JPH02223859A - Biochemical analysis - Google Patents

Biochemical analysis

Info

Publication number
JPH02223859A
JPH02223859A JP4381889A JP4381889A JPH02223859A JP H02223859 A JPH02223859 A JP H02223859A JP 4381889 A JP4381889 A JP 4381889A JP 4381889 A JP4381889 A JP 4381889A JP H02223859 A JPH02223859 A JP H02223859A
Authority
JP
Japan
Prior art keywords
reaction
optical density
reagent
absorbance
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4381889A
Other languages
Japanese (ja)
Inventor
Hideki Yamamoto
山本 英毅
Junichi Matsumoto
順一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4381889A priority Critical patent/JPH02223859A/en
Publication of JPH02223859A publication Critical patent/JPH02223859A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To exactly determine a desired component by mixing a prescribed reaction reagent with a sample liquid to effect reaction, determining an estimated optical density value at the time of the start of the reaction by the regression equation obtd. by a method of least squares from the plural actually measured optical density values and determining an actually measured optical density value at the time of the end of the reaction. CONSTITUTION:The prescribed reaction reagent is mixed with the sample liquid. The absorbance data is determined from the right after the start of the reaction in an absorbance fluctuating region A and the quadratic regression equation y=at<2>+bt+c is determined by the method of least squares with the measurement groups from alpha to beta thereof. The value of t=0, i.e., y0 at the time of the start of the reaction is determined from this equation. The absorbance ys in the absorbance stationary region B after the end of the reaction is actually measured to determine ys-y0 and the concn. is calculated therefrom.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、生化学分析方法に関する。さら詳しくは、
ことに血清、血漿、尿、リンパ液等の多成分を含む生化
学試料中の所定成分を定量するのに有用な分析方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a biochemical analysis method. For more details,
In particular, it relates to an analysis method useful for quantifying a predetermined component in a biochemical sample containing multiple components such as serum, plasma, urine, lymph fluid, etc.

(ロ)従来の技術 従来から上記のごとき生化学試料中の所定成分の分析方
法として、試料液中に1種又は2種以上の所定の反応試
薬を混合して反応させ、反応終了後の該試料液の光学濃
度値(吸光度値、蛍光光度値、散乱光強変値等)に基づ
いて所定成分の濃度を算出する方法が知られている。
(B) Conventional technology Conventionally, as a method for analyzing predetermined components in a biochemical sample as described above, one or more predetermined reaction reagents are mixed and reacted in a sample solution, and the components are analyzed after the reaction is completed. A method is known in which the concentration of a predetermined component is calculated based on the optical density value (absorbance value, fluorescence value, scattered light intensity value, etc.) of a sample liquid.

そして、具体的な分析方法として、目的成分濃度がゼロ
のブランク液についての反応後の光学濃度値と、分析対
象試料についての反応後の光学濃度値との差から目的成
分を定量する方法がいわゆるエンドポイント法として知
られている。
As a specific analysis method, the target component is quantified from the difference between the post-reaction optical density value of a blank solution with zero target component concentration and the post-reaction optical density value of the sample to be analyzed. This is known as the endpoint method.

(ハ)発明が解決しようとする課題 しかし、上記エンドポイント法においては、反応試薬の
状態変化や測定装置系の出力変動等によってブランク液
の光学濃度値自体が変動し易いため、定期的にブランク
液の光学濃度値を測定して定量のベースラインを較正す
る必要があり、煩雑であった。さらにこの方法では、試
料中に共存しうる光学的な干渉成分、例えばビリルビン
、ヘモグロビン、濁り成分等の影響により定量値に大き
な誤差が生じる問題があった。
(c) Problems to be Solved by the Invention However, in the above-mentioned endpoint method, the optical density value of the blank solution itself tends to fluctuate due to changes in the state of the reaction reagent, fluctuations in the output of the measuring device system, etc. It was necessary to measure the optical density value of the liquid and calibrate the baseline for quantitative determination, which was complicated. Furthermore, this method has the problem that large errors occur in quantitative values due to the influence of optical interference components such as bilirubin, hemoglobin, and turbidity components that may coexist in the sample.

