JPH02223186A - Microwave induced heating and its apparatus - Google Patents
Microwave induced heating and its apparatusInfo
- Publication number
- JPH02223186A JPH02223186A JP4174289A JP4174289A JPH02223186A JP H02223186 A JPH02223186 A JP H02223186A JP 4174289 A JP4174289 A JP 4174289A JP 4174289 A JP4174289 A JP 4174289A JP H02223186 A JPH02223186 A JP H02223186A
- Authority
- JP
- Japan
- Prior art keywords
- plane
- heated
- microwave
- heating
- electric field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 56
- 230000005684 electric field Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 55
- 239000000470 constituent Substances 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims description 6
- 230000006698 induction Effects 0.000 claims description 2
- 239000006260 foam Substances 0.000 claims 2
- 230000000149 penetrating effect Effects 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 20
- 238000001035 drying Methods 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 22
- 235000013601 eggs Nutrition 0.000 description 13
- 230000000903 blocking effect Effects 0.000 description 8
- 230000008961 swelling Effects 0.000 description 8
- 239000004809 Teflon Substances 0.000 description 7
- 229920006362 Teflon® Polymers 0.000 description 7
- 235000011194 food seasoning agent Nutrition 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 235000019465 surimi Nutrition 0.000 description 6
- 235000013339 cereals Nutrition 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 235000015278 beef Nutrition 0.000 description 4
- 235000013351 cheese Nutrition 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 241000238557 Decapoda Species 0.000 description 3
- 241000287828 Gallus gallus Species 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 241000238366 Cephalopoda Species 0.000 description 2
- 239000004278 EU approved seasoning Substances 0.000 description 2
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 235000020989 red meat Nutrition 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 235000019685 rice crackers Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 235000003261 Artemisia vulgaris Nutrition 0.000 description 1
- 240000006891 Artemisia vulgaris Species 0.000 description 1
- 241000512259 Ascophyllum nodosum Species 0.000 description 1
- 235000000832 Ayote Nutrition 0.000 description 1
- 244000067456 Chrysanthemum coronarium Species 0.000 description 1
- 235000007871 Chrysanthemum coronarium Nutrition 0.000 description 1
- 240000004244 Cucurbita moschata Species 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 235000009804 Cucurbita pepo subsp pepo Nutrition 0.000 description 1
- 244000019459 Cynara cardunculus Species 0.000 description 1
- 235000019106 Cynara scolymus Nutrition 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 1
- 235000017879 Nasturtium officinale Nutrition 0.000 description 1
- 240000005407 Nasturtium officinale Species 0.000 description 1
- 235000010676 Ocimum basilicum Nutrition 0.000 description 1
- 240000007926 Ocimum gratissimum Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 101710180012 Protease 7 Proteins 0.000 description 1
- 241000277331 Salmonidae Species 0.000 description 1
- 241000785681 Sander vitreus Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 description 1
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- -1 amino acid compound Chemical class 0.000 description 1
- 235000016520 artichoke thistle Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000007215 black sesame Nutrition 0.000 description 1
- 235000001046 cacaotero Nutrition 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 235000021384 green leafy vegetables Nutrition 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 235000015136 pumpkin Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Constitution Of High-Frequency Heating (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、マイクロ波加熱方法及びそのための装置に関
するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a microwave heating method and an apparatus therefor.
更に詳細には1本発明は準結合水領域に調整された被加
熱物のマイクロ波による束縛加熱方法に係わり、特にマ
イクロ波電場に対して、被加熱物の構成水分が、その他
の構成物質成分から束縛を受けるよう準結合水領域に調
整された被加熱物を成形して、矩形導波管が順次拡大さ
れた後、拡大を止めて矩形管型としたアプリケーターの
E′面に斜交せしめる事によって、準結合水領域に調整
された誘電体のマイクロ波吸収効率を高め、均一に誘電
加熱させることができるマイクロ波加熱方法及びそのた
めの装置に関するものである。More specifically, the present invention relates to a method for constrained heating of a heated object adjusted to a quasi-bound water region using microwaves, and in particular, in response to a microwave electric field, the constituent water of the heated object is reduced to other constituent material components. The object to be heated is shaped into a quasi-bound water region so as to be constrained by the waveguide, and after the rectangular waveguide is expanded one after another, the expansion is stopped and the applicator is made into a rectangular tube shape. The present invention relates to a microwave heating method and an apparatus therefor, which can increase the microwave absorption efficiency of a dielectric material adjusted to a quasi-coupled water region and uniformly dielectrically heat the dielectric material.
(従来の技術)
従来、O/W型エマルジョン状の誘電体のマイクロ波加
熱について1本発明者は、比誘電率の値が最も大きい自
由水を多く含む被加熱物のマイクロ波加熱は、誘電体の
構成成分に拘わらず、同じ目方の自由水を加熱するのと
等しく、自由水の除去即ち蒸発は単に電波エネルギーを
100”C以下で潜熱と時間の浪費をするに過ぎないこ
とに着目して、自由水をほぼ除去した準結合水領域に被
加熱物(以下は本被加熱物と略称する)を調整してから
、これを誘電加熱すれば、潜熱を上回って供給されたマ
イクロ波エネルギーが直ちに高い束縛熱を発生させて、
常圧下であっても1品温をそれまで知られていなかった
120℃以上に到達せしめることを見出して、種々の準
結合水領域におけるマイクロ波の束縛加熱方法を提案し
てきた(特許11゜8095)、 Lかしながら本被加
熱物は単位面積当りのマイクロ波に対して最大の比誘電
体である自由水の量が乏しく、はとんどが構成物質成分
から束縛された準結合水で構成されるために、大出方で
は比較的にマイクロ波の吸収効率が低いとが、比表面積
が大きい物等はさらに吸収効率が低くなり、かつ熱放散
のために大きなマイクロ波エネルギーロスが発生すると
かの難点があって、広範囲な対象に対して必ずしも総て
を満足させるものではなかった0本発明者らはこれら難
点を解消するために、従来主としてマイクロ波電場にお
ける水の挙動から種々の提案をしてきたが、他面アプリ
ケーターの構造と供給方法の観点からも、本被加熱物の
マイクロ波特性をさらに最大限に発揮させる方法につい
て追求し、鋭意研究を進めてきた結果、これらの難点は
殆ど加熱部アプリケーターの構造と本被加熱物の供給方
法に起因し、本被加熱物を電界に斜交させることによっ
て解決できることを見出し1本発明を完成するに至った
ものである。(Prior art) Regarding microwave heating of a dielectric material in the form of an O/W emulsion, the present inventor has previously discovered that microwave heating of a material to be heated containing a large amount of free water with the largest value of dielectric constant is It is the same as heating free water of the same size regardless of the constituent components of the body, and we focused on the fact that removing or evaporating free water simply wastes latent heat and time by reducing radio wave energy below 100"C. If the object to be heated (hereinafter referred to as the object to be heated) is adjusted to the quasi-bound water region from which free water has been almost completely removed, and then dielectrically heated, the amount of microwaves supplied will exceed the latent heat. The energy immediately generates high bound heat,
He discovered that it was possible to raise the temperature of a single product to 120°C or higher, which was previously unknown, even under normal pressure, and proposed a microwave constrained heating method for various semi-bound water regions (Patent No. 11°8095). ), L However, this heated object has a small amount of free water, which is the largest dielectric material for microwaves per unit area, and is mostly semi-bound water bound from the constituent material components. Due to their structure, the absorption efficiency of microwaves is relatively low for large-scale materials, but the absorption efficiency is even lower for materials with a large specific surface area, and a large microwave energy loss occurs due to heat dissipation. In order to solve these problems, the present inventors have previously studied various methods mainly based on the behavior of water in microwave electric fields. On the other hand, from the perspective of the structure of the applicator and the feeding method, we have pursued methods to further maximize the microwave characteristics of the heated object, and as a result of intensive research, we have made these proposals. Most of the difficulties are due to the structure of the heating section applicator and the method of supplying the object to be heated, and it was discovered that this problem could be solved by placing the object to be heated obliquely in the electric field, leading to the completion of the present invention.
