JPH02223813A - Transparency distortion evaluating method for laminated glass plate - Google Patents

Transparency distortion evaluating method for laminated glass plate

Info

Publication number
JPH02223813A
JPH02223813A JP4558389A JP4558389A JPH02223813A JP H02223813 A JPH02223813 A JP H02223813A JP 4558389 A JP4558389 A JP 4558389A JP 4558389 A JP4558389 A JP 4558389A JP H02223813 A JPH02223813 A JP H02223813A
Authority
JP
Japan
Prior art keywords
glass plate
laminated glass
flicker
angle
transparency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4558389A
Other languages
Japanese (ja)
Other versions
JP2560470B2 (en
Inventor
Seiichiro Manabe
真鍋 征一郎
Tsutomu Sawano
勉 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1045583A priority Critical patent/JP2560470B2/en
Publication of JPH02223813A publication Critical patent/JPH02223813A/en
Application granted granted Critical
Publication of JP2560470B2 publication Critical patent/JP2560470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accurately and automatically evaluate transparency distortion by measuring the uneven shape of the outside surface of the laminated glass plate and predicting the transparency distortion of the laminated glass plate. CONSTITUTION:The unevenness of the surface of the glass plate is found in the width direction of the glass plate, the refraction of light is found from the uneven shape by geometric optical calculation, and the refraction of the laminated glass is found from the uneven shape of the outside surface of the two glass plates. A measuring person views the motion of a lattice pattern on a screen as transparency distortion through the laminated glass plate. The relation between the characteristic parameter of the dynamic variation pattern and a flicker angle which is found by a conventional flicker functional test is found in advance to calculate a flicker angle. Consequently, the flicker angle of the laminated glass plate can be calculated only by measuring the surface shape of the glass plate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は合わせガラス板の透視歪評価法に係り、特に自
動車用合わせガラスの品質評価に好適な合わせガラス板
の透視歪評価法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for evaluating perspective distortion of a laminated glass plate, and particularly to a method for evaluating perspective distortion of a laminated glass plate suitable for evaluating the quality of laminated glass for automobiles.

[従来の技術] 一般に、自動車用合わせガラスは、2枚のガラス板の間
にポリビニールブチラール等の合成樹脂製中間膜を介し
て、これらを積層して製造されている。
[Prior Art] Generally, laminated glass for automobiles is manufactured by laminating two glass plates with a synthetic resin interlayer such as polyvinyl butyral interposed between them.

ところで、このような合わせガラスを自動車の窓ガラス
に使用し、車内からこの窓ガラスを通して外界を見ると
、外界の景色がちらつく現象即ち透視歪を生ずることが
ある。透視歪が生じる原因は種々推定されているが、そ
の一つに、合わせガラス用フロートガラス板の表面に存
在する凹凸が考えられる。この透視歪は、一般に合わせ
ガラス用フロートガラス板の表面の凹凸が大きいほど著
しいといわれている。
By the way, when such a laminated glass is used as a window glass of a car and the outside world is viewed through the window glass from inside the car, a phenomenon in which the view of the outside world flickers, that is, perspective distortion may occur. Various causes of perspective distortion have been estimated, and one of them is considered to be irregularities existing on the surface of a float glass plate for laminated glass. It is said that this perspective distortion is generally more significant as the surface irregularities of the float glass plate for laminated glass become larger.

従って、自動車用合わせガラスとして透視歪のない合わ
せガラス板を提供するためには、製品となる合わせガラ
ス板の透視歪を定量的に確実に評価する必要がある。
Therefore, in order to provide a laminated glass plate free of perspective distortion as a laminated glass for automobiles, it is necessary to quantitatively and reliably evaluate the perspective distortion of the laminated glass plate as a product.