この点を解消すべく反応開始から所定時間後の反応途中
の光学濃度を測定し、この値と、反応終了後の光学濃度
との差に基づいて定量するいわゆる2ポイント法も知ら
れている。そして、2ポイント法における反応途中の光
学濃度測定時点は、反応終了後の光学濃度との充分な差
を確保して定量精度を向上させるために、反応開始の直
後とされているが、この時点では測定値が不安定である
ため、不測の誤差が生じる場合があった。また、反応が
著しく速い項目についての適用は困難であった。
In order to solve this problem, a so-called two-point method is also known in which the optical density during the reaction is measured a predetermined time after the start of the reaction, and the amount is quantified based on the difference between this value and the optical density after the completion of the reaction. In the two-point method, the optical density measurement point during the reaction is set immediately after the start of the reaction in order to ensure a sufficient difference from the optical density after the completion of the reaction and improve quantitative accuracy. Since the measured values are unstable, unexpected errors may occur. In addition, it was difficult to apply this method to items with extremely fast responses.

さらに、2種の反応試薬を用いる場合においては、第1
試薬と試料液を混合しくこの状態では反応は進行しない
)、この光学濃度を測定した後、第2試薬を加え反応を
開始させて反応終了後の光学濃度の測定を行ない、これ
らの差に基づいて定量を行なう方法も、いわゆる検体ブ
ランク法として知られている。しかし、この方法では、
測定に必要な液量を確保するために第1試薬の量を多く
する必要があり、感度が低下すると共に液!lkM正を
行なう必要がある等の問題があった。
Furthermore, when using two types of reaction reagents, the first
After the reagent and sample solution are mixed (the reaction will not proceed in this state), the optical density is measured, a second reagent is added to start the reaction, and the optical density is measured after the reaction is complete. The method of quantitative determination is also known as the so-called sample blank method. However, with this method,
In order to secure the amount of liquid necessary for measurement, it is necessary to increase the amount of the first reagent, which reduces sensitivity and reduces the amount of liquid! There were problems such as the need to perform lkM correction.

この発明は、かかる状況下なされたものであり、ブラン
ク液の調製や液量補正等を行なうことなく、簡便かつ正
確に目的成分の定量を行なうことができる生化学分析法
を機供しようとするものである。
This invention was made under such circumstances, and aims to provide a biochemical analysis method that can easily and accurately quantify a target component without preparing a blank solution or correcting the liquid volume. It is something.

(ニ)課題を解決するための手段 かくしてこの発明によれば、試料液に所定の反応試薬を
混合して反応させ、この反応に伴なう該試料液の光学濃
度の変化に基づいて試料液中の所定成分の濃度を測定す
ることからなり、上記反応開始後の光学濃度変動領域に
おける複数の実測光学濃度値とその反応時間との関係か
ら反応時間セと光学濃度値Ytを変数とする回帰式を最
小自乗法で求め、この回帰式に基づいて反応開始時(t
=0)での推定光学濃度値Yoを求め、次いでこの推定
光学濃度値Yoと反応終了後の実測光学濃度値Y9との
差に基づいて上記試料液中の所定成分を定量することを
特徴とする生化学分析方法が提供される。
(d) Means for Solving the Problems Thus, according to the present invention, a sample liquid is mixed with a predetermined reaction reagent and reacted, and the sample liquid is detected based on the change in optical density of the sample liquid accompanying this reaction. regression using reaction time and optical density value Yt as variables, based on the relationship between a plurality of actually measured optical density values in the optical density fluctuation region after the start of the reaction and their reaction times. The equation is determined by the least squares method, and based on this regression equation, the reaction start time (t
= 0), and then quantifying the predetermined component in the sample liquid based on the difference between this estimated optical density value Yo and the measured optical density value Y9 after the completion of the reaction. A biochemical analysis method is provided.