本発明のように、順次拡大した角錐型導波管を採用して
、本被加熱物を電界に対して斜交せしめてマイクロ波加
熱し、もって電気使用量に対する乾燥処理能力を高めた
り、加熱ムラを防ぐ方法は、従来から行われてきたファ
ン、拡散、回転等によるマイクロ波加熱とは、その原理
を全く異にするものであって、従来未知の新規な技術で
ある。As in the present invention, a successively enlarged pyramidal waveguide is used to heat the heated object obliquely with respect to the electric field using microwaves. The method of preventing unevenness is based on a completely different principle from the conventional microwave heating using a fan, diffusion, rotation, etc., and is a new technology unknown to the present.
(発明が解決しようとする問題点)
従来公知となっているアプリケーターの構造とその特徴
は、(1)電子レンジに象徴されるボックス型の例では
バッチ式のため連続性がなくサイズ制限がある。(2)
連続式トンネル型及びその外部加熱や圧力等とのコンビ
ネーション型の例では比容積の大きなトンネル型アプリ
ケーターに導波管を接続してマイクロ波を供給し拡散す
るため、本被加熱物においては加熱の不均一が生じ易く
、ロスファクターも多いためマイクロ波のエネルギー効
率が低く成り易く、かつ設備のイニシャルも高価で広範
囲な分野で容易に利用できない欠点があった。(3)導
波管スリット入射型やその複数の対交型・折返し型の例
では、強電界のため入射側でマイクロ波が強く吸収され
て出側が加熱され難くなり、加熱ムラが生じ易いとか被
加熱物のサイズが導波管スリットのサイズに制限を受け
、汎用性がないという欠点があった。(4)指向性アン
テナ用電磁ラッパを応用したビラミダルホーン型の例で
は(2)の設備イニシャルを小さくしかっ(3)の被加
熱サイズを拡大できるが、しかし被加熱物を導波管内部
の電界成分方向に直交させて誘電加熱する従来の方法で
は、布やロープなど自由水を多量に含むマイクロ波的に
自由水領域の、比較的マイクロ波吸収度の非常に大きい
繊維等の布状シートや紐状の材料等の被加熱物に用途が
限定され、本被加熱物のように自由水を取り除いたマイ
クロ波的には準結合水領域の、コロイド的な弱い束縛か
ら分子的に水が強い束縛を受けた誘電体に対しては、マ
イクロ波の吸収度が極めて低いために発熱し難くなりエ
ネルギーロスが大きく、加熱ムラも解消できず、実効性
がなかった0本発明は、本被加熱物に関して1以上述べ
てきた欠点を解消せんとするものである。(Problems to be Solved by the Invention) The structure and characteristics of conventionally known applicators are as follows: (1) Box-type applicators, as symbolized by microwave ovens, are batch-type, so they are not continuous and have size limitations. . (2)
In the continuous tunnel type and its combination type with external heating, pressure, etc., a waveguide is connected to a tunnel type applicator with a large specific volume to supply and diffuse microwaves. It is easy to cause non-uniformity and has many loss factors, so the microwave energy efficiency tends to be low, and the initial equipment is expensive, making it difficult to use in a wide range of fields. (3) In the case of the waveguide slit incidence type and its multiple diagonal and folded types, the microwave is strongly absorbed on the input side due to the strong electric field, making it difficult to heat the output side and causing uneven heating. The size of the object to be heated is limited by the size of the waveguide slit, which has the disadvantage of lack of versatility. (4) In the example of a biramidal horn type that applies an electromagnetic wrapper for a directional antenna, it is possible to reduce the initial size of the equipment in (2) and expand the size of the heated object in (3). In the conventional method of dielectric heating perpendicular to the direction, cloth-like sheets or strings such as fibers that contain a large amount of free water and have relatively high microwave absorption in the free water region in terms of microwaves are used. Applications are limited to objects to be heated, such as materials like this one, and in microwave terms, free water has been removed, such as in this heated object, where water is molecularly strongly constrained from the weak colloidal constraint of the quasi-bound water region. The dielectric material subjected to the heating has extremely low absorption of microwaves, so it becomes difficult to generate heat, resulting in large energy loss, and it is not possible to eliminate heating unevenness, making it ineffective. The aim is to overcome one or more of the drawbacks mentioned above.
(問題点を解決するための手段)
先ずはじめに1本発明方法によってマイクロ波加熱処理
される物質、つまり本被加熱物は、含有水分が自由水を
可及的に除去した準結合水分領域に調整された。主とし
て親水性の高分子有機コロイドで組成されたものでなけ
ればならないが、その状態を例として挙げるならば、液
体と粉体を混練したり液体を濃縮したりしたスラリー状
の物。(Means for Solving the Problems) First of all, the material to be subjected to microwave heat treatment by the method of the present invention, that is, the object to be heated, has a moisture content adjusted to a semi-bonded moisture region in which free water has been removed as much as possible. It was done. It must be composed mainly of hydrophilic polymeric organic colloids, but an example of this is a slurry-like product made by kneading a liquid and powder or concentrating a liquid.
