JPH02223855A - Ion sensor - Google Patents

Ion sensor

Info

Publication number
JPH02223855A
JPH02223855A JP1044555A JP4455589A JPH02223855A JP H02223855 A JPH02223855 A JP H02223855A JP 1044555 A JP1044555 A JP 1044555A JP 4455589 A JP4455589 A JP 4455589A JP H02223855 A JPH02223855 A JP H02223855A
Authority
JP
Japan
Prior art keywords
electrodes
film
sensor chip
interlayer insulating
leader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1044555A
Other languages
Japanese (ja)
Inventor
Hideki Kaneko
秀樹 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1044555A priority Critical patent/JPH02223855A/en
Publication of JPH02223855A publication Critical patent/JPH02223855A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve insulation sealability and workability by fixing a sensor chip and a leader electrode substrate by interlayer insulating layers in the directions where the respective leader electrodes of the chip and the substrate face each other and connecting the same by anisotropic conductive resins in the apertures provided to the interlayer insulating layers. CONSTITUTION:The sensor chip 1 is formed with the plural leader electrodes 3 of two pieces of ion sensitive electric field effect transistors (ISFET) 2 by using a silicon on sapphire substrate and with an insulating protective film 4 covering the parts thereof exclusive of the front end part by a semiconductor integrating technique. One FET of the ISFET 2 is provided with an oxidation- fixed film 5 and the other FET is provided with a reference film 6 consisting of a deactivated oxygen film. The leader electrode substrate 7 has the plural leader electrodes 8 which correspond, one to one, to the electrodes 3 and the surface thereof exclusive of the front end part is coated with the insulating film 9. The sensor chip 1 and the leader electrode substrate 7 are provided with the interlayer insulating layers 10 having the apertures 11 to surround the electrodes 3, 8. The anisotropic conductive resins 12 are embedded in the apertures 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオン感応性電界効果トランジスタを用いたイ
オンセンナに関し、特にその組立構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ion sensor using an ion-sensitive field effect transistor, and particularly to its assembly structure.

〔従来の技術〕[Conventional technology]

溶液中のイオン濃度を測定する方法としてガラス電極型
イオンセンサは、溶液とガラス電極との電位差がイオン
濃度により変化することを利用して高入力インピーダン
スの電圧計で測定した電圧変化からイオン濃度を求めて
いる。このガラス電極型のイオンセンサに変わり、宮原
裕二他により「電子通信学会技術研究会資料CPM81
−93」1981年、第61頁に記載の論文「半導体技
術を用いたバイオセンサJに述べられているバイオセン
サが開発されている。これは、一種のシリコン電界効果
トランジスタの表面に酵素膜を固定化したイオン感応性
電界効果トランジスタ(以下l5FETという)により
、l5FETと溶液との間に発生する電圧をゲート電圧
として作用させ、このl5FETを流れる電流変化から
イオン濃度を検出するl5FETイオンセンサである。
A glass electrode type ion sensor is a method for measuring ion concentration in a solution. It uses the fact that the potential difference between the solution and the glass electrode changes depending on the ion concentration, and measures the ion concentration from the voltage change measured with a high input impedance voltmeter. I'm looking for it. Instead of this glass electrode type ion sensor, Yuji Miyahara et al.
A biosensor described in the paper "Biosensor J Using Semiconductor Technology", published in 1981, page 61, has been developed. This is an 15FET ion sensor that uses a fixed ion-sensitive field effect transistor (hereinafter referred to as 15FET) to cause the voltage generated between the 15FET and a solution to act as a gate voltage, and detects the ion concentration from changes in the current flowing through the 15FET. .

このl5FETイオンセンサは応答速度が早いので溶液
のイオン濃度をリアルタイムでかつ連続して測定でき、
半導体集積化技術により大量生産が容易であるため低価
格性で、さらに小型なので収り扱いが容易であるなどの
長所がある。
This 15FET ion sensor has a fast response speed, so it can measure the ion concentration of a solution in real time and continuously.
Semiconductor integration technology allows for easy mass production, resulting in low cost, and its small size makes it easy to store and handle.