この発明においては、まず光学濃度変動領域の複数の実
測光学濃度値とその反応時間との関係から回帰式が最小
自乗法で求められ、得られた回帰式から反応開始時、す
なわち反応時間1=0での光学濃度が算出される。ここ
で反応開始時とは、2試料系の反応試薬を用いる場合に
は、第2反応試薬添加時を1試薬系の反応試薬を用いる
場合には、その反応試薬添加時をいう。
In this invention, first, a regression equation is determined by the least squares method from the relationship between a plurality of actually measured optical density values in the optical density fluctuation region and their reaction times, and from the obtained regression equation, the time at which the reaction starts, that is, reaction time 1= The optical density at 0 is calculated. Here, the time at which the reaction starts refers to the time when the second reaction reagent is added when a two-sample type reaction reagent is used, and the time when the second reaction reagent is added when a one-reagent type reaction reagent is used.

回帰式は、−次回帰でもよく二次、三次等の多次元回帰
でもよく、各々の目的成分についての反応途中の光学濃
度変動領域のプロフィールに最も近似したものが適して
いる。通常の生化学分析項目については二次回帰式(Y
=a t’+b t+c)又は三次回帰式(Y=at’
+bt’+ct+d)を用いるのが適している。
The regression equation may be a -order regression or a multidimensional regression such as quadratic or cubic regression, and the one that most closely approximates the profile of the optical density fluctuation region during the reaction of each target component is suitable. For ordinary biochemical analysis items, the quadratic regression equation (Y
=a t'+b t+c) or cubic regression equation (Y=at'
+bt'+ct+d) is suitable.

上記回帰式を決定するための複数の測定点(t、yt)
は、反応開始後から反応終了後の間の変動領域の任意の
点に設定でき、そのサンプル数はできるだけ多くするの
が好ましい。ただし、反応終了直前は実際は変曲点が存
在しうるため、測定点とするのは適さない。従って、測
定点は、通常反応開始直後から、反応終了時の光学濃度
一定割合、例えば90%の光学濃度に到達した時点との
間で複数設定するのが適している。
Multiple measurement points (t, yt) to determine the above regression equation
can be set at any point in the fluctuation range between the start of the reaction and the end of the reaction, and it is preferable to increase the number of samples as much as possible. However, since an inflection point may actually exist just before the end of the reaction, it is not appropriate to use it as a measurement point. Therefore, it is suitable to set a plurality of measurement points between the time immediately after the start of the reaction and the time when the optical density reaches a certain percentage of the reaction, for example, 90%.

このようにして得られた1=0での推定光学濃度値Yo
と反応終了後の光学濃度値Y8との差値に、所定の換算
値を乗算するか、予め作成した検量線と比較対照するこ
とにより、目的成分の濃度が算出されることとなる。
Estimated optical density value Yo obtained in this way at 1=0
The concentration of the target component is calculated by multiplying the difference value between Y8 and the optical density value Y8 after the reaction is completed by a predetermined conversion value, or by comparing and contrasting it with a calibration curve prepared in advance.

(ホ)作用 この発明においては、反応途中の光学濃度の変化に基づ
く光学濃度変動領域の回帰式により反応開始時の推定光
学濃度Yoが求められ、この光学濃度Y。と反応終了後
の光学濃度Ysとの値を用いてあたかも1=0の時点で
の光学濃度を用いた2ポイント法のようにして目的成分
か定量される。
(e) Effect In the present invention, the estimated optical density Yo at the start of the reaction is determined by a regression equation for the optical density variation region based on the change in optical density during the reaction, and this optical density Y is determined by the estimated optical density Yo at the start of the reaction. Using the values of Ys and the optical density after the completion of the reaction, the target component is quantified as if by a two-point method using the optical density at the time of 1=0.

