JP2003075139A - Three-dimensional shape measuring device and three- dimensional shape measuring method - Google Patents

Three-dimensional shape measuring device and three- dimensional shape measuring method

Info

Publication number
JP2003075139A
JP2003075139A JP2001271745A JP2001271745A JP2003075139A JP 2003075139 A JP2003075139 A JP 2003075139A JP 2001271745 A JP2001271745 A JP 2001271745A JP 2001271745 A JP2001271745 A JP 2001271745A JP 2003075139 A JP2003075139 A JP 2003075139A
Authority
JP
Japan
Prior art keywords
measured
dimensional shape
laser
light receiving
shape measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001271745A
Other languages
Japanese (ja)
Inventor
Masaaki Katsumata
正晃 勝亦
Takayuki Kato
貴幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Engineering Co Ltd
Original Assignee
IHI Aerospace Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Engineering Co Ltd filed Critical IHI Aerospace Engineering Co Ltd
Priority to JP2001271745A priority Critical patent/JP2003075139A/en
Publication of JP2003075139A publication Critical patent/JP2003075139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-dimensional shape measuring device capable of acquiring the whole shape data in a short time, while removing a dead angle generated on a measuring object. SOLUTION: This three-dimensional shape measuring device 1 is equipped with a holding means 2 capable of holding the measuring object 10 and rotating it around a rotation axis 2a, a laser beam source 9 for irradiating the measuring object 10 with a laser beam, a laser floodlight system 3 equipped with a scanning means 11 for changing the irradiation direction of the laser beam at a fixed angle around a laser optical axis 9b of the laser beam, and a light receiving system 4 including a light receiving element 13 for receiving reflected light reflected by the measuring object 10. In the device 1, the rotation axis 2a of the holding means 2, the laser optical axis 9b of the laser floodlight system 3, and a center axis 12a of the light receiving system 4 are arranged on the same plane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、三次元形状の測定
装置および測定方法に関し、とくに、義歯等の歯科用補
綴物を製作する際に用いられる歯型印象模型等の三次元
形状を非接触で測定する三次元形状測定装置および三次
元形状測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional shape measuring apparatus and method, and more particularly, to a non-contact type three-dimensional shape such as a tooth impression model used for manufacturing a dental prosthesis such as a denture. Relates to a three-dimensional shape measuring device and a three-dimensional shape measuring method.

【0002】[0002]

【従来の技術】従来、歯型印象模型等の三次元形状を非
接触で測定するために、種々の装置が使用されている。
例えば、特開平10−332349号公報に記載の三次
元形状測定装置は、XYZC軸(C軸はY軸回りの回転
軸)の移動機構と、レーザ式変位計測センサを備え、予
備測定を実施することなく、一度の測定によって正確な
三次元形状データを得ることができるように構成されて
いる。
2. Description of the Related Art Conventionally, various devices have been used for non-contact measurement of a three-dimensional shape such as a tooth impression model.
For example, the three-dimensional shape measuring apparatus described in Japanese Patent Laid-Open No. 10-332349 includes an XYZC axis (C axis is a rotation axis around the Y axis) moving mechanism and a laser displacement measuring sensor, and performs preliminary measurement. Without this, it is configured so that accurate three-dimensional shape data can be obtained by one measurement.

【0003】また、特開平10−286271号公報に
記載の三次元形状測定装置は、XYZ軸の移動機構と、
レーザ式変位計測センサを備え、可視カメラとレーザセ
ンサヘッドとを、可視カメラの光軸とレーザ光源から投
光されるレーザ光の光軸が平行になるように一体的に固
定することにより、被測定物に生ずる死角等を除去でき
るように構成されている。
The three-dimensional shape measuring apparatus described in Japanese Patent Laid-Open No. 10-286271 has an XYZ axis moving mechanism,
A laser displacement measuring sensor is provided, and the visible camera and the laser sensor head are integrally fixed so that the optical axis of the visible camera and the optical axis of the laser light projected from the laser light source are parallel to each other, and It is configured to be able to remove blind spots and the like that occur in the measured object.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記したよう
な従来の三次元形状測定装置では、歯型印象模型等の被
測定物上のレーザ測定点の全てを機械式の移動機構を用
いて移動させているため、全体の形状データを得るため
に長時間を要するという問題があった。
However, in the conventional three-dimensional shape measuring apparatus as described above, all the laser measuring points on the object to be measured such as the tooth impression model are moved by using the mechanical moving mechanism. Therefore, there is a problem that it takes a long time to obtain the entire shape data.