従来、本発明者等が開発して来たl5FETイオンセン
サの構造は、第6図に示すように、例えばSO3(シリ
コン・オン・サファイア)基板を用いてソース、ドレイ
ン、ゲート絶縁膜から構成され互いに独立した2個のl
5FETの一方の1SFET21上に酵素固定化膜5と
、他方のl5FET22上に失活した酵素膜により参照
膜6がそれぞれ固定化されたセンサチップ1をその一部
が突出するように、例えばフレキシブル・プリント基板
(以下、FPC基板という)で作成したリード電極基板
の先端部に、例えば常温硬化型のエポキシ系の接着剤6
1で固定し、センサチップ1とリード電極基板7との引
出し電極3,8との間をボンディングワイヤ62で接続
した後、接続部周辺を例えば常温硬化型のエポキシ系の
接着剤63で絶縁封止したものである。酵素固定化膜5
が固定化されたl5FET、21は測定溶液のイオン濃
度を検出し、参照膜6が固定化されたTSFET22は
測定溶液と反応しないが、二つのl5FETの出力差を
測定することで温度変化などによるドリフタが相殺され
安定な測定が可能となっている。
Conventionally, the structure of the 15FET ion sensor developed by the present inventors is composed of a source, drain, and gate insulating film using, for example, an SO3 (silicon on sapphire) substrate, as shown in FIG. two independent l's
The sensor chip 1, in which the enzyme immobilized membrane 5 is immobilized on one 1SFET 21 of the 5FET, and the reference membrane 6 is immobilized on the other 15FET 22 by an inactivated enzyme membrane, is mounted, for example, on a flexible For example, a room temperature curing epoxy adhesive 6 is applied to the tip of a lead electrode board made of a printed circuit board (hereinafter referred to as an FPC board).
1, and after connecting the sensor chip 1 and the lead electrodes 3 and 8 of the lead electrode substrate 7 with a bonding wire 62, the area around the connection part is insulated and sealed with, for example, an epoxy adhesive 63 that hardens at room temperature. It has stopped. Enzyme immobilization membrane 5
The l5FET 21 on which the reference membrane 6 is immobilized detects the ion concentration of the measurement solution, and the TSFET 22 on which the reference membrane 6 is immobilized does not react with the measurement solution, but by measuring the output difference between the two l5FETs, it is possible to detect the ion concentration due to temperature changes etc. Drifters are canceled out and stable measurements are possible.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したような従来のl5FETイオンセンサは、溶液
中で使用されるため、耐水性に優れた絶縁封止が要求さ
れる。従って、この組立に当たっては特にセンサチップ
とリード電極基板の引出し電極との接続部周辺の絶縁封
止が重要であり、さらには既に酵素膜が付いているもの
を扱うので接着剤や絶縁封止材料の選定およびその作業
条件が限定される。一般に、酵素膜は温度に対して鋭敏
で、例えば60℃の温度に10分程度さらすとその機能
を失ってしまうので、従来、接着剤や絶縁封止材料には
常温で硬化するエポキシ系の接着剤が用いられている。
Since the conventional 15FET ion sensor as described above is used in a solution, it is required to have an insulating seal with excellent water resistance. Therefore, in this assembly, it is especially important to insulate and seal the area around the connection between the sensor chip and the extraction electrode of the lead electrode board.Furthermore, since we are dealing with a device that already has an enzyme membrane attached, we need to use adhesives and insulating sealing materials. The selection and working conditions are limited. In general, enzyme membranes are sensitive to temperature, and lose their functionality if exposed to temperatures of 60°C for about 10 minutes. Conventionally, epoxy adhesives that harden at room temperature have been used as adhesives and insulating sealing materials. agent is used.

このなめ、接着力が十分でなく溶液中に漏れが発生して
動作しないとか、このような接着剤は粘度が高く封止作
業時にボンディングワイヤが変形してワイヤの断線とか
ワイヤ間短絡が発生し不良になる欠点があった。
This adhesive may not have sufficient adhesive strength and leak into the solution, causing it to not work.Also, such adhesives have a high viscosity and may deform the bonding wire during the sealing process, causing wire breakage or short circuits between wires. It had the drawback of becoming defective.