従来、この目的のための試験法として、白木工業規格で
は透視歪試験及び二重像試験がある。これら2つの試験
法は合わせガラス板による像の歪を定量的に評価するも
のであるが、静的試験法であるため、走行中の自動車の
車内から見える外界の景色の微妙なちらつきを評価でき
ない場合もでてくる。これに対して、この走行中の自動
車の車内から見るという状況を、模擬化した動的な試験
法が提案されており、これを通常フリッカ−官能試験法
と呼んでいる。フリッカ−官能試験法は、次の■〜■の
手順で行なわれる。
Conventionally, as testing methods for this purpose, the Shiraki Industrial Standards include a perspective distortion test and a double image test. These two test methods quantitatively evaluate image distortion caused by laminated glass plates, but because they are static test methods, they cannot evaluate subtle flickering in the external scenery seen from inside a moving car. There will be cases. On the other hand, a dynamic test method has been proposed that simulates the situation of viewing from inside a moving car, and this is usually called the flicker sensory test method. The flicker sensory test method is carried out according to the following steps 1 to 2.

■ フロート式製板装置によ、り連続的に製造されたガ
ラス板を合成樹脂製中間膜を介して重ね合わせ、合わせ
ガラス板を作製する。
■ Laminated glass plates are produced by laminating glass plates that are continuously produced using a float-type plate making machine with a synthetic resin interlayer interposed between them.

■ 第6図に示した約200cm角の白いボード上に4
cm間隔で黒い線を入れた格子状スクリーン1及び合わ
せガラス板を置くサンプル台2を用意し、第7図に示す
ように所定間隔をおいてスクリーン1、サンプル台2、
測定者3を配置する。
■ On the approximately 200cm square white board shown in Figure 6,
A grid screen 1 with black lines at cm intervals and a sample stand 2 on which a laminated glass plate is placed are prepared, and the screen 1, sample stand 2,
Place measurer 3.

■ サンプル台2の上に、水平とのなす角度θがθ=3
0°となるように透視歪の基準となる標準サンプル板を
セットする。
■ On the sample stage 2, the angle θ with the horizontal is θ = 3.
A standard sample plate, which serves as a reference for perspective distortion, is set so that the angle is 0°.

■ 測定者3は頭を上下に動かしながらスクリーン1を
見る。このときスクリーン1上の格子模様が微妙に上下
に動くちらつきをちらつきの基準とする。
■Measuring person 3 looks at screen 1 while moving his head up and down. At this time, the flicker in which the grid pattern on the screen 1 slightly moves up and down is used as the standard for flickering.

■ 次いで、フリッカ−官能試験を行なう合わせガラス
板4をサンプル台2にセットし、番ちらつきが大きい箇
所におけるちらつきが上記■の基準のちらつきと同程度
になるようにサンプル台2の傾斜角θを調節する。
■Next, set the laminated glass plate 4 on which the flicker sensory test will be conducted on the sample stand 2, and adjust the inclination angle θ of the sample stand 2 so that the flicker at the point where the flicker is large is the same as the flicker based on the criteria in (■) above. Adjust.

■ ■で得られたθが、合わせガラス板の透視歪の良否
を定量的に表わすフリッカ−角度となる。
(2) The angle θ obtained in (2) becomes the flicker angle that quantitatively represents the quality of perspective distortion of the laminated glass plate.

[発明が解決しようとする課題] 自動車の車内から外界景色を見る状況を模擬化したフリ
ッカ−官能試験法は、合わせガラス板の動的な透視歪を
定量的に評価するものであるが、官能試験であるが故に
、必然的に測定者による個人誤差を伴う、この個人誤差
はちらつきに対する個人の感覚の違いから生じる。特に
このフリッカ−官能試験においてはちらつきに種々のパ
ターンのちらつきがあり、個人によりそれらのちらつき
に対する感覚が異なるため、それらを−括して判定する
ことは個人誤差のより大きな原因となっていた。このた
め、従来のフリッカ−官能試験では測定者が異なると明
らかに測定値に誤差が生じ、また同一測定者でも測定日
時が異なると測定値に誤差が生じるのが常であった。こ
のような状況下では、このフリッカ−官能試験で得られ
たフリッカ−角度を合わせガラス板の品質の確実な判定
材料とすることはできない。
[Problems to be Solved by the Invention] The flicker sensory test method, which simulates the situation in which the outside world is viewed from inside a car, quantitatively evaluates the dynamic perspective distortion of laminated glass plates. Since this is a test, there is inevitably individual error by the measurer, and this individual error arises from differences in the individual's sense of flicker. Particularly in this flicker sensory test, there are various patterns of flickering, and the sensation of these flickers differs depending on the individual, so judging them all at the same time is a source of greater individual error. For this reason, in the conventional flicker sensory test, errors occur clearly in the measured values when different operators are used, and errors also occur in the measured values even when the same operator uses different measurement dates and times. Under such circumstances, the flicker angle obtained in this flicker sensory test cannot be used as reliable material for determining the quality of the laminated glass plate.

