JPH02224811A - Thickness control method of reversible rolling mill - Google Patents

Thickness control method of reversible rolling mill

Info

Publication number
JPH02224811A
JPH02224811A JP1044965A JP4496589A JPH02224811A JP H02224811 A JPH02224811 A JP H02224811A JP 1044965 A JP1044965 A JP 1044965A JP 4496589 A JP4496589 A JP 4496589A JP H02224811 A JPH02224811 A JP H02224811A
Authority
JP
Japan
Prior art keywords
plate thickness
thickness
rolling
load
reel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1044965A
Other languages
Japanese (ja)
Inventor
Toshiya Oi
大井 俊哉
Masaaki Okamoto
真明 岡本
Ichiro Ueda
一郎 上田
Tomoaki Kawabata
川畑 友明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1044965A priority Critical patent/JPH02224811A/en
Publication of JPH02224811A publication Critical patent/JPH02224811A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To enable the thickness control of high accuracy and high speed responsiveness by feedbacking load signals to a screw down position for the purpose of assisting the responsiveness using the current of reel motor as the main manipulated variable of thickness control. CONSTITUTION:A steel hoop 2 is rolled from an uncoiling reel 3 through a rolling mill 1 and is taken up with a coiling reel 4. At that time, the thickness of the rolled steel hoop 2 is measured with a thickness meter 6 and is output to a thickness control arithmetic unit 7 as thickness deviation signals. The thickness control arithmetic unit 7 receives the thickness deviation signals and the calculation to eliminate the fluctuation of thickness at the exit is done and motor current correcting signals are output to a current controller 8 for the reel motor. And then, rolling load signals detected with a load cell 9 are output to a load feedback arithmetic unit 11 and the rolling load signals are processed by multiplying them by a proper coefficient. Those results are output to the screw down position control device 12 and the screw down position of roll is corrected with a screw down device 10.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、可逆式冷間圧延機の板厚制御技術に係り、
板厚制御の動特性を大幅に改善することによって高い板
厚精度が得られる板厚制御方法に関する。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a plate thickness control technology for a reversible cold rolling mill.
The present invention relates to a plate thickness control method that achieves high plate thickness accuracy by significantly improving the dynamic characteristics of plate thickness control.

従来の技術 可逆式圧延機にあける従来の板厚制御方法としては、板
厚制御の操作量としてロール圧下位置とリールモーター
が用いられている(特公昭59−1484号公報参照)
Conventional technology The conventional method for controlling plate thickness in a reversible rolling mill uses the roll reduction position and reel motor as the manipulated variables for plate thickness control (see Japanese Patent Publication No. 1484/1984).
.

この方法は、材料の塑性係数が小さい場合には、板厚偏
差信号に基づいてロール圧下位置を修正することによっ
て板厚制御を行ない、材料の塑性係数が大きい場合には
、板厚偏差信号に基づいてリールモーター電流を修正す
ることによって板厚制御を行なうものである。
In this method, when the plastic coefficient of the material is small, the plate thickness is controlled by correcting the roll reduction position based on the plate thickness deviation signal, and when the plastic coefficient of the material is large, the plate thickness is controlled based on the plate thickness deviation signal. The plate thickness is controlled by modifying the reel motor current based on this.

すなわち、従来の方法はロール圧下位置とリールモータ
ー電流の2つの操作量を材料の硬さに応じて使い分けて
いるのである。
In other words, in the conventional method, two manipulated variables, the roll lowering position and the reel motor current, are used depending on the hardness of the material.

一方、冷延鋼板に要求される板厚精度がますます厳しく
なってきており、それに伴い板厚制m装置に要求される
特性もいかに高速で応答するかが最重要課題となってき
ている。すなわち、応答の速い板厚制御を実施すること
によって高板厚精度の鋼板を製造することが必要となっ
てきたのである。
On the other hand, the thickness accuracy required for cold-rolled steel sheets is becoming increasingly strict, and with this, the most important issue is how quickly the characteristics required for sheet thickness control devices can respond. In other words, it has become necessary to manufacture steel plates with high plate thickness accuracy by implementing plate thickness control with quick response.