本発明の目的は、このような問題を解決し、絶縁封止性
に優れるとともに組立ての作業性に優れ製造コストが安
価なイオンセンサを提供することにある。
An object of the present invention is to solve such problems and provide an ion sensor that has excellent insulation sealing properties, is easy to assemble, and is inexpensive to manufacture.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によるイオンセンサの構成は、少なくも酵素固定
化膜を備えたイオン感応性電界効果トランジスタを含む
センサチップとリード電極基板とが、これらセンサチッ
プ及びリード電極基板各々の引出し電極同士が対向する
向きで層間絶縁層で固定されると共に、前記引出し電極
同士は前記層間絶縁層に設けた開口部において異方性導
電樹脂で接続されていることを特徴とする。
The configuration of the ion sensor according to the present invention is such that a sensor chip including an ion-sensitive field effect transistor having at least an enzyme-immobilized membrane and a lead electrode substrate are arranged such that the lead electrodes of the sensor chip and the lead electrode substrate face each other. The electrodes are fixed by an interlayer insulating layer in the same direction, and the extraction electrodes are connected to each other by an anisotropic conductive resin at an opening provided in the interlayer insulating layer.

〔作用〕[Effect]

本発明の構成をとることにより、センサチップとリード
電極基板との電気的接続部周辺は層間絶縁層によって完
全に取り囲まれて良好な絶縁封止が達成される。また、
その製造にあっては層間絶縁層の形成は酵素固定化膜の
固定化と切り話して行うことができるため、温度制限が
ないので絶縁性と密着性に優れた絶縁材料を選択して使
用ができる。さらに、センサチップとリード電極基板の
各々の層間絶縁膜同士と、電気的接続を行う異方性導電
樹脂を超音波溶接により全て同時に行うことができるの
で組立工程が簡略化され低コストが達成される。この超
音波溶接は、数ミリ秒の短時間で行えるので、溶接時の
温度上昇による酵素膜の劣化などへの影響は無い。
By adopting the configuration of the present invention, the periphery of the electrical connection between the sensor chip and the lead electrode substrate is completely surrounded by the interlayer insulating layer, achieving good insulation sealing. Also,
In its production, the formation of the interlayer insulating layer can be carried out separately from the immobilization of the enzyme immobilization film, so there is no temperature limit, so it is possible to select and use insulating materials with excellent insulation and adhesion. can. Furthermore, the interlayer insulating films of the sensor chip and lead electrode substrate, and the anisotropic conductive resin for electrical connection can all be welded simultaneously by ultrasonic welding, simplifying the assembly process and achieving low costs. Ru. Since this ultrasonic welding can be carried out in a short time of several milliseconds, there is no effect on the deterioration of the enzyme membrane due to temperature rise during welding.

〔実施例〕〔Example〕

以下、この発明を図面に基づいて説明する。 The present invention will be explained below based on the drawings.

第1図は本発明のイオンセンサの一実施例を説明する模
式的斜視図である。図において、1はセンサチップでS
O8基板を用いてソース電極、ドレイン電極、ゲート絶
縁膜(図示していない)から成る2個のl5FET2の
ソース、ドレイン両電極から引き出された複数の引き出
し電極3及びその先端部以外を覆う絶縁保護膜4が半導
体集積化技術により形成されている。2個のl5FET
2の一方のI 5FET21には酵素固定化膜5が、他
方のl5FET22には失活した酵素膜による参照膜6
が形成されている。7は例えばFPC基板で作成された
リード電極基板で、l5FETの引出し電極3に一対一
に対応した複数の引出し電極8を有し、その先端部を除
く表面はポリイミドフィルムによる絶縁膜9で被覆され
、図示していないがリード電極基板7を延長した先端は
カードコネクタ状に加工されている。このセンサチップ
1とリード電極基板7にはその先端部分の複数の引き出
し電極3,8を囲むように、開口部11を有した例えば
ポリイミド樹脂から成る層間絶縁層10が設けられてい
る。この開口部11は例えばNi粒子を含有する異方性
導電樹脂12が埋め込まれ、複数の引出し電極3.8と
の間を電気的に接続している。
FIG. 1 is a schematic perspective view illustrating an embodiment of the ion sensor of the present invention. In the figure, 1 is the sensor chip and S
Using an O8 substrate, a plurality of lead-out electrodes 3 drawn out from both the source and drain electrodes of two 15FET2 consisting of a source electrode, a drain electrode, and a gate insulating film (not shown), and insulation protection covering the parts other than their tips are provided. The film 4 is formed by semiconductor integration technology. 2 l5FETs
One I5FET 21 of 2 has an enzyme immobilized membrane 5, and the other I5FET 22 has a reference membrane 6 made of an inactivated enzyme membrane.
is formed. Reference numeral 7 denotes a lead electrode substrate made of, for example, an FPC board, which has a plurality of lead electrodes 8 in one-to-one correspondence with the lead electrodes 3 of the 15FET, and its surface except for its tip is covered with an insulating film 9 made of polyimide film. Although not shown, the extended end of the lead electrode board 7 is processed into a card connector shape. An interlayer insulating layer 10 made of, for example, polyimide resin and having an opening 11 is provided on the sensor chip 1 and the lead electrode substrate 7 so as to surround the plurality of lead-out electrodes 3 and 8 at the tip thereof. This opening 11 is filled with an anisotropic conductive resin 12 containing, for example, Ni particles, and is electrically connected to a plurality of extraction electrodes 3.8.