【0005】また、特開平10−286271号公報に
記載の三次元形状測定装置等では、死角を除去または減
少させるため、受光センサを異なる位置に複数配置する
必要があり、受光部が複雑になるという問題があった。
Further, in the three-dimensional shape measuring apparatus and the like disclosed in Japanese Patent Laid-Open No. 10-286271, it is necessary to dispose a plurality of light receiving sensors at different positions in order to remove or reduce the blind spots, which complicates the light receiving section. There was a problem.

【0006】さらに、レーザ光源と被測定物上のレーザ
照射点と受光センサとで形成される三角形から、受光セ
ンサまたはレーザ光源と、被測定物上のレーザ照射点ま
での距離を求め、被測定物上のレーザ照射点をある基準
点に対する座標に計算し直すことによって直交座標空間
内の座標値を与える距離・座標変換方式である三角測量
方法では、計算が複雑であるために長時間を必要とし、
高速度でレーザ照射点を移動させて連続的に測定するこ
とが困難であるという問題があった。
Further, the distance between the light receiving sensor or the laser light source and the laser irradiation point on the object to be measured is determined from the triangle formed by the laser light source, the laser irradiation point on the object to be measured, and the light receiving sensor, and the measured object is measured. The triangulation method, which is a distance-coordinate conversion method that gives coordinate values in the Cartesian coordinate space by recalculating the laser irradiation point on the object to the coordinates for a certain reference point, requires a long time because the calculation is complicated. age,
There is a problem that it is difficult to move the laser irradiation point at a high speed and continuously measure.

【0007】[0007]

【発明の目的】本発明は、上記従来の問題点に鑑みてな
されたものであって、短時間で全体の形状データを得る
ことができると共に、被測定物に生ずる死角等を除去す
ることが可能な三次元形状測定装置を提供することを目
的とし、また、形状データの取得の簡略化や高速化を実
現することができる三次元形状測定方法を提供すること
を目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is capable of obtaining the entire shape data in a short time and removing the blind spots or the like generated in the object to be measured. It is an object of the present invention to provide a possible three-dimensional shape measuring device, and an object of the present invention is to provide a three-dimensional shape measuring method capable of simplifying and speeding up acquisition of shape data.

【0008】[0008]

【課題を解決するための手段】本発明に係わる三次元形
状測定装置は、請求項1として、被測定物を保持して回
転軸を中心に回転可能な保持手段と、被測定物にレーザ
光を照射するレーザ光源と、レーザ光のレーザ光軸を中
心に一定の角度でレーザ光の照射方向を変更する走査手
段を備えたレーザ投光系と、被測定物で反射した反射光
を受光する受光素子を含む受光系とを備え、保持手段の
回転軸と、レーザ投光系のレーザ光軸と、受光系の中心
軸とを同一面内に配置した構成とし、請求項2として、
被測定物を、歯型印象模型とし、レーザ光によって歯型
印象模型の歯の付け根部を照射可能とした構成としてお
り、上記構成をもって従来の課題を解決するための手段
としている。
According to a first aspect of the present invention, there is provided a three-dimensional shape measuring apparatus according to the first aspect of the present invention, wherein a holding means for holding an object to be measured and rotating about a rotation axis, and a laser beam to the object to be measured. A laser light source for irradiating the laser beam, a laser projection system having a scanning means for changing the irradiation direction of the laser beam at a constant angle around the laser optical axis of the laser beam, and the reflected light reflected by the object to be measured. A light receiving system including a light receiving element, wherein the rotation axis of the holding means, the laser optical axis of the laser projecting system, and the central axis of the light receiving system are arranged in the same plane.
The object to be measured is a tooth-shaped impression model, and the base of the tooth of the tooth-shaped impression model can be irradiated with laser light. The above-mentioned configuration is a means for solving the conventional problems.