このような観点から見ると、前記従来技術ではかかる要
求に十分に対応できないという問題がおる。
From this point of view, there is a problem that the above-mentioned conventional techniques cannot sufficiently meet such demands.

すなわち、従来法はロール圧下位置、リールモーター電
流のどちらを板厚制御の操作量として用いても、その応
答性が非常に悪いという欠点を有するからである。
That is, the conventional method has a drawback in that the responsiveness is very poor regardless of whether the roll reduction position or the reel motor current is used as the manipulated variable for sheet thickness control.

第5図は従来法によるリールモーター電流とロール圧下
位置の応答性を示す図で、(A>はリールモーター電流
をステップ状に変化させた時の出口板厚の応答性を測定
した図、(B)はロール圧下位置をステップ状に変化さ
せた時の出口板厚の応答性を測定した図でおる。
Figure 5 is a diagram showing the responsiveness of the reel motor current and roll reduction position according to the conventional method. B) is a diagram in which the responsiveness of the outlet plate thickness was measured when the roll rolling position was changed stepwise.

この図から明らかなごとく、いずれの場合も出口板厚が
定常状態に達するまでに約0.7秒かかつており、この
ような応答性の悪い操作量を用いて高精度の板厚制御を
行なうことは不可能である。
As is clear from this figure, it takes approximately 0.7 seconds for the exit plate thickness to reach a steady state in either case, and highly accurate plate thickness control is performed using such a manipulated variable with poor response. That is impossible.

発明が解決しようとする課題 この発明は、単に材料の硬さに応じてロール圧下位置と
リールモーター電流を修正する従来法の、圧延機出口板
厚が定常状態に達するまでに時間がかかり過ぎるという
欠点を解消し、高速の応答性で高精度の板厚制御を行な
い得る可逆圧延機の板厚制御方法を提案しようとするも
のでおる。
Problems to be Solved by the Invention This invention solves the problem that the conventional method of simply adjusting the roll reduction position and reel motor current according to the hardness of the material takes too long for the plate thickness at the exit of the rolling mill to reach a steady state. The purpose of this paper is to propose a method for controlling plate thickness of a reversing rolling mill, which eliminates the drawbacks and allows high-accuracy plate thickness control with high-speed response.

課題を解決するための手段 この発明は、板厚制御の主操作量としてリールモーター
電流を用い、その応答性を補助する目的で荷重信号を圧
下位置にフィードバックし、板厚制御の応答性を高める
方法である。
Means for Solving the Problems This invention uses a reel motor current as the main manipulated variable for plate thickness control, and feeds back a load signal to the rolling position for the purpose of assisting the responsiveness, thereby increasing the responsiveness of plate thickness control. It's a method.

すなわち、この発明は実測おるいは予測演算した板厚偏
差信号に基づいてリールモーター電流を修正すると同時
に、圧延荷重信号に基づいてロール圧下位置を修正する
ことを翌日とするものであり、ロール圧下位置の修正に
ついては圧延荷重実測値がある基準値(ロックオン値)
から小さくなった量に比例してロール圧下位置を開方向
に修正する方法である。
That is, in this invention, the reel motor current is corrected based on the actually measured or predicted plate thickness deviation signal, and at the same time, the roll rolling position is corrected on the next day based on the rolling load signal. For position correction, use the reference value (lock-on value) with the actual rolling load value.
In this method, the roll-down position is corrected in the opening direction in proportion to the amount by which the roll is reduced.

作   用 板厚偏差は板厚計により実測するか、あるいは計算によ
り求めたゲージメータ板厚またはマスフロー板厚等の計
算板厚を用いて演算により求めた出口板厚偏差を用いる
ことができる。
The working plate thickness deviation can be actually measured using a plate thickness meter, or the exit plate thickness deviation obtained by calculation using a calculated plate thickness such as a gauge meter plate thickness or a mass flow plate thickness can be used.