第2図から第5図は、第1図の実施例の製造方法を説明
するための斜視図である。
2 to 5 are perspective views for explaining the manufacturing method of the embodiment shown in FIG. 1. FIG.

第2図は第一の工程においてl5FETが形成されたウ
ェハに層間絶縁層を形成した状態を示す斜視図である。
FIG. 2 is a perspective view showing a state in which an interlayer insulating layer is formed on the wafer on which the 15FET is formed in the first step.

l5FETは、例えば厚さ350μmのサファイア上に
ノンドープのシリコンが0.6μmの厚さにエピタキシ
ャル成長された直径2インチのSO8基板20に半導体
集積化技術を用いて、エツチングで島状シリコン層を形
成し、イオン注入法でホー素をドープしてp層、さらに
リンをドープしてn+のソース領域とトレイン領域を作
り、次に熱酸化で厚さ100OAの酸化シリコン層を形
成し、その後表面全体にCVD法で窒化シリコン層を約
100OAの厚さに形成したものである。このI 5F
ET2のソース領域とドレイン領域からは例えばアルミ
ニュームを蒸着しフォトエツチングすることで形成した
引出し電極3が引出されている。
The 15FET is manufactured by etching an island-like silicon layer using semiconductor integration technology on a 2-inch diameter SO8 substrate 20 on which non-doped silicon is epitaxially grown to a thickness of 0.6 μm on a 350 μm thick sapphire. , dope with borium by ion implantation to form a p layer, further dope with phosphorus to form an n+ source region and train region, then form a silicon oxide layer with a thickness of 100 OA by thermal oxidation, and then cover the entire surface. A silicon nitride layer is formed to a thickness of about 100 OA using the CVD method. This I 5F
Leading electrodes 3 are drawn out from the source and drain regions of ET2, which are formed by, for example, vapor-depositing aluminum and photo-etching.

このような複数のl5FETが形成されたウェハに対し
て、まず絶縁樹脂(例えばデュポン社製P I 255
5ポリイミド樹脂)をスピン塗布によってウェハ全面に
塗布し、150℃で30分間プリベークして厚み約10
μmの層間絶縁層10を形成し、さらに層間絶縁膜の前
記引き出し電極に対応した一部に、フォトレジストによ
り開ロバターンを設けて通常行われるドライエツチング
法によって開口部11を形成する。
A wafer on which a plurality of 15FETs are formed is first coated with an insulating resin (for example, DuPont's P I 255
5 polyimide resin) was applied to the entire surface of the wafer by spin coating, and prebaked at 150°C for 30 minutes to a thickness of approximately 10%.
An interlayer insulating layer 10 having a thickness of .mu.m is formed, and an open pattern is formed using photoresist in a portion of the interlayer insulating film corresponding to the extraction electrode, and an opening 11 is formed by a commonly used dry etching method.