【0009】また、本発明に係わる三次元形状測定方法
は、請求項1または2に記載の三次元形状測定装置を用
いて三次元形状の被測定物を測定するに際し、標準の被
測定物に照射角度を変化させてレーザ光を照射し、反射
された反射光を受光した受光素子の出力信号値と照射角
度とに対応する標準被測定物の座標とを網羅したデータ
テーブルを用意し、測定対象の被測定物に照射角度を変
化させてレーザ光を照射し、各々の照射角度における受
光素子の出力信号値と、標準の被測定物の出力信号値と
を比較し、被測定物の出力信号値に対応する標準被測定
物の座標を、測定対象の被測定物の出力信号値を用いて
補間することにより、測定対象の被測定物の三次元形状
データを得ることを特徴としている。
Further, the three-dimensional shape measuring method according to the present invention uses a standard three-dimensional object when measuring the three-dimensional object using the three-dimensional shape measuring apparatus according to claim 1 or 2. Prepare a data table that covers the output signal value of the light receiving element that received the reflected light reflected by the laser beam with different irradiation angles and the coordinates of the standard DUT corresponding to the irradiation angle, and then perform the measurement. The laser beam is emitted to the object to be measured by changing the irradiation angle, the output signal value of the light receiving element at each irradiation angle is compared with the output signal value of the standard object to be measured, and the output of the object to be measured is compared. It is characterized in that the coordinates of the standard object to be measured corresponding to the signal value are interpolated using the output signal value of the object to be measured to obtain three-dimensional shape data of the object to be measured.

【0010】[0010]

【発明の効果】本発明の請求項1に係わる三次元形状測
定装置によれば、機械的に動くのが被測定物の保持手段
のみとなり、測定機器の移動に要する時間を大幅に短縮
することができ、短時間で全体の形状データを得ること
ができる。
According to the three-dimensional shape measuring apparatus of the first aspect of the present invention, only the means for holding the object to be mechanically moved mechanically, and the time required for moving the measuring device can be greatly reduced. The entire shape data can be obtained in a short time.

【0011】本発明の請求項2に係わる三次元形状測定
装置によれば、請求項1と同様の効果を得ることができ
るうえに、従来の方法で生ずる被測定物の死角を除去し
ながら、短時間で全体の形状データを得ることができ
る。これにより、被測定物である歯型印象模型の歯の付
け根部において、とくに高い精度が要求されるマージン
ラインすなわち支台歯における歯冠との接合ラインの部
分などを高精度に測定することができる。
According to the three-dimensional shape measuring apparatus of the second aspect of the present invention, the same effect as that of the first aspect can be obtained, and at the same time, the blind spot of the object to be measured generated by the conventional method is removed. The entire shape data can be obtained in a short time. As a result, it is possible to measure with high accuracy a margin line that requires particularly high accuracy, that is, a part of the joining line with the crown of the abutment tooth, at the root of the tooth of the tooth impression model that is the object to be measured. it can.

【0012】本発明の請求項3に係わる三次元形状測定
方法によれば、三角測量法と距離・座標変換方式を用い
ずに、受光センサからの電気信号から直接的に座標を求
めるため、簡単で且つ高速な座標計算によって被測定物
の三次元形状データを得ることができる。
According to the three-dimensional shape measuring method of the third aspect of the present invention, the coordinates are directly obtained from the electric signal from the light receiving sensor without using the triangulation method and the distance / coordinate conversion method. In addition, the three-dimensional shape data of the object to be measured can be obtained by high-speed coordinate calculation.

【0013】[0013]

【実施例】次に、図面に基づいて、本発明に係わる三次
元形状測定装置の一実施例および三次元形状測定方法実
施を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a three-dimensional shape measuring apparatus and a three-dimensional shape measuring method according to the present invention will be described below with reference to the drawings.