そして、t=0の時点での光学濃度は実測されたもので
はなく、多点の実測値から回帰して得られたものである
ため従来の反応初期の実測光学濃度を用いる2ポイント
法に比して反応初期の変動等による測定値への悪影響が
回避又は減少されることとなると同時に反応が速い場合
にも感度低下を回避することができる。
The optical density at the time of t=0 is not actually measured, but is obtained by regression from the measured values at multiple points, so it is compared to the conventional two-point method that uses the actually measured optical density at the beginning of the reaction. In this way, adverse effects on the measured values due to fluctuations in the initial stage of the reaction can be avoided or reduced, and at the same time, a decrease in sensitivity can be avoided even when the reaction is fast.

(へ)実施例 第1図は、この発明の方法の実施に用いる生化学自動分
析装置の一例の構成説明図である。第1図においてlは
試料分注ポンプ、2は試料分注ノズル、3は試料分注ノ
ズル移動機構、4.5はそれぞれ標準試料容器および標
準試料、6は試料用ターンテーブル、7.8はそれぞれ
試料容器および試料、9は反応ディスク、io、(to
”、to″)は反応セル、11は第1試薬分注ポンプ、
12は第1試薬分注ノズル、13は第1試薬分注ノズル
移動機構、14は試薬庫、15.16はそれぞれ第1試
薬16および第1試薬、!7は分光器、18は分光器移
動機構、19は制御およびデータ処理コンピュータ、2
0は第2試薬分注ポンプ、2■は第2試薬分注ノズル、
22は第2試薬分注ノズル移動機構、23.24はそれ
ぞれ第2試薬容器および第2試薬、25は洗浄ポンプ、
26は洗浄ノズル上下機構、27は洗浄ノズルである。
(f) Example FIG. 1 is an explanatory diagram of the configuration of an example of an automatic biochemical analyzer used to carry out the method of the present invention. In Fig. 1, l is a sample dispensing pump, 2 is a sample dispensing nozzle, 3 is a sample dispensing nozzle moving mechanism, 4.5 is a standard sample container and a standard sample, respectively, 6 is a sample turntable, and 7.8 is a sample dispensing nozzle moving mechanism. 9 is a reaction disk, io, (to
", to") is a reaction cell, 11 is a first reagent dispensing pump,
12 is a first reagent dispensing nozzle, 13 is a first reagent dispensing nozzle moving mechanism, 14 is a reagent storage, 15.16 is a first reagent 16 and a first reagent, respectively. 7 is a spectrometer, 18 is a spectrometer moving mechanism, 19 is a control and data processing computer, 2
0 is the second reagent dispensing pump, 2■ is the second reagent dispensing nozzle,
22 is a second reagent dispensing nozzle moving mechanism, 23 and 24 are a second reagent container and a second reagent, respectively, 25 is a cleaning pump,
26 is a cleaning nozzle up/down mechanism, and 27 is a cleaning nozzle.