本発明は上記従来の問題点を解決し、従来から行なわれ
てきたフリッカ−官能試験法を用いた評価法と整合性を
持ち、かつ一義的に正確な評価が可能な合わせガラス板
の透視歪評価法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, is consistent with the conventional evaluation method using the flicker sensory test method, and enables uniquely accurate evaluation of perspective distortion of laminated glass plates. The purpose is to provide an evaluation method.

[課題を解決するための手段] 本発明の合わせガラス板の透視歪評価法は、2枚のガラ
ス素板が中間膜を介在させて接合されてなる合わせガラ
ス板の透視歪を評価するに当り、合わせガラス板の外側
表面の凹凸形状を測定し、その表面凹凸形状から合わせ
ガラス板の透視歪を予測することを特徴とする。
[Means for Solving the Problems] The method for evaluating perspective distortion of a laminated glass plate of the present invention is for evaluating perspective distortion of a laminated glass plate formed by bonding two glass base plates with an interlayer interposed therebetween. The present invention is characterized in that the uneven shape of the outer surface of a laminated glass plate is measured, and the perspective distortion of the laminated glass plate is predicted from the surface uneven shape.

即ち、本発明は、合わせガラス板の透視歪が主として合
わせガラス板を構成するガラス素板の表面の凹凸による
光の屈折で生じているという原理を利用するものである
That is, the present invention utilizes the principle that the perspective distortion of a laminated glass plate is mainly caused by the refraction of light due to the unevenness of the surface of the glass base plate constituting the laminated glass plate.

本発明の実施方法の一例として、例えば、次の■〜■の
手順で行なう方法が挙げられる。
An example of a method for implementing the present invention is a method using the following steps (1) to (2).

■ フロート式製板装置により連続的に製造されたフロ
ートガラス板表面の凹凸形状を光学式又は触針式表面凹
凸針で測定する。
(2) Measuring the unevenness of the surface of a float glass plate continuously produced by a float-type plate making machine using an optical or stylus type surface unevenness needle.

■ 測定されたガラス板表面の凹凸形状から、その表面
での光の屈折を幾何光学計算で求める光線追跡を行なっ
て、合わせガラス板を通して見たスクリーン上の格子模
様のちらつき即ち動的変動パターンを予測する。
■ From the measured unevenness of the surface of the glass plate, we performed ray tracing to determine the refraction of light on the surface using geometric optics calculations to detect the flickering or dynamic fluctuation pattern of the grid pattern on the screen seen through the laminated glass plate. Predict.

■ ■で予測した動的変動パターンが有する特性パラメ
ーターと、前述のフリッカ−官能試験で求められるフリ
ッカ−角度とを関係づける実験式から、目的の合わせガ
ラス板のフリッカ−角度を求める。
(2) The flicker angle of the target laminated glass plate is determined from the empirical formula that relates the characteristic parameters of the dynamic fluctuation pattern predicted in (2) and the flicker angle determined by the above-mentioned flicker sensory test.