【0014】図1は、本発明に係わる三次元形状測定装
置の一実施例を示し、この三次元形状測定装置1は、被
測定物としての歯型印象模型(以下「印象模型」と略称
する)10および隣接歯14、15を載置して保持する
保持手段としての回転テーブル2と、レーザ光源9およ
びポリゴンミラー11を備えたレーザ投光系3と、印象
模型10で反射した反射光を集光する受光系光学レンズ
12および光検出素子13を備えたレーザ受光系4と、
三次元形状測定装置1を操作するための表示/操作用タ
ッチパネルLCD5と、光検出素子13の検出値等から
印象模型10の形状を演算するとともに三次元形状測定
装置1全体を制御する形状演算・制御部6と、得られた
三次元形状データをLANまたは電話回線等の通信回線
8を介してパーソナルコンピュータやサーバーに送信す
る通信制御部7とで構成される。
FIG. 1 shows an embodiment of a three-dimensional shape measuring apparatus according to the present invention. This three-dimensional shape measuring apparatus 1 is a tooth-shaped impression model (hereinafter referred to as "impression model") as an object to be measured. ) 10 and the rotating table 2 as a holding means for holding and holding the adjacent teeth 14 and 15, the laser projection system 3 including the laser light source 9 and the polygon mirror 11, and the reflected light reflected by the impression model 10. A laser light receiving system 4 including a light receiving system optical lens 12 for condensing and a light detecting element 13,
A display / operation touch panel LCD 5 for operating the three-dimensional shape measuring apparatus 1 and a shape calculation for controlling the entire three-dimensional shape measuring apparatus 1 while calculating the shape of the impression model 10 from the detection value of the light detection element 13 and the like. It is composed of a control unit 6 and a communication control unit 7 that transmits the obtained three-dimensional shape data to a personal computer or a server via a communication line 8 such as a LAN or a telephone line.

【0015】回転テーブル2は、鉛直軸回りに回転可能
な円板状に形成され、回転テーブル2の天板には、測定
対象となる印象模型10および隣接歯14、15が固定
される。なお、測定の際には、隣接歯14、15はレー
ザ光軸と受光軸を遮らないように移動させる。
The rotary table 2 is formed in a disk shape rotatable about a vertical axis, and the impression model 10 and the adjacent teeth 14, 15 to be measured are fixed to the top plate of the rotary table 2. In the measurement, the adjacent teeth 14 and 15 are moved so as not to block the laser optical axis and the light receiving axis.

【0016】レーザ投光系3は、図1および図2に示す
ように、レーザ光源9とポリゴンミラー(図2にはミラ
ー面のみを表示)11を備えており、ポリゴンミラー1
1の回転に応じてレーザ光の照射方向が移動し、スキャ
ニング動作を行うように構成される。なお、図2では、
スキャニング角度θが45°で、この角度を中心にして
左右10°の幅で走査することができる。
As shown in FIGS. 1 and 2, the laser projecting system 3 includes a laser light source 9 and a polygon mirror (only the mirror surface is shown in FIG. 2) 11.
The irradiation direction of the laser beam moves according to the rotation of 1, and the scanning operation is performed. In addition, in FIG.
The scanning angle θ is 45 °, and scanning can be performed with a width of 10 ° to the left and right around this angle.

【0017】レーザ受光系4は、図1および図2に示す
ように、光学レンズ12および光検出素子13とを備
え、印象模型10で反射した反射光を受光して、後述す
る要領で印象模型10の三次元座標を得る。図2では、
視野角が11.3°で、図中の一点鎖線19で示したラ
インがレーザ・受光系焦点ラインとなり、ハッチング領
域16が高精度計測範囲、ハッチング領域17、18が
有効計測範囲となる。
As shown in FIGS. 1 and 2, the laser receiving system 4 is provided with an optical lens 12 and a light detecting element 13, receives the reflected light reflected by the impression model 10 and, as will be described later, the impression model. Obtain 10 three-dimensional coordinates. In Figure 2,
The viewing angle is 11.3 °, the line shown by the alternate long and short dash line 19 in the drawing is the focus line of the laser / light receiving system, the hatched region 16 is the high precision measurement range, and the hatched regions 17 and 18 are the effective measurement range.