或いは半ば乾燥されたベレット状の物、筋束間自由水を
脱着した主として細胞膜内体質で構成されたエマルジョ
ン組成の物等が示されるものである。Alternatively, it may be in the form of a semi-dried pellet, or it may have an emulsion composition mainly composed of cell membranes from which interfascicular free water has been desorbed.
また目的効果の必要によってはそれらに無機塩類等が媒
質として添加分散されていても一向に差し支えないもの
である。要は含有水分が、自由水の大部分を脱着されて
、水以外の構成分子成分から強い分子的束縛を受けるも
のから弱いコロイド的な束縛を受ける物までの準結合水
領域に調整された物であればいい。Further, depending on the necessity of the desired effect, there is no problem even if inorganic salts or the like are added and dispersed therein as a medium. In short, most of the free water has been desorbed, and the water content has been adjusted to a semi-bound water region ranging from strong molecular constraints to weak colloidal constraints from constituent molecular components other than water. That's fine.
本被加熱物のマイクロ波電場における準結合水領域の判
定方法は電子レンジを使った簡易な種々の方法があるが
、正確な範囲を求めるには二つ以上の異なった電場で誘
電率を測定して、その曲線勾配で一定する二点の屈折点
から容易に最大と最小の値を求める事ができるものであ
る。There are various methods for determining the quasi-bonded water region in the microwave electric field of this heated object, including simple methods using a microwave oven, but to determine the accurate range, it is necessary to measure the dielectric constant under two or more different electric fields. Then, the maximum and minimum values can be easily determined from two points of inflection that are constant at the slope of the curve.
本被加熱物はマイクロ波を印加すると、水が他の構成物
質分子と1強い結合から順次緩やかなコロイド的束縛ま
で種々の割合で束縛を受けているため、電場に対して水
の双極子がその束縛の割合に応じて不自由に配向するも
のである。入射したマイクロ波エネルギーは、その束縛
のため潜熱を失う割合が低くなり、潜熱ロスという逃げ
場を失った過剰なエネルギーは、その過剰となった割合
に応じて熱として蓄積されるので、はとんど瞬間的に1
20℃以上に品温を上昇させ、温度勾配は急激に直線的
となり3〜40秒間程度で低水分まで乾燥され全加熱工
程を完了するものである。従って所望によっては1例え
ば潜熱に見合うより低い割合にマイクロ波エネルギーを
減じつつ供給して、マイクロ波の特徴である到達深度を
活かして、例えば電波を吸収しないエアゾルを抱かせた
厚みのある物を、低温でゲル化のみ達成する事であって
も一向に差し支えないものである。When microwaves are applied to this object to be heated, the water is bound to other constituent molecules at various rates ranging from strong bonds to gradual colloidal constraints, so the dipoles of the water change in response to the electric field. It orients itself inconveniently depending on the degree of constraint. Due to its binding, the incident microwave energy loses latent heat at a low rate, and the excess energy that has no way to escape, called latent heat loss, is accumulated as heat in proportion to the excess rate. Instantly 1
The product temperature is raised to 20°C or higher, the temperature gradient becomes rapidly linear, and the product is dried to a low moisture level in about 3 to 40 seconds, completing the entire heating process. Therefore, depending on your needs, for example, by supplying microwave energy while reducing it to a lower rate commensurate with the latent heat, and taking advantage of the depth of reach that is a feature of microwaves, for example, you can create a thick object that contains an aerosol that does not absorb radio waves. There is no problem even if only gelation is achieved at low temperature.
成形は所望によって自由に選択されるものである。例え
ばコンベア上にデポジットするとか、比誘電率の小さい
テフロン製等のフィルムやチューブ内にスラリーを充填
して成形し、マイクロ波加熱によって凝固固定するとか
、成形物をテフロン製の型に密封して、マイクロ波で型
枠の形状に膨化固定して、成形を完了するための前成形
とか等の方法が自由に採用できる。The shape can be freely selected according to desire. For example, the slurry may be deposited on a conveyor, the slurry may be filled into a Teflon film or tube with a low dielectric constant, and the slurry may be solidified and fixed by microwave heating, or the molded product may be sealed in a Teflon mold. You can freely adopt methods such as preforming to complete the molding by expanding and fixing it in the shape of the mold using microwaves.
本発明における加熱部アプリケータの基本構造は前述(
2)(3)の従来型の欠点を解消できるよう(4)の矩
形導波管を角錐ホーン状に順次拡大したビラミダルホー
ン型を採用するものである。順次角錐状や指数関数的に
変化するラッパ状に拡大されただけの型でもいいが、マ
イクロ波が導体面に対して直角となる性質を持つので拡
大部では電波との斜交割合が少なくなる欠点があり、ま
たコンベア巾の狭い位置の管中にサイズが制限されるの
で。The basic structure of the heating part applicator in the present invention is described above (
2) In order to eliminate the drawbacks of the conventional type (3), a pyramidal horn type is adopted in which the rectangular waveguide of (4) is sequentially enlarged into a pyramidal horn shape. A type that is simply expanded into a sequential pyramid shape or an exponentially changing trumpet shape is fine, but since the microwave has the property of being perpendicular to the conductor surface, the proportion of oblique intersection with radio waves will be reduced in the expanded section. There are disadvantages and the conveyor width is narrow because the size is limited in the pipe.
巾広側でのエネルギーロスが避けられないので本発明で
は角錐型に順次拡大されて後、拡大を止めてそのまま矩
形管型としたアプリケータが採用されるものである。本
発明の特徴は、この拡大をやめた矩形管型部の、狭いほ
うの面即ちH′面にスロットを設け、挿通する本被加熱
物が、電界Eによって電荷のあられれる広い面E′面に
対して斜交するものである。マイクロ波の電界は常に導
波管の直角断面に対して垂直であって、内部面に対して
は直角であるが、本発明は従来の電界成分方向に直交す
るマイクロ波加熱手段とは明らかに相違するものである
。斜交の方法は、比誘導損失係数の値が低い物質製の材
質で作られた。H′面を貫通するコンベアや中空管体、
成形型等搬送部か、もしくはアプリケーター管体そのも
のか、或いはそれら双方を、傾斜することによって成さ
れるものである。Since energy loss on the wide side is unavoidable, the present invention employs an applicator that is sequentially expanded into a pyramidal shape and then stopped from expanding into a rectangular tube shape. A feature of the present invention is that a slot is provided on the narrower side of the rectangular tube-shaped part, which has ceased to expand, on the H' side, so that the object to be heated, which is inserted through it, is placed on the wide side E', which is charged by the electric field E. It is oblique to the other. Although the microwave electric field is always perpendicular to the orthogonal cross section of the waveguide and perpendicular to the internal surface, the present invention clearly differs from the conventional microwave heating means in which the electric field component direction is perpendicular to the waveguide. They are different. The oblique method is made of a material with a low value of specific induction loss coefficient. A conveyor or hollow tube that penetrates the H′ plane,
This is accomplished by tilting the conveyor part such as the mold, the applicator tube itself, or both.