かかる装置において、試料分注ポンプlと連結されてい
る試料分注ノズル2か試料分注ノズル移動機構3によっ
て移動し、標準試料容器4から一定量の標準試料5を吸
引し、続いて試料用ターンテーブル6にセットされた試
料容器7から一定量の試料8を吸引し、反応ディスク9
に配置されている反応セル10の中に試料8および標準
試料5を分注する。反応ディスク9が回転して反応セル
lOが1ステップ進んだところで、第1試薬分注ポンプ
11と連結されている第1試薬分注ノズル12が第1試
薬分注ノズル移動機構13によって移動し、試薬庫14
内にセットされている第1試薬容器15から一定量の第
1試薬16を吸引し、続いて反応セルlO′のところに
移動して反応セルlO′内に分注する。このとき、−試
薬系の反応試薬を用いる項目の反応セルについて、分光
器17が分光器移動機l11Bにより反応ディスク9と
同じ袖の回りに往復回転しながら、吸光度(Yt)を順
次経時的に測定しながら制御およびデータ処理コンピュ
ータ19に記憶する。
In this device, a sample dispensing nozzle 2 connected to a sample dispensing pump 1 is moved by a sample dispensing nozzle moving mechanism 3, sucks a certain amount of a standard sample 5 from a standard sample container 4, and then A certain amount of sample 8 is aspirated from the sample container 7 set on the turntable 6, and the reaction disk 9
A sample 8 and a standard sample 5 are dispensed into a reaction cell 10 placed in a chamber. When the reaction disk 9 rotates and the reaction cell IO advances by one step, the first reagent dispensing nozzle 12 connected to the first reagent dispensing pump 11 is moved by the first reagent dispensing nozzle moving mechanism 13, Reagent storage 14
A predetermined amount of the first reagent 16 is sucked from the first reagent container 15 set therein, and then moved to the reaction cell lO' and dispensed into the reaction cell lO'. At this time, for the reaction cell of the item using the -reagent type reaction reagent, the spectrometer 17 is reciprocated around the same sleeve as the reaction disk 9 by the spectrometer moving device 111B, and the absorbance (Yt) is sequentially measured over time. It is stored in the control and data processing computer 19 as it is being measured.

次いで反応セル10が反応セル10″の位置にきたとこ
ろで第2試薬分注ポンプ20と連結した第2試薬分注ノ
ズル21が第2試薬分注ノズル移動機構22に上がって
移動し、試薬庫14内にセットされている第2試薬容器
23から一定量の第2試薬24を吸引し、続いて反応セ
ルlO″のところに移動して2試薬系の反応試薬を用い
る項目の反応セルlO″内に分注する。第2試薬添加後
に反応セル10″が洗浄ポンプ25に連結され、洗浄ノ
ズル上下機構26により上下する洗浄ノズル27の位置
に進むまでの間も前記のごとき各位置での吸光度Ytが
測定されコンピュータ19に記憶されている。そして、
制御およびデータ処理コンピュータ!9は、各部の動作
を同期制御すると同時に、!試薬系の項目については第
1試薬分注後(反応開始後)からの吸光度データYtの
時間変化に基づいて、2試薬系の項目については第2試
薬分注後(反応開始後)の吸光度データYtの時間変化
に基づいて、その吸光度の変動領域の回帰式を求めかつ
これに基づいて1=0での推定吸光度値Yoを算出し、
次いでこのYoと反応終了後の定常状態(エンドポイン
ト)での吸光度値Ysとの差に基づいて各々所定成分に
ついての濃度を算出する。
Next, when the reaction cell 10 reaches the position of the reaction cell 10'', the second reagent dispensing nozzle 21 connected to the second reagent dispensing pump 20 moves up to the second reagent dispensing nozzle moving mechanism 22, and moves to the reagent storage 14. A certain amount of the second reagent 24 is aspirated from the second reagent container 23 set in the chamber, and then moved to the reaction cell lO'', where a two-reagent type reaction reagent is used. After the addition of the second reagent, the reaction cell 10'' is connected to the cleaning pump 25 and the absorbance Yt at each position is maintained as described above until the reaction cell 10'' is connected to the cleaning pump 25 and advances to the position of the cleaning nozzle 27, which is moved up and down by the cleaning nozzle up and down mechanism 26. is measured and stored in the computer 19. and,
Control and data processing computer! 9 simultaneously controls the operation of each part synchronously! For reagent system items, the absorbance data is based on the time change of absorbance data Yt after dispensing the first reagent (after the start of the reaction), and for the two reagent system items, the absorbance data is based on the absorbance data after dispensing the second reagent (after the start of the reaction). Based on the time change of Yt, find a regression equation for the absorbance variation region, and based on this, calculate the estimated absorbance value Yo at 1=0,
Next, the concentration of each predetermined component is calculated based on the difference between this Yo and the absorbance value Ys in a steady state (end point) after the reaction is completed.