上記■〜■の手順によれば、本発明の方法を用いても、
従来どおりのフリッカ−角度を求めることができ、従来
の評価基準を特に変える必要がないため、品質管理が容
易である。
According to the above steps ■ to ■, even if the method of the present invention is used,
Since the flicker angle can be determined in the same manner as before and there is no need to particularly change the conventional evaluation criteria, quality control is easy.

以下に、上記■〜■の手順につき、更に詳細に説明する
Below, the above procedures ① to ② will be explained in more detail.

■ニガラス板の表面凹凸形状の測定 ガラス板表面の凹凸測定は、通常、ガラス板の幅方向に
沿って行なわれる。測定モードは断面測定もしくは粗さ
測定のいずれでも良いが、望ましくは真の表面形状を表
わす断面測定が良い。
(2) Measurement of unevenness on the surface of a glass plate The measurement of unevenness on the surface of a glass plate is usually carried out along the width direction of the glass plate. The measurement mode may be either cross-sectional measurement or roughness measurement, but cross-sectional measurement that represents the true surface shape is preferable.

■:凹凸形状からの動的変動パターンの予測■で求めた
ガラス板の凹凸形状から、そこでの光の屈折を幾何光学
計算で求める。この場合、合わせガラス板は中間膜と中
間膜を挟む2枚のガラス板からなり立っているが、中間
膜とガラス板の境界では両者の屈折率が殆ど同じである
ことから、近似的にこの境界面での光の屈折を無視する
ことができる。
■: Prediction of dynamic fluctuation pattern from the uneven shape From the uneven shape of the glass plate obtained in step (■), the refraction of light there is determined by geometric optics calculation. In this case, the laminated glass plate consists of an interlayer film and two glass plates with the interlayer film sandwiched between them, but since the refractive index of both is almost the same at the boundary between the interlayer film and the glass plate, this can be approximated as follows. Refraction of light at the interface can be ignored.

従って、ガラス板と空気との境界での屈折が合わせガラ
ス板の屈折の主な要素となるので、2枚のガラス板のう
ち、合わせガラス板の外側になる表面の凹凸形状から光
の屈折を計算すれば足りる。そのため、以下の説明では
2枚のガラス板の外側の表面(合計で2表面)の凹凸形
状から光の屈折が計算されている。
Therefore, the refraction at the boundary between the glass plate and the air is the main factor in the refraction of the laminated glass plate, so the refraction of light is determined from the uneven shape of the outer surface of the laminated glass plate. All you need to do is calculate. Therefore, in the following explanation, the refraction of light is calculated from the uneven shape of the outer surfaces of the two glass plates (two surfaces in total).

このようにして、合わせガラス板の光の屈折が求められ
ると、この屈折率から測定者が合わせガラス板を通して
スクリーン上の格子模様を見たときの格子模様の動きを
計算で求めることができる。この格子模様の動き(動的
変動パターン)がちらつき即ち透視歪となって測定者の
目に映ることになる。
Once the refraction of light by the laminated glass plate is determined in this way, the movement of the lattice pattern when the measurer views the lattice pattern on the screen through the laminated glass plate can be calculated from this refractive index. The movement of this lattice pattern (dynamic variation pattern) appears as flicker, or perspective distortion, to the eyes of the measurer.

■=フリッカー角度の算出 上記の格子模様の動きすなわち動的変動パターンが有す
る特性パラメーターと従来のフリッカ−官能試験で求め
られるフリッカ−角度とを関係づける実験式を予め求め
ておぎ、この実験式に■で求めた動的変動パターンが有
する特性パラメーターを代入してフリッカ−角度を算出
する。これにより、ガラス板の表面形状を計測するだけ
で、計算によって合わせガラス板のフリッカ−角度を求
めることができる。
■ = Calculation of flicker angle An experimental formula that relates the characteristic parameters of the movement of the above-mentioned checkered pattern, that is, the dynamic fluctuation pattern, and the flicker angle determined by the conventional flicker sensory test is determined in advance, and this empirical formula is used to calculate the flicker angle. The flicker angle is calculated by substituting the characteristic parameters of the dynamic fluctuation pattern obtained in step (2). Thereby, the flicker angle of the laminated glass plate can be calculated by simply measuring the surface shape of the glass plate.