第1図は、上記した従来の電界成分方向に直向するマイ
クロ波加熱装置を図示したものである。FIG. 1 illustrates the above-mentioned conventional microwave heating device which is oriented perpendicular to the electric field component direction.
第1図は、矩形導波管の幅の狭いH面及び幅の広いE面
をともに順次拡大して角錐ラッパ部C面を形成し、ピラ
ミッド形オープン構造を形成したものであり、拡大後の
H面及びE面はそれぞれH′面及びE′面を形成してい
る。第1図においては、被加熱物(入側はa、出側はa
′で示す)を挿通させるスロット部(入側位置はb、出
側位置はb′を示す)を、H′面に形成するが1図から
も明らかなように、この従来例装置においては、被加熱
物は電界eの方向に直向している。Figure 1 shows a rectangular waveguide whose narrow H-plane and wide E-plane are sequentially enlarged to form a pyramidal wrapper C-plane to form a pyramid-shaped open structure. The H plane and the E plane form an H' plane and an E' plane, respectively. In Figure 1, the heated object (inlet side is a, outlet side is a)
A slot portion (the entry side position is shown as b and the exit side position is shown as b') through which the slot (indicated by b') is inserted is formed on the H' surface.As is clear from Fig. 1, in this conventional device, The object to be heated faces perpendicularly to the direction of the electric field e.
第2図は本発明に係る装置の1実施例を図示したもので
あって、従来装置のように直交型ではなく、斜文型とな
っている。すなわち、拡大後のH′面におけるスロット
部の設置位置、つまり入側位置す及び出側位置b′を従
来のように同一水平面上とするのではなく、それぞれ異
なった高さに設定し、拡大後のE′面に対して本被加熱
物が斜交するように設けるのである。FIG. 2 shows an embodiment of the device according to the present invention, which is not an orthogonal type like the conventional device, but a diagonal type. In other words, the installation positions of the slot portions on the H' plane after enlargement, that is, the entry side position and the exit side position b', are not set on the same horizontal plane as in the past, but are set at different heights, and The object to be heated is provided obliquely to the E' plane.
E′面に対して斜交する角度は、H′面の巾が300m
11程度においては、マイクロ波の電波特性を最大限に
発揮するために好ましくは管体内部面に対して5〜50
度の斜め角度で貫通するものである。角度はε′に対し
直交する方法に比して、3度辺りからマイクロ波吸収率
の向上効果が現れ始め、5〜50度が最も効果が高<、
50度以上はあまり効果が増加せず僅かに減衰する傾向
があった。しかしながらこの角度の範囲は、必ずしも上
記の範囲に限定されるものではなく、成形された被加熱
物の組織・構造・成分や、加熱時の膨化状態・成形固定
完了後のサイズや成形型枠のサイズとH′面のサイズと
の関係など、加熱目的や作業性等により、適宜変更され
るものである。The oblique angle to the E' plane is when the width of the H' plane is 300 m.
11, preferably 5 to 50 on the inner surface of the tube in order to maximize the radio wave characteristics of the microwave.
It penetrates at an oblique angle of 100 degrees. Compared to the method in which the angle is perpendicular to ε', the effect of improving the microwave absorption rate starts to appear from around 3 degrees, and the most effective is from 5 to 50 degrees.
At 50 degrees or more, the effect did not increase much and tended to be slightly attenuated. However, the range of this angle is not necessarily limited to the above range, and depends on the organization, structure, and composition of the molded object to be heated, the swelling state during heating, the size after molding and fixation, and the shape of the molding frame. The relationship between the size and the size of the H' plane may be changed as appropriate depending on the purpose of heating, workability, etc.
また本発明において、H′面の巾サイズに特に制限を受
けない別の定性的な斜交の条件として用いられるのは、
本被加熱物がアプリケーター87面を貫通する時、その
管体内面における入側と出側の高低差が、マイクロ波の
波長の1/4以上とする事ができるものである。高い効
果は1/4から1波長の範囲にあり、172波長程度が
最も効果が高く、−波長以上にしても、それ以、Hに効
果が向上しないと言い替える事もできるものである。In addition, in the present invention, another qualitative oblique condition that is not particularly limited by the width size of the H' plane is:
When the object to be heated passes through the surface of the applicator 87, the height difference between the entrance side and the exit side on the inner surface of the tube can be 1/4 or more of the wavelength of the microwave. The high effect is in the range of 1/4 to 1 wavelength, and the highest effect is at about 172 wavelengths, which can also be said to mean that even if the wavelength is -wavelength or more, the effect does not improve to H.
本発明によれば斜文型にすることにより乾燥効率が大巾
に上昇するのであるが、その詳細なメカニズムは今後の
研究にまたねばならないけれども、−路次のように推定
される。すなわち、直交よりも斜交した方が、電波ロス
が少なく、加熱ムラが著しく減少する理由はおそらく波
長とか定在波、到達半減深度等の関係とかあって、従来
の方法と異なって、電界と直角でも磁界と平行でもなし
)ためであり、特に本被加熱物の極性分子が電界に対し
て自由水のように自由に配向できないため、不自由な配
向運動をする事とも密接な関係があって、定在波の発生
位置以上となる吸収距離の増加が、準結合水の電波吸収
率を著しく向上させるのだと見られるのである。According to the present invention, the drying efficiency is greatly increased by forming the oblique pattern, and although the detailed mechanism will require further research, it is estimated as follows. In other words, the reason why radio wave loss is lower and heating unevenness is significantly reduced when crossing obliquely than perpendicularly is probably due to the relationship between wavelength, standing waves, half-reaching depth, etc. (Neither at right angles nor parallel to the magnetic field), it is also closely related to the fact that the polar molecules of the object to be heated cannot freely orient themselves in the electric field like free water, making unfree orientation movements. Therefore, it appears that an increase in the absorption distance beyond the position where the standing wave occurs significantly improves the radio wave absorption rate of semi-coupled water.