【0018】なお、印象模型10においてとくに高い測
定精度が要求される付け根部に確実にレーザビームスポ
ットが当たり、且つ印象模型10からの拡散反射光を光
検出素子13に入射させるため、図1に示すように、レ
ーザ光源9および光検出素子13を印象模型10に対し
て斜め位置とし、且つレーザ光源9からのレーザ光軸9
bと、図2および図3に示す光学レンズ12の中心軸1
2aと、回転テーブル2の回転軸2aとが同一の垂直面
内になるように配置する。
It should be noted that the laser beam spot surely hits the base portion of the impression model 10 which requires particularly high measurement accuracy, and the diffuse reflection light from the impression model 10 is incident on the photodetecting element 13. As shown, the laser light source 9 and the light detection element 13 are placed at an oblique position with respect to the impression model 10, and the laser optical axis 9 from the laser light source 9 is arranged.
b and the central axis 1 of the optical lens 12 shown in FIGS. 2 and 3.
2a and the rotary shaft 2a of the rotary table 2 are arranged in the same vertical plane.

【0019】次に、上記構成を有する三次元形状測定装
置1の動作について説明する。
Next, the operation of the three-dimensional shape measuring apparatus 1 having the above structure will be described.

【0020】図3に示すように、印象模型10を回転テ
ーブル2の中心部へ固定し、ポリゴンミラー11を回転
または振動させることによってレーザ光源(光軸9b)
9からのレーザビームスポットを回転テーブル2の回転
軸2aを通る線上で印象模型10上に移動させて走査す
る。ここで、レーザ光源9は連続光とせず、所定の微小
な走査角度に同期してパルス変調された間歇光とする。
As shown in FIG. 3, the impression model 10 is fixed to the central portion of the rotary table 2 and the polygon mirror 11 is rotated or vibrated to generate a laser light source (optical axis 9b).
The laser beam spot from 9 is moved on the impression model 10 on a line passing through the rotary shaft 2a of the rotary table 2 for scanning. Here, the laser light source 9 is not continuous light, but intermittent light pulse-modulated in synchronization with a predetermined minute scanning angle.

【0021】光検出素子13の2つの出力(Ia、1
b)とスキャニング角度(θ)データから、XY平面座
標上のレーザスポットの当たっている位置座標P(x、
y)を次の要領で求める。
Two outputs (Ia, 1
From b) and the scanning angle (θ) data, the position coordinate P (x,
y) is calculated as follows.

【0022】まず、上記スキャニング角度θと、スキャ
ニング中心座標9aからレーザビーム直線式を求める。
次に、光検出素子13の2つの出力(Ia、1b)から
得られる受光面の位置13aと受光系光学レンズ12の
中心を通る反射光軸12aの直線式から反射光軸直線式
を求める。そして、両直線の交点P(x、y)を二元連
立方程式を解いて求めることができる。この動作を、ス
キャニング角度θを変化させながら、回転テーブル2を
360°回転させて行うことにより印象模型10の全体
の三次元形状データを得ることができる。
First, a laser beam linear equation is obtained from the scanning angle θ and the scanning center coordinates 9a.
Next, the reflected light axis linear formula is obtained from the position 13a of the light receiving surface obtained from the two outputs (Ia, 1b) of the light detection element 13 and the linear formula of the reflected light axis 12a passing through the center of the light receiving system optical lens 12. Then, the intersection point P (x, y) of both straight lines can be obtained by solving the simultaneous equations of binary. This operation is performed by rotating the rotary table 2 by 360 ° while changing the scanning angle θ, so that the three-dimensional shape data of the entire impression model 10 can be obtained.