第3図は第二の工程において、第一の工程が完了したウ
ェハ内の各l5FETに酵素固定化膜5と参照膜6を形
成した状態を示す、ここでは酵素と架橋剤を含む蛋白質
溶液の一例として尿素を検出する場合について説明する
。まず、スピン塗布によりフォトレジスト(例えばシプ
レー社AZI450J)を塗布し60℃で乾燥した後、
フォトマスクを用い露光、現像して参照膜が設けられる
l5FET部のフォトレジストを除去する。次に、酵素
を含まない15%牛血清アルブミンを含む0.2モル、
PH8,5のトリス−塩酸緩衝液500μηと、0.7
5%グルタルアルデヒド水溶液500μiとを攪はん混
合した後、そのウェハをアセトン溶液に浸してフォトレ
ジスト膜を溶解し、フォトレジスト上に塗布されていた
固定化膜を除去する°ことで参照用l5FETが形成さ
れる。 次に、再び前述と同様のフォトレジスト工程を
繰返し、酵素固定化膜が設けられるl5FET部のフォ
トレジストを除去し、15%牛血清アルブミンを含む0
.2モル、PH8,5のトリス−塩酸緩衝液250μj
に、同じ緩衝液で調整した1 00 m g / dρ
のウレア「ゼ(ベーリンガー・マンハイム社製、約50
 U / m g )溶液250μρを加え、0.75
%0グルタルアルデヒド水溶液500μlとを攪はん混
合した溶液をスピン塗布し、室温に30分放置して乾燥
した後、ウェハをアセトン溶液に浸してフォトレジスト
膜を溶解して、フォトレジスト上に塗布されていた固定
化膜を除去することで酵素膜を固定化したl5FETが
形成される。
FIG. 3 shows a state in which an enzyme-immobilized film 5 and a reference film 6 are formed on each 15FET in the wafer after the first step is completed in the second step. Here, a protein solution containing an enzyme and a crosslinking agent is formed. As an example, a case where urea is detected will be described. First, a photoresist (for example, Shipley AZI450J) was applied by spin coating, and after drying at 60°C,
The photoresist of the 15FET portion where the reference film is provided is removed by exposure and development using a photomask. Next, 0.2 mol containing 15% bovine serum albumin without enzymes,
500 μη of Tris-HCl buffer with pH 8.5 and 0.7
After stirring and mixing the wafer with 500 μi of a 5% glutaraldehyde aqueous solution, the wafer was immersed in an acetone solution to dissolve the photoresist film, and the immobilization film coated on the photoresist was removed to create a reference 15FET. is formed. Next, the photoresist process similar to the above was repeated again to remove the photoresist from the 15FET section where the enzyme immobilization membrane was provided, and then
.. 2M PH8.5 Tris-HCl buffer 250 μj
to 100 mg/dρ prepared with the same buffer.
Urea "ze" (manufactured by Boehringer Mannheim, approx. 50
Add 250 μρ of solution (U/m g), 0.75
%0 glutaraldehyde aqueous solution with 500 µl of aqueous solution was spin-coated, left to dry at room temperature for 30 minutes, the wafer was immersed in an acetone solution to dissolve the photoresist film, and the solution was coated on the photoresist. By removing the immobilized membrane, a 15FET with an immobilized enzyme membrane is formed.

本実施例では尿素を検出する場合で例示したが、この地
間様の方法で種々の酵素固定化膜を用いることが可能で
ある。酵素固定化膜は、本実施例の場合窒化シリコン膜
への密着性も良好であったが、さらに密着性を向上させ
るために酵素固定化膜の塗布の前にプライマー処理を行
うことも可能である。前述の工程が終了したウェハをダ
イシングソーにより切断しスクライブすることでシング
ルチップ化されたセンサチップ1が得られる。
In this example, the case of detecting urea was exemplified, but it is possible to use various enzyme-immobilized membranes in this Jima-like method. Although the enzyme-immobilized film had good adhesion to the silicon nitride film in this example, it is also possible to perform primer treatment before applying the enzyme-immobilized film to further improve the adhesion. be. By cutting and scribing the wafer after the above-mentioned steps with a dicing saw, a single sensor chip 1 is obtained.

本実施例で得られたチップサイズは幅0.6mm、長さ
4mmである。
The chip size obtained in this example was 0.6 mm in width and 4 mm in length.