矩形導波管が順次拡大される部分Cの形状は、四つの壁
を順次拡大する物や、互いに向かい合うH面のみを順次
拡大して利用する事もできるものである。順次拡大する
長さは、長過ぎてマイクロ波が減衰するロスは本発明で
得られる効果に比較して極めて小さいものであるから、
むしろ開き角度に対応して最適な効果、即ち生産性や出
来映えが得られる長さで決定され、また被加熱物に必要
なサイズによっても加熱処理に必要な断面が求められて
、長さが決定されるものである0本被加熱物においては
、長さが増すにつれて、開き角度を小さく強電界を利用
した方がムラが少なく加熱効率がよくなる傾向にあった
。また長さが最適な開き角度に達するまでは、単位面積
当りのマイクロ波出力にもよるが、長さが長く成る程加
熱ムラ防止効果が増大するという関係にもあるから、そ
れ以上の長さで効果を得るためには、開き角度を減少せ
ねばならないものである。The shape of the portion C in which the rectangular waveguide is sequentially enlarged can be used by sequentially enlarging the four walls or by sequentially enlarging only the H planes facing each other. The successively increasing length is too long and the loss of microwave attenuation is extremely small compared to the effect obtained by the present invention.
Rather, the length is determined by the length that provides the optimal effect, i.e., productivity and quality of workmanship, in accordance with the opening angle, and the cross section required for heat treatment is determined depending on the size of the object to be heated. In the case of a 0-wire heated object, as the length increases, the heating efficiency tends to be improved by reducing the opening angle and using a strong electric field with less unevenness. In addition, until the length reaches the optimal opening angle, it depends on the microwave output per unit area, but since the longer the length, the more effective it is to prevent uneven heating, In order to obtain the effect, the opening angle must be reduced.
拡大される開き角度は3度以上で効果が認められた。本
被加熱物においては5〜50度を選べば最も優れた効果
が得られ、51度以上の開きでは電波が拡散され過ぎて
効果が増加しなかった。工業的に最も好ましかったのは
導波管から拡大空間への移り変わりが急激でないように
した、4〜35度程度の開き角度に順次拡大するもので
あった。しかしながら拡大する角度は、所望する電界強
度や本被加熱物の特性・サイズ・形状によって、アプリ
ケーターの開き角度が決定されるので、自由に選択でき
るものである。The effect was observed when the enlarged opening angle was 3 degrees or more. For this object to be heated, the most excellent effect was obtained when the opening was selected from 5 to 50 degrees, and when the opening was 51 degrees or more, the radio waves were too diffused and the effect did not increase. Industrially, the most preferred one was one in which the transition from the waveguide to the expanded space was not abrupt, and the opening angle was gradually expanded to about 4 to 35 degrees. However, the angle of expansion can be freely selected because the opening angle of the applicator is determined by the desired electric field strength and the characteristics, size, and shape of the object to be heated.
例えば本被加熱物の発泡膨化度を大きくせしめる場合は
E面の順次拡大する開き角度を低く調整し、発泡膨化を
させない場合は開き角度を高く調整する事によって目的
とする膨化度を得るものである。For example, if you want to increase the degree of foaming and swelling of the object to be heated, you can adjust the opening angle at which the surface E sequentially expands to a low value, and if you want to prevent foaming and swelling, you can adjust the opening angle to a high value to obtain the desired degree of expansion. be.
さらにH面の開き角度は、本被加熱物の水の束縛強度に
よっては最適な角度に調整する必要があり、定形角度の
アプリケーターでは汎用性がないので、可動遮断板gを
設けて、マイクロ波の入射巾を調整する事によって1機
種で多品種小量生産を可能とし、従来の工業生産機にな
かった汎用性を保持することが可能となるものである。Furthermore, the opening angle of the H surface needs to be adjusted to the optimum angle depending on the binding strength of the water of the object to be heated, and since an applicator with a fixed angle is not versatile, a movable shielding plate g is installed to By adjusting the incident width of the machine, it is possible to produce a wide variety of products in small quantities with a single model, and it is possible to maintain versatility not found in conventional industrial production machines.
この可動遮断板は上記E面の開き角度にも適用すること
ができ、本発明の汎用性を一層向上せしめるものである
。This movable blocking plate can also be applied to the opening angle of the above-mentioned E plane, further improving the versatility of the present invention.
この可動遮断板gを設けた実施例装置が、第5図に例示
されている。可動遮断板gは、角錐ラッパ部CとE′面
との接続部に一対設けているが、その設置数及び設置個
所については格別限定することなく、適宜定めてもよい
。また可動遮断板gは、可動式でもよいし、特定の用途
のみに専用するのであれば、予め定めておいた最も良い
結果が得られる角度に固定して用いてもよい。なお第5
図において、dは底部にとりつけた可動底抜であって、
反射波のマツチングを行うものである。An example device provided with this movable blocking plate g is illustrated in FIG. A pair of movable shielding plates g are provided at the connection portion between the pyramidal wrapper portion C and the plane E', but the number and location of the movable shielding plates g may be determined as appropriate without particular limitation. Further, the movable blocking plate g may be movable, or if it is used only for a specific purpose, it may be fixed at a predetermined angle that provides the best results. Furthermore, the fifth
In the figure, d is a movable bottom puller attached to the bottom,
It performs matching of reflected waves.
(可動反射板)
可動底板dは、その傾斜角度及び/又は取り付は高さを
目的に合わせて自由に変えることができるが、希望する
のであれば可動板gの場合と同様に固定式にすることも
できる。(Movable reflector) The inclination angle and/or height of the movable bottom plate d can be changed freely according to the purpose, but if desired, it can be fixed in the same way as the movable plate g. You can also.
第5図に図示した実施例装置から可動遮断板gを除去し
たタイプの装置を、第4図に示す、第4図の内(A)は
断面図、(B)は一部゛を切欠いた斜視図である。A device of the type in which the movable blocking plate g is removed from the embodiment device shown in FIG. 5 is shown in FIG. 4, in which (A) is a sectional view and (B) is a partially cutaway view. FIG.
以上、第2,4.5図について述べた本発明装置は、単
一管体を用いるタイプのものである。しかしながら1本
発明に用いる装置は単一管体を利用するだけでなく、複
数化のH′面側を接続して利用する事もできるものであ
る。単一管体のみでは、その接続された発振機のマイク
ロ波出力以上の仕事量ができないから、マグネトロンの
出力に加熱処理量が制限されて、設備イニシャルが工業
的採算を制限する場合が生じるからである。The apparatus of the present invention described above with reference to FIGS. 2 and 4.5 is of the type that uses a single tube. However, the device used in the present invention can not only utilize a single tube, but also connect the H' side of a plurality of tubes. A single tube alone cannot do more work than the microwave output of the connected oscillator, so the amount of heat processing is limited by the output of the magnetron, and the equipment initial may limit industrial profitability. It is.