この測定原理を第2図に示した。すなわち、第1試薬系
、第2試薬系のいずれについても、吸光度変動領域A内
の多数の測定値即ち、反応開始直後の測定値αからβの
測定群について最小自乗法によって二次回帰式(Y=a
t”+bt+c)(図中の実線L)を求め、この式から
t=0(反応開始時)の際の値Y。を求める。そして、
反応終了後の吸光度定常領域Bの吸光度YsからこのY
o(推定吸光度)を減算し、この減算値に所定の換算係
数fを乗算することにより濃度算出を行なう。
The principle of this measurement is shown in Figure 2. That is, for both the first reagent system and the second reagent system, a quadratic regression equation ( Y=a
t"+bt+c) (solid line L in the figure), and from this equation, find the value Y at t=0 (at the start of the reaction). Then,
From the absorbance Ys in the constant absorbance region B after the reaction, this Y
The concentration is calculated by subtracting o (estimated absorbance) and multiplying this subtracted value by a predetermined conversion coefficient f.

以下、実際に実施した際のデータについて説明する。Below, data from actual implementation will be explained.

尿酸の測定 尿酸含有試料(8,019/12)にヘモグロビンの希
釈系列を添加し、ヘモグロビンの最終1度がo、too
Measurement of uric acid A dilution series of hemoglobin was added to the uric acid-containing sample (8,019/12), and the final hemoglobin concentration was o, too.
.

200.300,400.500x9/d12になるよ
うに調製し前記生化学分析装置を用いて測定した。
200.300, 400.500x9/d12 and measured using the above-mentioned biochemical analyzer.

反応試薬としては、2試薬系の尿酸反応試薬(ヤトロン
(株)製)を用い試料10μQと第1試薬200μeを
混合後、第2試薬200μQを添加して反応を開始した
。また測定周期は第2試薬添加の20秒後、38秒後に
行い、続いて24秒間隔で14回(合計16周期)とし
た。得られた吸光度と時間との関係で最小自乗法で一次
回帰式(’/=a t+b)を求め、これから各々1=
0における吸光度値(b)を求めた。また試薬の代わり
に水を用いて検体ブランクを測定した。これらの結果は
下表の通りであった。
As a reaction reagent, a two-reagent uric acid reaction reagent (manufactured by Yatron Co., Ltd.) was used, and 10 μQ of the sample and 200 μe of the first reagent were mixed, and then 200 μQ of the second reagent was added to start the reaction. The measurement cycle was performed 20 seconds and 38 seconds after the addition of the second reagent, and then 14 times at 24 second intervals (16 cycles in total). A linear regression equation ('/=a t+b) is calculated using the least squares method based on the relationship between the obtained absorbance and time, and from this, each 1=
The absorbance value (b) at 0 was determined. A sample blank was also measured using water instead of the reagent. These results are shown in the table below.

このように干渉成分の物理的(光学的)な影響を補償で
きることが分かる。
It can be seen that the physical (optical) effects of interference components can be compensated for in this way.

(以下余白) 上記各々の吸光度値(b)と各々の反応終了後の吸光度
値との差を求め、これに各々濃度換算定数を乗算するこ
とにより、尿酸濃度が算出された。
(Left space below) The uric acid concentration was calculated by determining the difference between each of the above absorbance values (b) and the absorbance values after the completion of each reaction, and multiplying this by each concentration conversion constant.

従来のエンドポイント法による測定と本法による測定の
結果を以下に示す。
The results of measurements using the conventional endpoint method and this method are shown below.

このように干渉成分のヘモグロビンの化学的(反応に及
ぼす)影響を正しく測定することができると考えられる
It is considered that the chemical influence (on the reaction) of the interfering component hemoglobin can be accurately measured in this way.

