a schematic front view of the light receiving part showing the relationship between the light receiving part and the scanning direction of the reflected beam, and Fig. 3 shows the signals and their timings of each part in the embodiment G shown in Fig. 1 above. This is a chart showing. 1: Polygon mirror 2: Light source 3: Light beam 4: Reflected beam 5: Light receiving section 51a: Upper light receiving element 51b: Lower light receiving element 52: Scanning locus of reflected beam 53: Scanning direction of reflected beam 6: Measurement/display section 7: Synchronous signal generation section 71: Adder 72: Shaping circuit 73: Counter circuit 74: Synchronous signal generation circuit Nioscilloscope

Claims (1)

【特許請求の範囲】 光ビームを走査するための多面鏡の各鏡面間における相
対的な面倒れ角を測定するに際し、 イ、回転中の上記多面鏡に光ビームを照射し、 ロ、上記多面鏡による反射ビームをその反射ビームの走
査方向に関して上側および下側に配置した受光素子で受
光し、 ハ、各上記鏡面について、 a、上記上側および下側の受光素子の出力が互いに等し
くなるようにそれら上側および下側の受光素子を上下方
向に移動し、 b、その移動後の位置を上記反射ビームの指向位置とし
て、 各上記鏡面間における上記指向位置間距離を面倒れ角に
換算する、 ことを特徴とする、多面鏡の面倒れ角の測定方法。
[Claims] When measuring the relative angle of inclination between mirror surfaces of a polygon mirror for scanning a light beam, (a) irradiating the rotating polygon mirror with a light beam; (b) irradiating the polygon mirror while it is rotating; The beam reflected by the mirror is received by light receiving elements arranged above and below in the scanning direction of the reflected beam, c. For each of the above mirror surfaces, a. The outputs of the above above upper and lower light receiving elements are made equal to each other. moving the upper and lower light-receiving elements in the vertical direction; b. converting the distance between the pointing positions between each of the mirror surfaces into a surface inclination angle, with the position after the movement as the pointing position of the reflected beam; A method for measuring the tilt angle of a polygon mirror.
JP17306688A 1988-07-11 1988-07-11 Method for measuring surface tilt angle of polygon mirror Pending JPH0222528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17306688A JPH0222528A (en) 1988-07-11 1988-07-11 Method for measuring surface tilt angle of polygon mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17306688A JPH0222528A (en) 1988-07-11 1988-07-11 Method for measuring surface tilt angle of polygon mirror

Publications (1)

Publication Number Publication Date
JPH0222528A true JPH0222528A (en) 1990-01-25

Family

ID=15953578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17306688A Pending JPH0222528A (en) 1988-07-11 1988-07-11 Method for measuring surface tilt angle of polygon mirror

Country Status (1)

Country Link
JP (1) JPH0222528A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023838A1 (en) * 1995-01-31 1996-08-08 Exxon Chemical Patents Inc. Thermoplastic propylene elastomers and one pot/two catalysts process to produce them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996023838A1 (en) * 1995-01-31 1996-08-08 Exxon Chemical Patents Inc. Thermoplastic propylene elastomers and one pot/two catalysts process to produce them

Similar Documents

Publication Publication Date Title
US4660980A (en) Apparatus for measuring thickness of object transparent to light utilizing interferometric method
US20020040971A1 (en) Distance information obtaining apparatus and distance information obtaining method
JPS5999304A (en) Method and apparatus for comparing and measuring length by using laser light of microscope system
JPS6324115A (en) Method and device for measuring flotating quantity of magnetic head
Livingstone et al. Development of a large field of view 3-d vision system
CN112432766A (en) Method for detecting performance of laser scanning galvanometer
JPH0222528A (en) Method for measuring surface tilt angle of polygon mirror
US5307198A (en) Scanner with combined predictive and diffractive feedback control of beam position
US4725146A (en) Method and apparatus for sensing position
JPH02188713A (en) Image forming device
EP0310231B1 (en) Optical measuring apparatus
JP3883083B2 (en) Method for detecting position and orientation of moving object
JPH047803B2 (en)
JP2003075139A (en) Three-dimensional shape measuring device and three- dimensional shape measuring method
JPH06258040A (en) Laser displacement meter
JPH03223630A (en) Method for detecting shape of beam spot
JP2647924B2 (en) Height measuring device
JP2674129B2 (en) Distance measuring device
JPS5826325Y2 (en) position detection device
JPH05332741A (en) Surface form measuring device
JPH04218707A (en) Shape detection device
WO1993000696A1 (en) Optical scanned-beam position sensing system
JPH07294537A (en) Speed and distance detector
JPH0318887Y2 (en)
JPH0749215A (en) Photoelectric length or angle measuring device