なお、ゲージメータ板厚とマスフロー板厚は下記式によ
り求めることができる。
Note that the gauge meter plate thickness and the mass flow plate thickness can be determined using the following formulas.

hg = S + −+ S。hg = S + - + S.

hg:ゲージメータ板厚 S°圧下位置 P:圧延荷重 M°ミル剛性係数 So ’圧下位置ゼロ点補正量 i hm = −H hm:マス70−板厚 H:入口板厚 vi:入口板速度 vO:出口板速度 リールモーター電流を用いて板厚制御を行なう場合は、
板厚計により実測した板厚偏差、あるいは前記計算板厚
を用いて演算して求めた出口板厚偏差に基づき、出口板
厚変動をなくすための演算を行ない、リールモーター電
流を修正する。
hg: Gauge meter plate thickness S° Rolling position P: Rolling load M° Mill rigidity coefficient So ' Rolling position zero point correction amount i hm = -H hm: Mass 70 - plate thickness H: Inlet plate thickness vi: Inlet plate speed vO : When controlling the plate thickness using the exit plate speed reel motor current,
Based on the plate thickness deviation actually measured by the plate thickness meter or the outlet plate thickness deviation calculated using the calculated plate thickness, a calculation is performed to eliminate the outlet plate thickness variation, and the reel motor current is corrected.

圧延荷重信号はロードセルで検出し、この圧延荷重信号
に係数を乗算し、その結果に基づいて圧下位置をフィー
ドバック制御する。
The rolling load signal is detected by a load cell, the rolling load signal is multiplied by a coefficient, and the rolling position is feedback-controlled based on the result.

圧下位置修正の極性は、圧延荷重が低くなったときに圧
下位置を開方向に修正し、圧延荷重が増加すると圧下位
置を閉方向に修正する。
The polarity of the rolling position correction is such that when the rolling load becomes low, the rolling position is corrected in the open direction, and when the rolling load increases, the rolling position is corrected in the closing direction.

リールモーター電流が小さくなると、張力が次第に下が
り出口板厚が増加し始める。このときに圧延荷重も増加
し始めるので、圧下位置は閉方向に動作する。その結果
、圧延荷重および出口板厚の変化量が小さくなり、出口
板厚が定常状態に達するまでの時間が短かくなるのであ
る。
As the reel motor current decreases, the tension gradually decreases and the outlet plate thickness begins to increase. At this time, the rolling load also starts to increase, so the rolling position moves in the closing direction. As a result, the amount of change in the rolling load and outlet plate thickness becomes smaller, and the time it takes for the outlet plate thickness to reach a steady state becomes shorter.

実  施  例 第1図はこの発明方法を実施するための装置構成例を示
す図で、(1)は可逆式圧延機、(2)は鋼帯、(3)
は巻戻リール、(4)は巻取リール、(5)はリールモ
ーター、(6)は板厚計、(′7)は板厚制御演算装置
、(8)はリールモーター電流制御装置、(9)はロー
ドセル、(0)は圧下装置、(11)は荷重フィードバ
ック演算装置、(12)は圧下位置制御装置でおる。
Embodiment Figure 1 is a diagram showing an example of the configuration of equipment for carrying out the method of this invention, in which (1) is a reversible rolling mill, (2) is a steel strip, and (3) is a reversible rolling mill.
is a rewinding reel, (4) is a take-up reel, (5) is a reel motor, (6) is a plate thickness gauge, ('7) is a plate thickness control calculation device, (8) is a reel motor current control device, ( 9) is a load cell, (0) is a lowering device, (11) is a load feedback calculation device, and (12) is a lowering position control device.

すなわち、銅帯(2)は巻戻リール(3)から圧延機(
1)を経て圧延され、巻取リール(4)に巻取られる。
That is, the copper strip (2) is transferred from the unwinding reel (3) to the rolling mill (
1) and then rolled onto a take-up reel (4).