【0023】ここで、印象模型10の形状測定の前に、
予め形状(座標)の分かっている標準形状テストピース
(以下「テストピース」と略称する)を複数用意し、当
該テストピースの表面に上記間歇レーザビームを走査し
て得られる光検出素子13の出力信号値(Ia、Ib)
と、当該テストピース上に幾何学的に決定されるレーザ
ビームスポットの座標値(x、y)とを対応させ、標準
座標テーブルを作成して形状演算・制御部6(図1)に
記憶させる。そして、印象模型10の測定時に、上記の
要領で取得したデータ(Ia、Ib、θ)を標準座標テ
ーブルを用いて補正して、座標の不明な印象模型10に
照射されたレーザビームスポットの座標を求める。
Before measuring the shape of the impression model 10,
Output of the photodetector element 13 obtained by preparing a plurality of standard shape test pieces (hereinafter abbreviated as “test pieces”) whose shapes (coordinates) are known in advance and scanning the surface of the test pieces with the intermittent laser beam. Signal value (Ia, Ib)
And the coordinate values (x, y) of the laser beam spot geometrically determined on the test piece are made to correspond to each other, and a standard coordinate table is created and stored in the shape calculation / control unit 6 (FIG. 1). . Then, when the impression model 10 is measured, the data (Ia, Ib, θ) acquired in the above manner is corrected using the standard coordinate table, and the coordinates of the laser beam spot irradiated to the impression model 10 whose coordinates are unknown. Ask for.

【0024】より具体的には、図5に示すような平面的
なテストピースを用い、図4に示すように、スキャニン
グ角度θと、以下の式によって算出されたs値の2つの
データとX−Y座標の対応データテーブルを予め作成
し、測定時に取得したIa、Ibよりs値を算出し、当
該スキャニング角度θ(図示例では、θ=θ)におい
て算出したs値(測定値)がテストピースのs値との間
に入る2つのテストピースを定め(図示例では、No.
2とNo.3)、これらの2つのテーブルのXY座標を
補間して、測定点P(x、y)の校正済み座標とする。
More specifically, a plane test piece as shown in FIG. 5 is used, and as shown in FIG. 4, the scanning angle θ and two data of the s value calculated by the following equation and X A corresponding data table of the −Y coordinate is created in advance, the s value is calculated from Ia and Ib acquired at the time of measurement, and the s value (measured value) calculated at the scanning angle θ (θ = θ 3 in the illustrated example) is Two test pieces that fall between the s value of the test piece and the s value are determined (No.
2 and No. 3) The XY coordinates of these two tables are interpolated to obtain the calibrated coordinates of the measurement point P (x, y).

【0025】 s=(Ia−1b)/(Ia+1b) …(式1)[0025]               s = (Ia-1b) / (Ia + 1b) (Equation 1)

【0026】これによって、三角測量法と距離・座標変
換方式を用いることなく直交座標空間内の正確な座標値
を求めることができる。
This makes it possible to obtain accurate coordinate values in the orthogonal coordinate space without using the triangulation method and the distance / coordinate conversion method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる三次元形状測定装置の一実施例
の全体構成を示す概略図である。
FIG. 1 is a schematic diagram showing an overall configuration of an embodiment of a three-dimensional shape measuring apparatus according to the present invention.

【図2】図1の三次元形状測定装置の光学系のレイアウ
ト図である。
FIG. 2 is a layout diagram of an optical system of the three-dimensional shape measuring apparatus of FIG.

【図3】図1の三次元形状測定装置を用いて三次元形状
データを得る計算アルゴリズムを説明するための概略図
である。
FIG. 3 is a schematic diagram for explaining a calculation algorithm for obtaining three-dimensional shape data using the three-dimensional shape measuring apparatus of FIG.

【図4】図1の三次元形状測定装置を用いて三次元形状
データを得るためのデータテーブルを示す図である。
FIG. 4 is a diagram showing a data table for obtaining three-dimensional shape data using the three-dimensional shape measuring apparatus of FIG.

【図5】図4のデータテーブルを作成するためのテスト
ピース、及び被測定物の三次元形状データ得るステップ
を説明するための概略図である。
5 is a schematic diagram for explaining a test piece for creating the data table of FIG. 4 and a step of obtaining three-dimensional shape data of a measured object.