アポ蛋白の測定 アポBを130i9/df2含有する試料に、前記尿酸
測定手法と同様にヘモグロビンの希釈系列を添加し、ヘ
モグロビンの濃度が0.100.200,300,40
0,500朽/dQになるように調製したものを測定し
た。反応試薬としては、2試薬系のアポB反応試薬(第
1化学薬品(味)製)を用い、試料20μQと第1試薬
350μQを混合後、第2試薬50μQを添加して、反
応を開始した。
Measurement of apoprotein A hemoglobin dilution series was added to the sample containing apoB 130i9/df2 in the same manner as in the uric acid measurement method described above, and the hemoglobin concentration was 0.100.200, 300, 40.
The sample was prepared to give 0,500 decay/dQ and was measured. As a reaction reagent, a two-reagent system ApoB reaction reagent (manufactured by Daiichi Chemicals (Aji)) was used, and after mixing 20μQ of the sample and 350μQ of the first reagent, 50μQ of the second reagent was added to start the reaction. .

得られた吸光度と時間との関係で最小自乗法によって二
次回帰式(Y=a、t”+b j+c)を求め、これか
ら各々t=0における吸光度値(c)と求め、この吸光
度値(c)と各々の反応終了後の吸光度値との差を求め
濃度換算定数を乗算することにより、アポBQ濃度が算
出された。従来の検体ブランク法と本法による測定結果
は以下の通りであった。
A quadratic regression equation (Y = a, t" + b j + c) is determined by the least squares method using the relationship between the obtained absorbance and time, and from this, the absorbance value (c) at t = 0 is determined, and this absorbance value (c ) and the absorbance value after the completion of each reaction and multiplied by a concentration conversion constant to calculate the apoBQ concentration.The measurement results using the conventional sample blank method and this method were as follows. .

この場合、さらに本法に採用により試薬ブランク測定を
省略できるので、高価な試薬の節約が可能である。
In this case, by adopting the present method, reagent blank measurement can be omitted, so that expensive reagents can be saved.

(ト)発明の効果 この発明によれば、ブランク液の調製や液量補正等を行
なうことなく、簡便かつ正確に目的成分の定量を行なう
ことができる。そして従来のエンドポイント法や2ポイ
ント法のような干渉成分や反応の不安定性による測定値
への悪影響も防止又は低減化することができろ。
(G) Effects of the Invention According to the present invention, a target component can be easily and accurately quantified without preparing a blank liquid or correcting the liquid volume. It should also be possible to prevent or reduce the adverse effects on measured values due to interfering components and reaction instability, as in the conventional end-point method and two-point method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の生化学分析方法を実施する装置を
例示する構成説明図、第2図は、この発明の方法の原理
説明図、 第3図は同じ〈実施例で 得られた吸光度と時間の関係を示すグラフ図である。 反応開始 第2図 経過時間(t)□
Fig. 1 is a configuration explanatory diagram illustrating an apparatus for carrying out the biochemical analysis method of this invention, Fig. 2 is an explanatory diagram of the principle of the method of this invention, and Fig. 3 is the same (absorbance obtained in Example). It is a graph diagram showing the relationship between time and time. Reaction start Figure 2 Elapsed time (t) □

Claims (1)

【特許請求の範囲】 1、試料液に所定の反応試薬を混合して反応させ、この
反応に伴なう該試料液の光学濃度の変化に基づいて試料
液中の所定成分の濃度を測定することからなり、 上記反応開始後の光学濃度変動領域における複数の実測
光学濃度値とその反応時間との関係から反応時間をと光
学濃度値Y_tを変数とする回帰式を最小自乗法で求め
、この回帰式に基づいて反応開始時(t=0)での推定
光学濃度値Y_oを求め、次いでこの推定光学濃度値Y
_oと反応終了後の実測光学濃度値Y_sとの差に基づ
いて上記試料液中の所定成分を定量することを特徴とす
る生化学分析方法。
[Claims] 1. Mixing a predetermined reaction reagent with a sample liquid and reacting it, and measuring the concentration of a predetermined component in the sample liquid based on the change in optical density of the sample liquid accompanying this reaction. Therefore, from the relationship between the plurality of actually measured optical density values in the optical density fluctuation region after the start of the reaction and their reaction times, a regression equation using the reaction time and the optical density value Y_t as variables is determined by the least squares method, and this The estimated optical density value Y_o at the start of the reaction (t=0) is determined based on the regression equation, and then this estimated optical density value Y
A biochemical analysis method, characterized in that a predetermined component in the sample liquid is quantified based on the difference between _o and the actually measured optical density value Y_s after completion of the reaction.
JP4381889A 1989-02-25 1989-02-25 Biochemical analysis Pending JPH02223859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4381889A JPH02223859A (en) 1989-02-25 1989-02-25 Biochemical analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4381889A JPH02223859A (en) 1989-02-25 1989-02-25 Biochemical analysis