単一管体を複数個接続して利用する例を第3図に示す。FIG. 3 shows an example in which a plurality of single pipe bodies are connected and utilized.
図中(A)は、本被加熱物を水平に移動させるタイプを
図示したものであり (したがって、管体自体はH′面
側を接続しながら傾斜させねばならない)1図中(B)
は、複数の管体をH′面側を接続しながら直立せしめた
タイプを図示したものである(したがって、本被加熱物
は傾斜せしめることとなる)。(A) in the figure shows a type in which the object to be heated is moved horizontally (therefore, the tube body itself must be tilted while connecting the H' side) (B) in the figure.
This figure shows a type in which a plurality of tube bodies are made to stand upright while connecting their H' sides (therefore, the object to be heated is inclined).
以下に実施例を示す。Examples are shown below.
実施例1
液全卵と全卵粉に油脂を乳化して、これに上白糖と食塩
・化学調味料・澱粉を分散した含水分34%の準結合水
領域の粘ちょうな卵スラリーを作り、移動するテフロン
含浸グラスウール製コンベア上に、0.4g/個の粒状
にデポジットしつつ、このものをマイクロ波出力4kW
のマグネトロンを10個連続して供給したトンネル型ア
プリケーターに整列して印加した。このものの出来映え
は黄白色の卵らしい見栄えで均一にムラなく膨化してい
たが、本被加熱物が比較的に強い束縛を受けた準結合水
領域にあり、しかも卵粒の直径がマイクロ波被加熱物と
しては微細で、かつセンターピッチも大きいためマイク
ロ波を吸収して加熱膨化するには限界に近い状態のもの
であったがら、マイクロ波エネルギー効率が極めて低く
問題であった。このものを処理中の導波管内部の平均し
た反射波の発生率は、パワーモニタで整合しつつマツチ
ングを計っても約34%で、発振電波のエネルギー効率
も約26%と低いものであったから、アプリケーター各
部や冷却水や吸収トラップなど様々な装置的ロスファク
ターでも失われている事を示していた。Example 1 A viscous egg slurry with a water content of 34% in the semi-bound water region was prepared by emulsifying liquid whole eggs and whole egg powder with oil and fat, and dispersing caster sugar, salt, chemical seasonings, and starch therein. This material is deposited in the form of 0.4 g/piece on a moving Teflon-impregnated glass wool conveyor, and the microwave output is 4 kW.
10 magnetrons were aligned and applied to a tunnel-type applicator. The finished product had the appearance of a yellowish-white egg and had expanded evenly and evenly, but the object to be heated was in the region of semi-bonded water that was relatively strongly constrained, and the diameter of the egg particle was too large to be exposed to microwaves. As a heating object, it is fine and has a large center pitch, so it is close to the limit for absorbing microwaves and heating and expanding, but the microwave energy efficiency is extremely low, which is a problem. The average rate of occurrence of reflected waves inside the waveguide during processing is approximately 34% even when matching is performed using a power monitor, and the energy efficiency of the oscillated radio waves is also low at approximately 26%. This indicates that the loss was also caused by various equipment loss factors such as various parts of the applicator, cooling water, and absorption traps.
次に強電界での加熱効果も期待して以下に示すマイクロ
波出力1.6kwのマグネトロンを使用した発振機をマ
イクロ波加熱用導波管拡大ラッパ型アプリケーター内に
接続して、連続して搬送し誘電加熱した。 アプリケー
ターはJIS規格の矩形型導波管を18度の開き角度で
順次四方に拡大し、端末は拡大を止めて、E′面の一辺
が700+amでH′面の一辺が3501111の矩形
管壁とし、その矩形管体のH′面に長さ230mm、
高さ20m厘のスリット部を設け、その外部にはマイク
ロ波漏洩防止のため吸収端トラップ部を設け、底部には
可動底抜を取り付は反射波のマツチングを出来るように
し、CとE′面及びH′面が接続する部分に可動板gを
設けてマイクロ波の入射巾を調整できるようにした装置
とした(以下は本装置と省略する)。Next, in hopes of producing a heating effect in a strong electric field, we connected an oscillator using a magnetron with a microwave output of 1.6 kW as shown below into a waveguide enlarged trumpet type applicator for microwave heating, and conveyed continuously. and dielectrically heated. The applicator sequentially expands a JIS standard rectangular waveguide in all directions at an opening angle of 18 degrees, and the terminal stops expanding and forms a rectangular tube wall with one side of the E' plane being 700+ am and one side of the H' plane being 3501111. , a length of 230 mm on the H' plane of the rectangular tube body,
A slit section with a height of 20 m is provided, an absorption edge trap section is provided on the outside to prevent microwave leakage, and a movable bottom hole is installed at the bottom to enable matching of reflected waves. A movable plate g was provided at the portion where the surface and the H' surface connect to make it possible to adjust the width of incidence of microwaves (hereinafter abbreviated as the present device).
始めに含有水分が67%の自由水領域にあって、45℃
以上に昇温すると透明液が白濁する性質をもつアトヘア
糊(セキスイ樹脂製)をコンベア上の全面に厚さ1m1
1のシート状に成形してE′面に直交して挿通させたと
ころ、全面が均一に白濁して加熱ムラが生じなかった。Initially, the moisture content is in the free water region of 67%, and the temperature is 45°C.
Atohair glue (made by Sekisui Resin), which has the property of turning the transparent liquid cloudy when the temperature rises above this level, is applied to the entire surface of the conveyor to a thickness of 1 m1.
When the sheet was formed into a sheet of No. 1 and inserted perpendicularly to the E' plane, the entire surface became uniformly cloudy and no uneven heating occurred.
この状態は形状を上記卵粒状にしても同様で電波の吸収
率は89%と高い値を示した。This condition was the same even when the shape was made into the egg-like shape, and the radio wave absorption rate was as high as 89%.
次に上記準結合水領域にある本被加熱物の卵粒をE′面
に直交させてセンターピッチ0.8mmに整列して供給
通過させたところ、得られた製品はベルトコンベアの進
行方向に対して中央部の巾約30mmのみが加熱変性し
て密に接しあった黄白色の径71前後の膨化頂点に近い
スクランブルエラグとなったが、両端の各90mmの卵
粒は、加熱ムラの多い状態で未発泡のものも混じり、縁
辺部は殆ど加熱変性を受けず、センターピッチもそのま
まの暗い餡色の生地で製品にならなかった。ベルトスピ
ードを変えてエネルギーデンスティを調整したり。Next, when the egg grains of the object to be heated in the above-mentioned semi-bound water region were fed and passed in alignment with a center pitch of 0.8 mm perpendicular to the E' plane, the obtained product was fed in the direction of movement of the belt conveyor. On the other hand, only the width of about 30 mm at the center was denatured by heat and became a scrambled elag with a yellowish white diameter of around 71 which was close to the peak of swelling, but the egg grains of 90 mm each at both ends were heated unevenly. In this state, some unfoamed material was mixed in, the edges were hardly denatured by heat, and the center pitch remained the same, making it a dark reddish-colored dough that could not be made into a product. You can adjust the energy density by changing the belt speed.