この動的変動パターンが有する特性パラメーターとフリ
ッカ−角度を関係づける実験式は次のようにして求めら
れる。
An empirical formula relating the characteristic parameter of this dynamic fluctuation pattern to the flicker angle can be obtained as follows.

合わせガラス板の透視歪の大きいところでは、格子模様
は第1図の矢印Xで示すように大きくかつすばやく動く
。(なお、第1図は評価の対象となる合わせガラス板か
ら、フリッカ−不良部(i!l視歪の大きい部分)を中
心にした長さ300mmの部分におけるスクリーンの格
子模様のちらつき即ち動的変動パターンを表わすグラフ
であり、横軸は合わせガラス板の位置を示し、縦軸はそ
の位置で格子模様が上下゛に移動する大きさ(単位mm
)を示している。)そこで、この動き即ち、動的変動パ
ターンの特性パラメーターである最大振幅をAO,最大
振幅における変化勾配をBO(BO=AO/Co 、な
お、Coについては第1図参照。)としてQ=A1×B
″なる量を定義する。ここで、m、nは定数であり、1
≦m / n < 4 が好適である。そして、種々のレベルの透視歪を持つ合
わせガラス板のサンプルについて、このQと従来のフリ
ッカ−官能試験で求めたフリッカ−角度とを関係づけ、
その関係を表わす実験式を求める。後述の実施例の如く
、この実験式から求めた値は実測のフリッカ−角度と良
好に対応することが認められた。
In areas where the perspective distortion of the laminated glass plate is large, the lattice pattern moves greatly and quickly, as shown by arrows X in FIG. (Figure 1 shows the flickering of the grid pattern of the screen, that is, the dynamic This is a graph showing the fluctuation pattern. The horizontal axis shows the position of the laminated glass plate, and the vertical axis shows the vertical movement of the grid pattern at that position (unit: mm).
) is shown. ) Therefore, if the maximum amplitude, which is a characteristic parameter of this movement, that is, the dynamic fluctuation pattern, is AO, and the gradient of change at the maximum amplitude is BO (BO=AO/Co, see Fig. 1 for Co), then Q=A1. ×B
'', where m and n are constants and 1
≦m/n<4 is suitable. Then, for samples of laminated glass plates with various levels of perspective distortion, we correlated this Q with the flicker angle determined by the conventional flicker sensory test,
Find an empirical formula that expresses that relationship. As in the Examples described below, it was found that the value obtained from this experimental formula corresponded well to the actually measured flicker angle.

[作用] 合わせガラス板の透視歪は、主として合わせガラス板を
構成するガラス板の表面の凹凸による光の屈折で生じて
いる。
[Operation] The perspective distortion of a laminated glass plate is mainly caused by the refraction of light due to the unevenness of the surface of the glass plate that constitutes the laminated glass plate.

従りて、本発明の方法により、2枚のガラス板の表面の
凹凸形状を測定することにより、この凹凸形状から光の
屈折を算出し、この光の屈折から合わせガラス板の透視
歪を容易かつ一義的に、しかも定量的に予測することが
可能となる。
Therefore, by the method of the present invention, by measuring the uneven shape of the surface of two glass plates, the refraction of light can be calculated from this uneven shape, and the perspective distortion of the laminated glass plate can be easily calculated from the refraction of light. Moreover, it becomes possible to predict it uniquely and quantitatively.

特に、本発明方法による透視歪と、従来のフリッカ−官
能試験によるフリッカ−角度とを関係づける実験式を求
め、これに求められた動的変動パターンが有する特性パ
ラメーターを代入することにより、ガラス板の表面の凹
凸形状からフリッカ−角度が求められる。
In particular, by finding an empirical formula that relates the perspective distortion obtained by the method of the present invention and the flicker angle obtained by the conventional flicker sensory test, and substituting the characteristic parameters of the obtained dynamic fluctuation pattern into this, The flicker angle can be determined from the uneven shape of the surface.