第4図は第三の工程によって作成されたリード電極基板
を示す図である6例えばポリイミド樹脂をベースとした
FPC基板を用い所定の引出し電極8とその先端部を除
いた部分への絶縁膜9があらかじめ加工されたリード電
圧基板7に、絶縁樹脂(例えば、デュポン社製PI25
55ポリイミド樹脂)をスピン塗布によってリード電極
基板全面に塗布し、150℃で30分間プリベークして
厚み約10μmの層間絶縁層10を形成し、さらに層間
絶縁膜の引出し電極8に対応した一部に、フォトレジス
トにより開ロバターンを設けて通常行われるドライエツ
チング法によって開口部11を形成する。この工程は、
リード電極基板−個についても加工可能であるが、量産
性や仕上がりの均一性のためにほそめ複数個を含むシー
ト上で上記加工を行い、その完了後に個々にカッティン
グして個別化する方が具合が良い。 第5図は第四の工
程を示すための図で、各々層間絶縁膜と開口部11を形
成したセンサチップ1とリード電極基板7とを超音波溶
接する状態を示したものである0図のように、センサチ
ップ1とリード電極基板7の各々の開口部11を互いに
向合うように重合わせ、センサチップ1が下になるよう
に金属性の載1台50に置き、開口部より若干小さい異
方性導電樹脂12を開口11に入れ、上方から超音波ホ
ーン51を圧接しながら超音波発振器52を作動させて
センサチップ1とリード電極基板7のおのおのの層間絶
縁膜10と引出し電極3.8同士を異方性導電樹脂12
を介して溶接する。
FIG. 4 is a diagram showing a lead electrode substrate created in the third step. 6 For example, using an FPC board based on polyimide resin, a predetermined lead-out electrode 8 and an insulating film 9 are formed on the portion excluding the tip thereof. An insulating resin (for example, PI25 manufactured by DuPont) is applied to the lead voltage board 7 on which the
55 polyimide resin) was applied to the entire surface of the lead electrode substrate by spin coating, and prebaked at 150° C. for 30 minutes to form an interlayer insulating layer 10 with a thickness of approximately 10 μm. Then, an open pattern is provided using photoresist, and an opening 11 is formed by a commonly used dry etching method. This process is
Although it is possible to process individual lead electrode substrates, for mass production and uniformity of finish, it is better to perform the above processing on a sheet containing multiple pieces and then cut them individually after completion of the process. is good. FIG. 5 is a diagram showing the fourth step, and shows the state in which the sensor chip 1 and the lead electrode substrate 7, each having an interlayer insulating film and an opening 11 formed therein, are ultrasonically welded. The openings 11 of the sensor chip 1 and the lead electrode substrate 7 are stacked so as to face each other, and placed on a metal mount 50 with the sensor chip 1 facing down, and the openings 11 of the sensor chip 1 and the lead electrode substrate 7 are slightly smaller than the openings. The anisotropic conductive resin 12 is put into the opening 11, and the ultrasonic oscillator 52 is operated while pressing the ultrasonic horn 51 from above to separate the interlayer insulating film 10 of the sensor chip 1 and the lead electrode substrate 7, and the extraction electrode 3. 8 with anisotropic conductive resin 12
to be welded through.

本実施例において、超音波発振器52として発振周波数
28KHz、出力150Wのものを用い、超音波ホーン
51を押し付けながら振幅10μmの横振動を1秒間付
与することで行った。
In this example, an ultrasonic oscillator 52 with an oscillation frequency of 28 KHz and an output of 150 W was used, and transverse vibration with an amplitude of 10 μm was applied for 1 second while pressing the ultrasonic horn 51.

以上のようにして組立てたイオンセンサを0゜9%塩化
ナトリューム水溶液に入れリード電極基板の引出し電極
と水溶液間の漏れ電流を調べたところ機能上問題となる
漏れは発見できなかった。
When the ion sensor assembled as described above was placed in a 0.9% sodium chloride aqueous solution and the leakage current between the lead electrode of the lead electrode substrate and the aqueous solution was examined, no leakage that would pose a functional problem was found.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明によるイオンセンサは、セン
サチップとリード電極基板との電気的接続部周辺が絶縁
性に優れた材料を用いた層間絶縁層により取囲まれて完
全な絶縁封止が行われ、しかも絶縁封止と異方性導電樹
脂による電気的接続を超音波溶接により同時にしかも短
時間で組立てられるので、低製造コストを実現すること
が可能となった。
As detailed above, in the ion sensor according to the present invention, the area around the electrical connection between the sensor chip and the lead electrode substrate is surrounded by an interlayer insulating layer made of a material with excellent insulation properties, so that complete insulation sealing is achieved. In addition, the insulating seal and the electrical connection using the anisotropic conductive resin can be assembled simultaneously by ultrasonic welding and in a short time, making it possible to realize low manufacturing costs.

層間絶縁膜、11・・・開口部、12・・・異方性導電
樹脂、50・・・載置台、51・・・超音波ホーン、5
2・・・超音波発振器、61.63・・・接着剤、62
・・・ボンディングワイヤ。
Interlayer insulating film, 11... Opening, 12... Anisotropic conductive resin, 50... Mounting table, 51... Ultrasonic horn, 5
2... Ultrasonic oscillator, 61.63... Adhesive, 62
...bonding wire.