可動底抜を調整してマツチングを計ってもパワーモニタ
で測定すると反射波の値は49〜60%に達していて、
強電界の効果がないばかりかトンネル型より出来映えが
低下して製品にならなかった。Even after adjusting the movable bottom removal and measuring the matching, when measured with a power monitor, the reflected wave value reached 49-60%.
Not only did it not have the effect of a strong electric field, but the workmanship was poorer than that of the tunnel type, so it could not be used as a product.
次にマイクロ波出力1.5kWの空冷発振機と4kl/
の水冷発振機の導波管を別々に本装置に接続して同様に
整合しつつ実施した。いずれも1.6Nlの発振機と同
じような状態で、整合を計ったり可動遮断板gを調整し
ても出来映えは改善されず、単位面積当りの出力や加熱
時間の差によっては、加熱ムラ防止や処理量の増大効果
もなく、電波ロスも拡大している事が確認された。Next, an air-cooled oscillator with a microwave output of 1.5kW and a 4kl/
The waveguides of the water-cooled oscillators were connected to this device separately and matched in the same way. In both cases, the condition is the same as that of a 1.6Nl oscillator, and even if you measure the matching or adjust the movable shield plate g, the workmanship does not improve, and depending on the difference in output per unit area and heating time, uneven heating may be prevented. It was confirmed that there was no effect of increasing the amount of processing or processing, and that radio wave loss was also increasing.
そこで、第4図に図示したように(そして第5図に図示
したように可動板gを更に設けて)水装置E′面に設け
た入側と出側の開口中心部の高低差を30+amとし、
その開口部を貫通するコンベアの傾斜角度を4.9度と
して卵粒を通過させマイクロ波出力1.3にす、1.5
k17.4.OIWの発振機でそれぞれマイクロ波加熱
を施した。得られた製品は、出力に応じた処理量となり
、直交で果たせなかった卵粒がいずれもムラなく均一に
全面膨化し、スクランブルエラグらしい見栄えの製品と
なった。この時に反射波の値はいずれも25%以下に減
少していた。Therefore, as shown in FIG. 4 (and by further providing a movable plate g as shown in FIG. 5), the height difference between the center of the opening on the inlet and outlet sides provided on the surface of the water device E' is set to 30+am. year,
The inclination angle of the conveyor passing through the opening is set to 4.9 degrees, and the egg particles are passed through, giving a microwave output of 1.3, 1.5
k17.4. Microwave heating was performed using an OIW oscillator. The resulting product had a throughput that corresponded to the output, and the egg grains that could not be achieved with the orthogonal method expanded evenly and uniformly over the entire surface, resulting in a product with the appearance typical of scrambled erag. At this time, the values of reflected waves had all decreased to 25% or less.
さらに高低差を様々に変化させて印加したところ。Furthermore, the voltage was applied by varying the height difference.
入側と出側の高低差が6011ffi前後において最も
マイクロ波の吸収率が高くなり、電波吸収効率は92%
に達した。この高低差はマイクロ波の172波長にほと
んど一致し、さらに傾斜を大きくしてもこれ以上の高い
吸収率にならない事も判明した。またH′面に設けた出
側と入側部分の高低差である傾斜を斜降にしたり逆に仰
角にしても、ムラのない高い吸収効果は全く同様な値を
示したので、斜交する事が効果をもたらすと判明した。The microwave absorption rate is highest when the height difference between the input side and the output side is around 6011ffi, and the radio wave absorption efficiency is 92%.
reached. This difference in height almost corresponds to the 172 wavelength of microwaves, and it was also found that even if the slope was increased, the absorption rate would not be higher than this. In addition, even if the slope, which is the difference in height between the exit and entry sides provided on the H' plane, was made obliquely downward or at an elevation angle, the same high and even absorption effect was obtained. It turns out that things work.
高低差は1波長以上の差をつけても、管体やコンベアの
急傾斜がかえって生産の不便になるだけで、加熱効率は
それ以上高くならなかった。管体を1体とした時よりも
、第3図に示したように多数接続した場合の方が吸収効
率が高かったが、これは漏洩吸収ロス部が減少するため
と判断された。Even if the height difference was increased by one wavelength or more, the steep slopes of the pipes and conveyors would only make production more inconvenient, and the heating efficiency would not increase any further. The absorption efficiency was higher when multiple tubes were connected as shown in Fig. 3 than when they were made into a single body, but this was judged to be due to a reduction in the leakage absorption loss portion.
次に卵生地の水分を28%に減らし卵粒の径を大きくし
て0.8g/個として同様に誘電加熱したところ、中央
部の膨化度が大きく両端側が小さくなり膨化ムラとなっ
た。H面の開き角度を低くしてH′面の巾を280mm
に狭くしたところほぼ均一に膨化できた。またE面の開
き角度を低くシE′面の長さを縮めてゆくと膨化率が大
きくなった。しかし水分や卵粒の形状・整列ピッチによ
ってその都度専用の定形開き装置を採用できないと判断
して、そこでE′面とE′面に設けた可動遮断板gを微
調整したところ、上記のH′・E′の開き終端中とほぼ
同じ入射巾に可動遮断板の先端中を調整すると、はぼ同
様の膨化率および均一性が達成できた。Next, when the water content of the egg dough was reduced to 28% and the diameter of the egg grains was increased to 0.8 g/piece and dielectric heating was performed in the same manner, the degree of swelling was large in the center and small at both ends, resulting in uneven swelling. Lower the opening angle of the H side and make the width of the H' side 280mm.
When the diameter was narrowed, it was able to expand almost uniformly. Furthermore, as the opening angle of the E plane was lowered and the length of the E' plane was shortened, the swelling ratio increased. However, due to the moisture content, the shape of the egg grains, and the alignment pitch, we determined that it was not possible to use a dedicated regular opening device for each case, so we fine-tuned the movable shielding plates g provided on the E' and E' faces, and found that the H When the entrance width at the tip of the movable blocking plate was adjusted to be approximately the same as that at the open end of '.