[実施例] 以下に本発明の実施例を示す。[Example] Examples of the present invention are shown below.

実施例1 合わせガラスの素材であるフロートガラス板について、
触針式表面凹凸計を用いて板表面の凹凸形状を測定した
。第2図はこの結果を示すもので、ガラス板の表面の凹
凸形状を表わしている。
Example 1 Regarding a float glass plate that is a material for laminated glass,
The uneven shape of the plate surface was measured using a stylus type surface unevenness meter. FIG. 2 shows the results and shows the uneven shape of the surface of the glass plate.

第2図の横軸はガラス板の位置を、縦軸はその凹凸を拡
大して示している。また、斜線部はフロートガラス板部
を示している。即ち、第2図はフロートガラス板の表面
の断面形状を表わすものである。
The horizontal axis in FIG. 2 indicates the position of the glass plate, and the vertical axis indicates an enlarged view of its unevenness. Further, the shaded area indicates the float glass plate section. That is, FIG. 2 shows the cross-sectional shape of the surface of the float glass plate.

また、このフロートガラス板の対になるフロートガラス
板についても、同様に表面凹凸を測定した。その結果を
第3図に示す。
Furthermore, the surface irregularities of the float glass plate that was the counterpart of this float glass plate were also measured in the same manner. The results are shown in FIG.

この2つの表面凹凸から、光の屈折で得られるスクリー
ン上の格子模様の動きを第4図に示す、第4図において
、最大振幅値A (−3,8mm)、変化勾配B (B
=A/C−0,23)から、Q;AMaXBI″のm=
1.0.n=0.5とすると、 Q = AI・OX B 0.5 w3.8” xo、23°・5 =1.82 が計算される。
Figure 4 shows the movement of the lattice pattern on the screen obtained by refraction of light from these two surface irregularities.
=A/C-0,23), m= of Q; AMaXBI''
1.0. When n=0.5, Q = AI·OX B 0.5 w3.8”xo, 23°·5 =1.82 is calculated.

一方、予め求めておいたフリッカ−角度(F)とQとの
関係は第5図に示す通りである。
On the other hand, the relationship between the flicker angle (F) determined in advance and Q is as shown in FIG.

第5図より、FとQとの関係を示す実験式9式% が得られた。この実験式から、合わせガラス板のフリッ
カ−角度、即ち、Q−1,82の場合のFの値を求める
0本実施例ではF−31°となった。(なお、従来のフ
リッカ−官能試験法では32°であった。) 同様にして多数のガラス板の表面凹凸からその合わせガ
ラス板のフリッカ−角度を求めた結果を、フリッカ−官
能試験による結果と共に、第1表に示す、第1表より、
従来法のフリッカ−角度と、本発明による方法で得られ
たフリッカ−角度との間には1°以内のずれしかなく、
本発明の方法が従来法にとってかわる高精度の評価法で
あることが明らかである。
From FIG. 5, an experimental formula 9 expressing the relationship between F and Q was obtained. From this experimental formula, the flicker angle of the laminated glass plate, ie, the value of F in the case of Q-1, 82, was determined to be F-31° in this example. (In the conventional flicker sensory test method, it was 32 degrees.) In the same way, the flicker angle of a laminated glass plate was determined from the surface irregularities of a large number of glass plates. , shown in Table 1. From Table 1,
There is only a deviation of less than 1° between the flicker angle obtained by the conventional method and the flicker angle obtained by the method according to the present invention.
It is clear that the method of the present invention is a highly accurate evaluation method that can replace the conventional method.

第1表 [発明の効果] 以上詳述した通り、本発明の合わせガラス板の透視歪評
価法によれば、合わせガラス板の透視歪の評価を、一義
的にかつ正確に、しかも機械的、自動的に行なうことが
可能とされる。
Table 1 [Effects of the Invention] As detailed above, according to the method for evaluating perspective distortion of a laminated glass plate of the present invention, the perspective distortion of a laminated glass plate can be evaluated uniquely and accurately, mechanically, and It is possible to do this automatically.