このとき、圧延された鋼帯(2)の板厚は板厚計(6)
で計測され、板厚viA差信号として板厚制御演算装置
(7)に出力される。板厚制御演算装置(7)は板厚(
!偏差信号を受けて出口板厚変動をなくすための演算(
積分、比例演算等)を行ない、モーター電流修正信号を
リールモーター電流制御装置(8)に出力する。
At this time, the thickness of the rolled steel strip (2) is determined by the thickness gauge (6).
and is output to the plate thickness control calculation device (7) as a plate thickness viA difference signal. The plate thickness control calculation device (7) calculates the plate thickness (
! Calculation to eliminate outlet plate thickness variation in response to deviation signal (
(integration, proportional calculation, etc.) and outputs a motor current correction signal to the reel motor current control device (8).

またこのとき、ロードセル(9)で検出された圧延荷重
信号が荷重フィードバック演算装置(11)に出力され
、圧延荷重信号に適当な係数を乗算する処理を行ない、
その結果を圧下位置制御装置(12)に出力し、圧下装
置(10)にてロール圧下位置の修正が行なわれる。
Also, at this time, the rolling load signal detected by the load cell (9) is output to the load feedback calculation device (11), and the rolling load signal is multiplied by an appropriate coefficient.
The result is output to the rolling down position control device (12), and the roll rolling down position is corrected in the rolling down device (10).

第2図は圧下装置(口に油圧圧下装置を用いた場合の荷
重フィードバック演算装置と圧下位置制御装置の構成例
である。
FIG. 2 is a configuration example of a load feedback calculation device and a reduction position control device when a hydraulic reduction device is used at the opening.

すなわち、ロードセル(9)により検出された荷重信号
はA/D変換装置(H−1)によりAID変換された後
、係数乗算装置(it−2)にて所定の係数が乗算され
る。この結果が圧下位置指令として圧下位置制御装置(
12)に修正信号が出力され、この圧下位置修正信号と
圧下装置(10)からの実側圧下位置との差が偏差演算
装置(12−1>にて演算される。続いて、サーボゲイ
ン乗算装置(12−2>にてこの偏差値にサーボゲイン
が乗算され、D/A変換装置(12−3>にてD/A変
換された後、サーボ電流指令として圧下装置(口にフィ
ードバックされる。
That is, the load signal detected by the load cell (9) is subjected to AID conversion by the A/D converter (H-1), and then multiplied by a predetermined coefficient by the coefficient multiplier (it-2). This result is used as the roll-down position command by the roll-down position control device (
A correction signal is output to 12), and the difference between this rolling position correction signal and the actual side rolling position from the rolling device (10) is calculated by the deviation calculation device (12-1>.Subsequently, servo gain multiplication is performed. This deviation value is multiplied by the servo gain in the device (12-2), and converted into an analog signal by the D/A converter (12-3). .

第3図は圧延中にリールモーター電流をステップ状に変
化させたときの出口板厚の応答例(実線で示す)であり
、破線は圧延荷重を圧下位置にフィードバックしない場
合の応答例(第5図Aに相当する)でおる。
Figure 3 shows an example of the response of the exit plate thickness (indicated by a solid line) when the reel motor current is changed stepwise during rolling, and the broken line shows an example of the response when the rolling load is not fed back to the rolling position (5th (corresponds to Figure A).

すなわち、リールモーター電流が小さくなったことによ
り張力が次第に下がり、出口板厚は増加し始める。この
とき圧延荷重も増加し始める。ここで、圧下位置修正動
作が開始し、圧延荷重の増加に対応して第2図の係数乗
算装置(11−2)により係数が乗算され、圧下位置閉
方向の指令が出力され、圧下装置(0が閉方向に動作す
る。このため、リール張力の変化が促進され、定常状態
に達するまでの時間は従来の0.7秒に対し0.3秒と
大幅に改善される。なお、静的(定常的)な変化量が小
さくなる分は板厚制御のゲインをその分大きくすること
で板厚制御特性への影響はない。
That is, as the reel motor current becomes smaller, the tension gradually decreases and the outlet plate thickness begins to increase. At this time, the rolling load also begins to increase. Here, the rolling position correction operation starts, and in response to the increase in rolling load, a coefficient is multiplied by the coefficient multiplier (11-2) in FIG. 0 moves in the closing direction.This accelerates the change in reel tension, and the time it takes to reach a steady state is significantly improved to 0.3 seconds compared to the conventional 0.7 seconds. As the (steady) amount of change becomes smaller, the gain of the thickness control is increased accordingly, so that the thickness control characteristics are not affected.