Claims (1)

【特許請求の範囲】[Claims] 少なくも酵素固定化膜を備えたイオン感応性電界効果ト
ランジスタを含むセンサチップとリード電極基板とが、
これらセンサチップ及びリード電極基板各々の引出し電
極同士が対向する向きで層間絶縁層で固定されると共に
、前記引出し電極同士は前記層間絶縁層に設けた開口部
において異方性導電樹脂で接続されていることを特徴と
するイオンセンサ。
A sensor chip including at least an ion-sensitive field effect transistor equipped with an enzyme-immobilized membrane and a lead electrode substrate,
The extraction electrodes of each of the sensor chip and the lead electrode board are fixed by an interlayer insulating layer so as to face each other, and the extraction electrodes are connected to each other by an anisotropic conductive resin at an opening provided in the interlayer insulating layer. An ion sensor characterized by:
JP1044555A 1989-02-23 1989-02-23 Ion sensor Pending JPH02223855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1044555A JPH02223855A (en) 1989-02-23 1989-02-23 Ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1044555A JPH02223855A (en) 1989-02-23 1989-02-23 Ion sensor

Publications (1)

Publication Number Publication Date
JPH02223855A true JPH02223855A (en) 1990-09-06

Family

ID=12694747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1044555A Pending JPH02223855A (en) 1989-02-23 1989-02-23 Ion sensor

Country Status (1)

Country Link
JP (1) JPH02223855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223616A (en) * 1997-11-19 1999-08-17 Robert Bosch Gmbh Sensor element, and manufacture thereof
WO2004059311A1 (en) * 2002-12-20 2004-07-15 Endress + Hauser Conducta Gmbh+Co. Kg Semiconductor sensor having a front-side contact zone
JP2010526311A (en) * 2007-05-09 2010-07-29 コンセジョ スペリオール デ インベスティガショネス シエンティフィカス Impedance sensor and its use

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223616A (en) * 1997-11-19 1999-08-17 Robert Bosch Gmbh Sensor element, and manufacture thereof
JP4536836B2 (en) * 1997-11-19 2010-09-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Sensor element and method for manufacturing sensor element
WO2004059311A1 (en) * 2002-12-20 2004-07-15 Endress + Hauser Conducta Gmbh+Co. Kg Semiconductor sensor having a front-side contact zone
CN100425982C (en) * 2002-12-20 2008-10-15 恩德莱斯和豪瑟尔分析仪表两合公司 Semiconductor sensor having a front-side contact zone
US7799606B2 (en) 2002-12-20 2010-09-21 Endress + Hauser Conducta Gesellschaft Fur Mess- U. Regeltechnik Mbh + Co. Kg Semiconductor sensor having a front-side contact zone
JP2010526311A (en) * 2007-05-09 2010-07-29 コンセジョ スペリオール デ インベスティガショネス シエンティフィカス Impedance sensor and its use

Similar Documents

Publication Publication Date Title
US4874499A (en) Electrochemical microsensors and method of making such sensors
US5445920A (en) Fabrication process of biosensor
JP3001104B2 (en) Sensor structure and method of manufacturing the same
US4961833A (en) Field-effect transistor-type semiconductor sensor
US4354308A (en) Method for manufacture of a selective chemical sensitive FET transducer
EP0063455A1 (en) Method for the fabrication of encapsulated chemoresponsive microelectronic device arrays
US4791465A (en) Field effect transistor type semiconductor sensor and method of manufacturing the same
JPH0921778A (en) Biosensor
US4232326A (en) Chemically sensitive field effect transistor having electrode connections
EP1186885B1 (en) Field-effect transistor
EP0235024B1 (en) Enzyme sensor and method of manufacture same
US4449011A (en) Method and apparatus for encapsulation of chemically sensitive field effect device
JPH10325772A (en) Semiconductor pressure sensor and its manufacture
JPH02223855A (en) Ion sensor
KR960010690B1 (en) Small glass electrode and process for preparation thereof
EP0116117B1 (en) A method of establishing electrical connections at a semiconductor device
JPH02170044A (en) Ion sensor
JPS60200154A (en) Isfet sensor and manufacture thereof
JPH08279444A (en) Microstructure and manufacturing method thereof
JPH01176935A (en) Ion sensor and its manufacture
JPH01284748A (en) Connector for connecting sensor
JP3096087B2 (en) Ion sensor
JPH046456A (en) Oxygen electrode and manufacture thereof
JPS63111453A (en) Enzyme electrode
JPH0315974B2 (en)