【符号の説明】[Explanation of symbols]

1 三次元形状測定装置 2 回転テーブル 2a 回転軸 3 レーザ投光系 4 レーザ受光系 5 表示/操作用タッチパネルLCD 6 形状演算・制御部 7 通信制御部 8 通信回線 9 レーザ光源 9a スキャニング中心座標 9b レーザ光軸 10 印象模型 11 ポリゴンミラー 12 受光系光学レンズ 12a 中心軸 13 光検出素子 13a 受光面位置 14 隣接歯 15 隣接歯 16 高精度計測範囲 17 有効計測範囲 18 有効計測範囲 19 レーザ・受光系焦点ライン 1 Three-dimensional shape measuring device 2 turntable 2a rotating shaft 3 Laser projection system 4 Laser receiving system 5 Display / operation touch panel LCD 6 Shape calculation / control unit 7 Communication control unit 8 communication lines 9 Laser light source 9a Scanning center coordinates 9b Laser optical axis 10 impression model 11 polygon mirror 12 Light receiving system optical lens 12a central axis 13 Photodetector 13a Light receiving surface position 14 adjacent teeth 15 adjacent teeth 16 High-precision measurement range 17 Effective measurement range 18 Effective measurement range 19 Laser / light receiving system focal line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 貴幸 群馬県富岡市藤木900番地 株式会社ア イ・エイチ・アイ・エアロスペース・エン ジニアリング内 Fターム(参考) 2F065 AA04 AA53 CC16 DD06 GG04 HH04 HH14 KK02 LL14 MM04 PP13 QQ04 QQ13 QQ25 RR08 4C052 AA20 LL08 NN01 NN15 NN16   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takayuki Kato             900 Fujiki, Tomioka City, Gunma Prefecture             Lee H. I Aerospace En             Inside the genie ring F term (reference) 2F065 AA04 AA53 CC16 DD06 GG04                       HH04 HH14 KK02 LL14 MM04                       PP13 QQ04 QQ13 QQ25 RR08                 4C052 AA20 LL08 NN01 NN15 NN16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定物を保持して回転軸を中心に回転
可能な保持手段と、被測定物にレーザ光を照射するレー
ザ光源と、レーザ光のレーザ光軸を中心に一定の角度で
レーザ光の照射方向を変更する走査手段を備えたレーザ
投光系と、被測定物で反射した反射光を受光する受光素
子を含む受光系とを備え、保持手段の回転軸と、レーザ
投光系のレーザ光軸と、受光系の中心軸とを同一面内に
配置したことを特徴とする三次元形状測定装置。
1. A holding means for holding an object to be measured and rotatable about a rotation axis, a laser light source for irradiating the object to be measured with laser light, and a laser light axis of the laser light at a constant angle. A laser projecting system having a scanning means for changing the irradiation direction of the laser light, and a light receiving system including a light receiving element for receiving the reflected light reflected by the object to be measured are provided. A three-dimensional shape measuring apparatus characterized in that the laser optical axis of the system and the central axis of the light receiving system are arranged in the same plane.
【請求項2】 被測定物は、歯型印象模型であって、レ
ーザ光によって歯型印象模型の歯の付け根部を照射可能
としたことを特徴とする請求項1に記載の三次元形状測
定装置。
2. The three-dimensional shape measurement according to claim 1, wherein the object to be measured is a tooth impression model, and the root of the tooth of the tooth impression model can be irradiated with laser light. apparatus.
【請求項3】 請求項1または2に記載の三次元形状測
定装置を用いて三次元形状の被測定物を測定するに際
し、標準の被測定物に照射角度を変化させてレーザ光を
照射し、反射された反射光を受光した受光素子の出力信
号値と照射角度とに対応する標準被測定物の座標とを網
羅したデータテーブルを用意し、測定対象の被測定物に
照射角度を変化させてレーザ光を照射し、各々の照射角
度における受光素子の出力信号値と、標準の被測定物の
出力信号値とを比較し、被測定物の出力信号値に対応す
る標準被測定物の座標を、測定対象の被測定物の出力信
号値を用いて補間することにより、測定対象の被測定物
の三次元形状データを得ることを特徴とする三次元形状
測定方法。
3. When measuring a three-dimensional object to be measured using the three-dimensional shape measuring apparatus according to claim 1, a standard object is irradiated with laser light while changing an irradiation angle. Prepare a data table that covers the output signal value of the light receiving element that receives the reflected reflected light and the coordinates of the standard measured object corresponding to the irradiation angle, and change the irradiation angle for the measured object. Laser light is emitted, the output signal value of the light receiving element at each irradiation angle is compared with the output signal value of the standard DUT, and the coordinates of the standard DUT corresponding to the output signal value of the DUT are compared. Is obtained using the output signal value of the measured object to be measured to obtain three-dimensional shape data of the measured object to be measured.
JP2001271745A 2001-09-07 2001-09-07 Three-dimensional shape measuring device and three- dimensional shape measuring method Pending JP2003075139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271745A JP2003075139A (en) 2001-09-07 2001-09-07 Three-dimensional shape measuring device and three- dimensional shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271745A JP2003075139A (en) 2001-09-07 2001-09-07 Three-dimensional shape measuring device and three- dimensional shape measuring method