即ち、本発明による評価法は、全て、機拭で行なうこと
ができるため、従来のフリッカ−官能試験でみられるよ
うな、測定者の個人差による評価誤差は全く起こらない
。このため、常に一定の基準で評価が行なわれることか
ら、合わせガラス板の品質の評価がより確実となる。
That is, since the evaluation method according to the present invention can be carried out using a wiping cloth, evaluation errors due to individual differences among the measurers, as seen in conventional flicker sensory tests, do not occur at all. Therefore, the quality of the laminated glass plate can be evaluated more reliably since the evaluation is always performed using a constant standard.

しかも、本発明による評価法は、その評価値(フリッカ
−角度)において、従来のフリッカ−官能試験と整合性
を持ち得るものであるから、従来から蓄積されてきた合
わせガラス板の品質の基準を変える必要もない。
Moreover, since the evaluation method according to the present invention can be consistent with conventional flicker sensory tests in its evaluation value (flicker angle), it can meet the standards for the quality of laminated glass sheets that have been accumulated from the past. There's no need to change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の評価法で得られたスクリーン上の格子
模様の動ぎ(動的変動パターン)を示す図、第2図は実
施例1における合わせガラス板の一方の表面の断面形状
を示す図、第3図は第2図の合わせガラス板のもう一方
の表面の断面形状を示す図、第4図は第2図及び第3図
の断面形状をもつ合わせガラス板について、本発明の評
価法で得られたスクリーン上の格子模様の動き(動的変
動パターン)を示す図、第5図はフリッカ−角度とQの
関係を表わす図、第6図は従来のフリッカ−官能試験で
用いられるスクリーンの平面図、第7図はフリッカ−官
能試験方法の説明図である。 1・・・スクリーン、 2・・・サンプル台、 3・・・測定者。
Fig. 1 shows the movement of the grid pattern on the screen (dynamic fluctuation pattern) obtained by the evaluation method of the present invention, and Fig. 2 shows the cross-sectional shape of one surface of the laminated glass plate in Example 1. Figure 3 is a diagram showing the cross-sectional shape of the other surface of the laminated glass plate in Figure 2, and Figure 4 is a diagram showing the cross-sectional shape of the other surface of the laminated glass plate in Figures 2 and 3. A diagram showing the movement of the grid pattern on the screen (dynamic fluctuation pattern) obtained by the evaluation method, Figure 5 is a diagram showing the relationship between flicker angle and Q, and Figure 6 is the diagram used in the conventional flicker sensory test. FIG. 7 is an explanatory diagram of the flicker sensory test method. 1...Screen, 2...Sample stand, 3...Measuring person.

Claims (1)

【特許請求の範囲】[Claims] (1)2枚のガラス板が中間膜を介在させて接合されて
なる合わせガラス板の透視歪を評価するに当り、合わせ
ガラス板の外側表面の凹凸形状を測定し、その表面凹凸
形状から合わせガラス板の透視歪を予測することを特徴
とする合わせガラス板の透視歪評価法。
(1) When evaluating the perspective distortion of a laminated glass plate made by bonding two glass plates with an interlayer interposed, the unevenness of the outer surface of the laminated glass plate is measured, and the unevenness of the surface is used to A method for evaluating perspective distortion of laminated glass plates, which is characterized by predicting perspective distortion of glass plates.
JP1045583A 1989-02-27 1989-02-27 Evaluation method of perspective distortion of laminated glass plate Expired - Lifetime JP2560470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1045583A JP2560470B2 (en) 1989-02-27 1989-02-27 Evaluation method of perspective distortion of laminated glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1045583A JP2560470B2 (en) 1989-02-27 1989-02-27 Evaluation method of perspective distortion of laminated glass plate

Publications (2)