第4図<A)は0.8#厚さの冷延鋼板の圧延にこの発
明方法を適用したときの板厚精度のチャート例であり、
同図(B)は従来法の場合でおる。
Figure 4<A) is an example of a chart of plate thickness accuracy when the method of the present invention is applied to rolling a cold rolled steel plate with a thickness of 0.8#.
Figure (B) shows the case of the conventional method.

図(A)(B)から明らかなごとく、この発明方法によ
り板厚偏差が半減しており、この発明方法の有効性が認
められる。
As is clear from Figures (A) and (B), the plate thickness deviation was halved by the method of the present invention, and the effectiveness of the method of the present invention is recognized.

なお、板厚偏差値は板厚計による測定値に替えて、前記
ゲージメータ板厚あるいはマスフロー板厚等の計算板厚
を用いて演算して求めた出口板厚偏差値を用いても同様
の作用効果が得られることはいうまでもない。
In addition, the plate thickness deviation value can be obtained by using the exit plate thickness deviation value calculated using the gauge meter plate thickness or the calculated plate thickness such as the mass flow plate thickness, instead of the value measured by the plate thickness meter. Needless to say, effects can be obtained.

発明の詳細 な説明したごとく、この発明方法によれば、板厚制御の
主操作量として用いるリールモーター電流の応答性を、
圧延荷重信号に基づいた圧下位置修正操作により補助す
ることができるので、板厚制御の高速化がはかられると
ともに、高板厚精度の鋼板を得ることができ、板厚精度
がますます厳しくなってきている冷延鋼板の製造に大な
る効果を秦するものである。
As described in detail, according to the method of the invention, the responsiveness of the reel motor current used as the main manipulated variable for plate thickness control is
Since it can be assisted by the rolling position correction operation based on the rolling load signal, it is possible to speed up plate thickness control and obtain steel plates with high plate thickness accuracy, which is becoming increasingly strict. This will have a significant effect on the production of cold-rolled steel sheets, which is currently being produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明方法を実施するための装置構成例を示
すブロック図、第2図は同上装置における荷重フィード
バック演算装置と圧下位置側M装置の構成例を示すブロ
ック図、第3図は圧延中にリールモーター電流をステッ
プ状に変化させた場合の出口板厚の応答例を示す図、第
4図はこの発明の実施例における板厚精度のチャート図
でおり、図(A)は本発明法の板厚精度、図(B)は従
来法の板厚精度をそれぞれ示す。 第5図は従来法によるリールモーター電流とロール圧下
位置の応答性を示す図で、(A)はリールモーター電流
をステップ状に変化させたときの出口板厚の応答性を測
定した図、(B)はロール圧下位置をステップ状に変化
させたときの出口板厚の応答性を測定した図である。 1・・・可逆式圧延機    2・・・銅帯3・・・巻
戻リール     4・・・巻取リール5・・・リール
モーター   6・・・板厚計7・・・板厚制御演算装
置 8・・・リールモーター電流制御装置 9・・・ロードセル     10・・・圧下装置11
・・・荷重フィードバック演算装置12・・・圧下位置
制御装置 出願人  住友金属工業株式会社 第2図 第5図 時間(抄) 時間(沙)
Fig. 1 is a block diagram showing an example of the configuration of a device for carrying out the method of the present invention, Fig. 2 is a block diagram showing an example of the configuration of a load feedback calculation device and a rolling position side M device in the same device, and Fig. 3 is a block diagram showing an example of the configuration of a device for rolling. Figure 4 is a chart showing the plate thickness accuracy in an embodiment of the present invention; Figure (B) shows the plate thickness accuracy of the conventional method. Figure 5 is a diagram showing the responsiveness of reel motor current and roll reduction position according to the conventional method. B) is a diagram obtained by measuring the responsiveness of the outlet plate thickness when the roll rolling position was changed stepwise. 1... Reversible rolling mill 2... Copper strip 3... Unwinding reel 4... Take-up reel 5... Reel motor 6... Plate thickness meter 7... Plate thickness control calculation device 8... Reel motor current control device 9... Load cell 10... Lowering device 11
... Load feedback calculation device 12 ... Drop position control device Applicant: Sumitomo Metal Industries, Ltd. Figure 2 Figure 5 Time (excerpt) Time (sha)