Publications (1)

Publication Number Publication Date
JP2003075139A true JP2003075139A (en) 2003-03-12

Family

ID=19097212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271745A Pending JP2003075139A (en) 2001-09-07 2001-09-07 Three-dimensional shape measuring device and three- dimensional shape measuring method

Country Status (1)

Country Link
JP (1) JP2003075139A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054637A (en) * 2005-08-24 2007-03-08 Degudent Gmbh Method to determine shape of object for dental technical processing and apparatus to execute above method
KR101100443B1 (en) * 2010-01-28 2011-12-29 현대제철 주식회사 Measurement method for surface profile of slab
KR101505529B1 (en) 2014-06-21 2015-03-25 주식회사 디오에프연구소 A table for 3D scanning tooth structure model
WO2021008436A1 (en) * 2019-07-12 2021-01-21 先临三维科技股份有限公司 Denture support mechanism, three-dimensional denture scanner, and control method thereof
KR20220169804A (en) * 2021-06-21 2022-12-28 주식회사 메디트 An intraoral image processing apparatus, an intraoral image processing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054637A (en) * 2005-08-24 2007-03-08 Degudent Gmbh Method to determine shape of object for dental technical processing and apparatus to execute above method
KR101100443B1 (en) * 2010-01-28 2011-12-29 현대제철 주식회사 Measurement method for surface profile of slab
KR101505529B1 (en) 2014-06-21 2015-03-25 주식회사 디오에프연구소 A table for 3D scanning tooth structure model
WO2015194914A1 (en) * 2014-06-21 2015-12-23 주식회사 디오에프연구소 Table for 3d scanning of tooth structure model
WO2021008436A1 (en) * 2019-07-12 2021-01-21 先临三维科技股份有限公司 Denture support mechanism, three-dimensional denture scanner, and control method thereof
KR20220169804A (en) * 2021-06-21 2022-12-28 주식회사 메디트 An intraoral image processing apparatus, an intraoral image processing method
KR102613531B1 (en) 2021-06-21 2023-12-14 주식회사 메디트 An intraoral image processing apparatus, an intraoral image processing method

Similar Documents

Publication Publication Date Title
JPH1183438A (en) Position calibration method for optical measuring device
JPS60149905A (en) Device for obtaining stereo coordinate of point on part
JP3678915B2 (en) Non-contact 3D measuring device
US20180263482A1 (en) Structured light generation for intraoral 3d camera using 1d mems scanning
KR20140028839A (en) Automatic scanning system for oral cavity
JP2017516105A (en) Robust index correction of angle encoders using analog signals
JPH05332731A (en) Form measuring device
JPH0348531B2 (en)
JPH07117389B2 (en) Optical measuring method and measuring apparatus for objective
JP7223939B2 (en) Shape measuring machine and its control method
JP2003075139A (en) Three-dimensional shape measuring device and three- dimensional shape measuring method
JP2003130688A (en) Rotary encoder device
JP3768822B2 (en) 3D measuring device
JP2001183117A (en) Instrument and method for measuring surface shape
JP3175393B2 (en) Distance measuring method and device
JPS6244203B2 (en)
JP2987540B2 (en) 3D scanner
JPS6055211A (en) Contactless three-dimensional measuring device
TWI247095B (en) Optical revolving spindle error measurement device
JP2005189205A (en) Three-dimensional shape measuring apparatus and method
JPH047803B2 (en)
JPH0324603B2 (en)
JPS59212703A (en) Detector for position of spot light
JPH09189545A (en) Distance measuring device
JP3724162B2 (en) Laser scanning device and shape measuring device