Publication Number Publication Date
JPH02223813A true JPH02223813A (en) 1990-09-06
JP2560470B2 JP2560470B2 (en) 1996-12-04

Family

ID=12723372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1045583A Expired - Lifetime JP2560470B2 (en) 1989-02-27 1989-02-27 Evaluation method of perspective distortion of laminated glass plate

Country Status (1)

Country Link
JP (1) JP2560470B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001422A1 (en) * 2000-06-27 2002-01-03 Asahi Glass Company, Limited Method for evaluating dynamic perspective distortion of transparent body and method for supporting designing of three-dimensional shape of transparent body
JP2014145909A (en) * 2013-01-29 2014-08-14 Hoya Corp Method of manufacturing lens
CN108490003A (en) * 2018-05-22 2018-09-04 信义节能玻璃(四川)有限公司 The judgment method of laminated glass detachment device and laminated glass optical quality defect

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001422A1 (en) * 2000-06-27 2002-01-03 Asahi Glass Company, Limited Method for evaluating dynamic perspective distortion of transparent body and method for supporting designing of three-dimensional shape of transparent body
US7162398B2 (en) 2000-06-27 2007-01-09 Asahi Glass Company, Limited Method for evaluating the dynamic perspective distortion of a transparent body and method for supporting the designing of a three-dimensionally curved shape of a transparent body
JP4736304B2 (en) * 2000-06-27 2011-07-27 旭硝子株式会社 Dynamic perspective distortion evaluation method for transparent body and three-dimensional shape design support method for transparent body
JP2014145909A (en) * 2013-01-29 2014-08-14 Hoya Corp Method of manufacturing lens
CN108490003A (en) * 2018-05-22 2018-09-04 信义节能玻璃(四川)有限公司 The judgment method of laminated glass detachment device and laminated glass optical quality defect
CN108490003B (en) * 2018-05-22 2024-02-02 信义节能玻璃(四川)有限公司 Laminated glass splitting device and method for judging optical quality defects of laminated glass

Also Published As

Publication number Publication date
JP2560470B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
KR0159925B1 (en) Process for determining the optical quality of flat glasss or flat glass products
US5367378A (en) Highlighted panel inspection
TWI394431B (en) Evaluation method of stereoscopic image display panel and system of the same
JP5738515B2 (en) System and method for determining cumulative tow gap width
KR20070121820A (en) Glass inspection systems and methods for using same
EA026373B1 (en) Device and method for inspecting defects of a transparent or specular substrate by its optical properties in transmitted or reflected light correspondingly
US20220349802A1 (en) Method, device, and system for testing static contact angle of reagent asphalt
CA2834401C (en) Surface measurement system and method
CN101620816A (en) Method and system for evaluating stereoscopic image display panel
CN101651845B (en) Method for testing definition of moving images of display devices
JPH03175308A (en) Optical quality inspection method of large area-plate made of trasparent material like glass
CN103727888B (en) Chromatic color filter film thickness measuring method and device
CN108548825A (en) A kind of transparent plate defect detecting device and method based on two-dimentional illumination
EP4217704A1 (en) Systems and methods for automatic visual inspection of defects in ophthalmic lenses
JPH0342559A (en) Method of inspecting member surface
CN109000797A (en) A kind of radium-shine cigarette-brand chromatism measurement method
JPH02223813A (en) Transparency distortion evaluating method for laminated glass plate
CN104848808A (en) Surface roughness detection method and equipment
JP6799527B2 (en) Methods and equipment for imaging crushing patterns formed on tempered glass panels
CN110035277A (en) A kind of test macro and test method of infrared imaging auto-focusing algorithm
JPH0843319A (en) Method and equipment for measuring optical property on surface of transparent material body
US5606410A (en) Method for controlling the surface state of one face of a solid and the associated device
JPH08159740A (en) Surface distortion judging method
CN1323417C (en) Intelligent measuring instrument for shadow mask aperture
JPH05272949A (en) Method for evaluating glass plate surface