Claims (1)

【特許請求の範囲】[Claims] 可逆式圧延機のリールモーター電流とロール圧下位置を
操作量として板厚制御を行なう方法において、実測ある
いは予測演算して求めた板厚偏差信号に基づいてリール
モーター電流を修正すると同時に、圧延荷重信号に基づ
いてロール圧下位置を修正することを特徴とする可逆式
圧延機の板厚制御方法。
In a method of controlling plate thickness using the reel motor current and roll reduction position of a reversible rolling mill as manipulated variables, the reel motor current is corrected based on the plate thickness deviation signal obtained by actual measurement or predictive calculation, and at the same time the rolling load signal is A plate thickness control method for a reversible rolling mill, characterized in that the roll rolling position is corrected based on.
JP1044965A 1989-02-23 1989-02-23 Thickness control method of reversible rolling mill Pending JPH02224811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1044965A JPH02224811A (en) 1989-02-23 1989-02-23 Thickness control method of reversible rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1044965A JPH02224811A (en) 1989-02-23 1989-02-23 Thickness control method of reversible rolling mill

Publications (1)

Publication Number Publication Date
JPH02224811A true JPH02224811A (en) 1990-09-06

Family

ID=12706196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1044965A Pending JPH02224811A (en) 1989-02-23 1989-02-23 Thickness control method of reversible rolling mill

Country Status (1)

Country Link
JP (1) JPH02224811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305206B1 (en) * 1999-09-03 2001-10-23 Hitachi, Ltd. Reversible rolling method and reversible rolling system
JP2011011237A (en) * 2009-07-02 2011-01-20 Nisshin Steel Co Ltd Plate thickness control method in rolling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305206B1 (en) * 1999-09-03 2001-10-23 Hitachi, Ltd. Reversible rolling method and reversible rolling system
JP2011011237A (en) * 2009-07-02 2011-01-20 Nisshin Steel Co Ltd Plate thickness control method in rolling

Similar Documents

Publication Publication Date Title
JPH0218168B2 (en)
JPH02224811A (en) Thickness control method of reversible rolling mill
JP2002018506A (en) Method and device for controlling thickness, method for calculating pass schedule in continuous rolling mill
JP2002172406A (en) Method for correcting plate thickness by rolling mill
JPH02137607A (en) Control method for loopers of continuous hot rolling mill
JPS55158815A (en) Method and apparatus for shape control in continuous rolling mill
JPS5851770B2 (en) Tension control method and device
JP3348540B2 (en) Control method of tandem mill
JPH08252624A (en) Method for controlling finishing temperature in continuous hot rolling
JPH06142739A (en) Plate thickness controller in tandem roller
JPH04305305A (en) Method for controlling elongation percentage of skinpass rolling mill
JP3140552B2 (en) Strip width control method of material to be rolled in hot finishing rolling line
JPH0246284B2 (en)
JP3433581B2 (en) Meandering control method in continuous hot rolling mill
JP2839775B2 (en) Control device for continuous rolling mill
JPH0775813A (en) Method for controlling tension in rolling mill
JP2593266B2 (en) Rolling control device
JPS63115615A (en) Tension control method for strip and tension calculating device
JPH08150406A (en) Thickness controller for cold tandem mill
JP3086766B2 (en) Target thickness control device
JPH0456686B2 (en)
JPS63238917A (en) Tension correcting automatic plate thickness controller
JPH01249212A (en) Control method for rolling mill
JPH05337531A (en) Automatic plate thickness controlling method for rolling machine whose speed is accelerated/decelerated
JPH07328709A (en) Method for controlling thickness in tandem mill