Publications (1)

Publication Number Publication Date
JPH02223859A true JPH02223859A (en) 1990-09-06

Family

ID=12674327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4381889A Pending JPH02223859A (en) 1989-02-25 1989-02-25 Biochemical analysis

Country Status (1)

Country Link
JP (1) JPH02223859A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104005A1 (en) * 2005-03-29 2006-10-05 Sysmex Corporation Method of analyte analysis and analyte analyzer
US8064061B2 (en) 2006-03-30 2011-11-22 Sysmex Corporation Sample analyzer and sample analyzing method
US9028756B2 (en) 2005-03-29 2015-05-12 Sysmex Corporation Specimen analyzing method and specimen analyzing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104005A1 (en) * 2005-03-29 2006-10-05 Sysmex Corporation Method of analyte analysis and analyte analyzer
US7854891B2 (en) 2005-03-29 2010-12-21 Sysmex Corporation Method of specimen analysis and specimen analyzer
JP4881855B2 (en) * 2005-03-29 2012-02-22 シスメックス株式会社 Sample analysis method and sample analyzer
US9028756B2 (en) 2005-03-29 2015-05-12 Sysmex Corporation Specimen analyzing method and specimen analyzing apparatus
US9316583B2 (en) 2005-03-29 2016-04-19 Sysmex Corporation Specimen analyzing method and specimen analyzing apparatus
US10261016B2 (en) 2005-03-29 2019-04-16 Sysmex Corporation Specimen analyzing method and specimen analyzing apparatus
US8064061B2 (en) 2006-03-30 2011-11-22 Sysmex Corporation Sample analyzer and sample analyzing method

Similar Documents

Publication Publication Date Title
WO2012008324A1 (en) Automatic analysis device, analysis method and information processing device
CN106442355A (en) Determination reagent for heart-type fatty acid binding protein and preparation method of determination reagent
JPH0666808A (en) Chromogen measurement method
JPS61194336A (en) Automatic chemical analyser
JPH02223859A (en) Biochemical analysis
CN102292644A (en) Sample analyzing device
JP3168633B2 (en) Prozone determination method and analysis method in antigen-antibody reaction
JP4635138B2 (en) Analysis method of specific components
JPH04249744A (en) Automatic apparatus for biochemical analysis
JPH07318564A (en) Blood analyzer
JP4705182B2 (en) Specific component analyzer
JPH0514855B2 (en)
JPS6118982B2 (en)
JPH0359461A (en) Automatic biochemical analysis apparatus
JPH04204378A (en) Immune reaction automatic analyzer
JPH0579984A (en) Automatic analyzer
JP2727510B2 (en) Rate analysis method
JP7372886B2 (en) Calibration curve generation method, automatic analyzer, calibration curve generation program
JPH02227639A (en) Biochemical analysis
JPH02259551A (en) Biochemical analysis
US20110046908A1 (en) Method and apparatus for calibrating result from test device
JPS6060558A (en) Analyzing method for plural measurements
JPH0599930A (en) Automatic chemical analyzing apparatus
JPH03172742A (en) Automatic biochemical analysis apparatus
JP2611308B2 (en) Water determination using Karl Fischer reagent