実施例2
加温して融解したチーズを70%、乳蛋白ペプタイドを
18%、調味料を12%の乾量換算割合で乳化混合した
水分33%のやや強い準結合水領域に調整した品温40
℃のチーズカードを、コンベア上に0.3騰朧の厚さで
シート状に成形してから、実施例〔1〕のマイクa波装
置の順次拡大する開き角度を25度として加熱した。Example 2 Product temperature adjusted to slightly strong semi-bound water region with moisture content of 33% by emulsifying and mixing heated and melted cheese at 70%, milk protein peptides at 18%, and seasonings at a dry weight ratio of 12%. 40
℃ cheese curd was formed into a sheet with a thickness of 0.3 degrees Celsius on a conveyor, and then heated at a sequentially expanding opening angle of 25 degrees using the microphone A-wave device of Example [1].
始めコンベアの駆動を停止してE′面に直交させて加熱
したものは約30腫鳳毎に縞状の焦げ部と未加熱が発生
して製品にならなかった。この定在波のムラは底部の可
動反射板の角度や距離を調整してもあまり改善されなか
った0次にコンベアを駆動したところ自由水のあるアト
ヘア糊のシート状成形では均一に白濁したが、このチー
ズカードは自由水が無いために、中央部45mm程度が
シワ状に白く発泡・膨化し、両側面は半透明のスラリー
のままで製品にならなかった。しかしコンベア角度を第
2図に示すようにE′面に斜交させると実施例〔1〕と
同様に電波の吸収が著しく改善され、やはり172波長
の高低差付近で最大となり、 1波長以上ではそれ以上
に向上された結果にはならなかった。When the conveyor was first heated perpendicularly to the E' plane with the conveyor stopped, striped burnt areas and unheated areas occurred every 30 or so blocks, resulting in failure to produce a product. This unevenness of the standing waves was not much improved even by adjusting the angle and distance of the movable reflector at the bottom.When the zero-order conveyor was driven, the sheet-like molding of Athair glue with free water was uniformly cloudy. Since this cheese curd had no free water, the central portion of about 45 mm foamed and swelled in a wrinkle-like white color, and both sides remained as a translucent slurry and could not be made into a product. However, when the conveyor angle is made oblique to the E' plane as shown in Fig. 2, the absorption of radio waves is significantly improved as in Example [1], reaching a maximum near the height difference of 172 wavelengths, and decreasing at more than 1 wavelength. The results did not improve any further.
実施例〔1〕の卵生地に糖アルコールを添加して水分を
26%の準結合水領域に調整したスラリーを上記のよう
に成形して誘電加熱したところ、中央部の厚さが0.7
3mm両端部は0.7mmとなり厚みムラが生じた。そ
こでE′面の可動遮断板dの角度を狭く調節して全体が
0.8+amの均一な厚みになるロングシートとした。A slurry prepared by adding sugar alcohol to the egg dough of Example [1] to adjust the water content to a semi-bound water region of 26% was molded as described above and dielectrically heated, resulting in a thickness of 0.7 in the center.
The thickness was 0.7 mm at both ends of 3 mm, resulting in uneven thickness. Therefore, the angle of the movable blocking plate d on the E' plane was adjusted narrowly to obtain a long sheet with a uniform thickness of 0.8+am as a whole.
この状態では、PH3〜4で水分36%の準結合水領域
に調整された、電解質の多い梅干しをベースとしたカー
ドでも、糖類を主成分としたオレンジベースのエマルジ
ョンでも、同様に実施して直交では製品とならず斜交す
ると同様に著しく効果が上った。また本被加熱物の種々
な薄いフィルムは従来前記(2)のトンネル型ではマイ
クロ波のエネルギー効率が25%前後しか得られなかっ
たが、本発明で実施したところ平均83%、のいずれも
高い効率が得られた。In this state, whether it is an electrolyte-rich umeboshi-based curd adjusted to a semi-bound water region with a pH of 3 to 4 and a moisture content of 36%, or an orange-based emulsion containing sugars as its main component, the orthogonal In this case, the effect was significantly increased when it was not a product but was crossed obliquely. In addition, for various thin films of the object to be heated, conventionally, the tunnel type described in (2) above could only achieve a microwave energy efficiency of around 25%, but when implemented with the present invention, the average efficiency was 83%, which is high. Efficiency was achieved.
実施例3
常法によりα化した餅米とワキシスターチを項線し乾燥
して15X50X2a+mに成形した水分17〜24%
の準結合水領域にある米菓生地を作り、コンベア部を4
0℃に加温したキャタピラ式の二重になったテフロン板
に替えた上記実施例〔1〕の装置に供給した。テフロン
板は下部上面を200 X 50 X 5amに削って
米菓生地を入れ込む型となり、その上下を合わせるとほ
ぼ密封できるもので、四隅に細孔の蒸気リーク部を設け
たものである。この型付キャタピラコンベアを導体面に
直交させた物は、中央の二重が型一杯に発泡膨化したが
四隅部に未発泡部分が残り固く不良品であった。両側の
二重はほとんど膨化せず商品にならなかった6次いでキ
ャタピラコンベアを傾斜させたところ、次第に両側の生
地も均一な膨化に向上し、 出入落差を1/4波長にし
たところで、全部が均一にムラなく膨化した。それ以上
傾斜を大きくしてみた結果は、落差が172波長付近で
最大のウキを示し、 それ以上の傾斜ではあまり変化が
見られなかった。製品はいずれも型内−杯にウキ、四隅
まで均一に発泡膨化していた。Example 3 Glutinous rice and waxy starch gelatinized by a conventional method were lined and dried to form a size of 15 x 50 x 2 a + m, with a moisture content of 17 to 24%.
Make the rice cracker dough in the semi-bound water area, and set the conveyor part to 4.
It was supplied to the apparatus of Example [1] above, except that the caterpillar-type double Teflon plate heated to 0°C was used. The upper surface of the lower part of the Teflon plate was shaved to a size of 200 x 50 x 5 am to form a mold into which the rice cracker dough was inserted, and when the top and bottom were put together, it could be almost sealed, with pores for steam leakage at the four corners. In a product in which the molded caterpillar conveyor was orthogonal to the conductor surface, the double layer in the center was foamed and expanded to the full extent of the mold, but unfoamed portions remained at the four corners and were hard and defective. The dough on both sides hardly puffed and did not become a product.6 Next, when we tilted the caterpillar conveyor, the dough on both sides gradually became more uniformly puffed, and when we reduced the drop in and out to 1/4 wavelength, everything became uniform. It expanded evenly. When the slope was increased further, the maximum float was observed when the head difference was around 172 wavelengths, and little change was observed at higher slopes. All of the products were foamed and expanded uniformly in the mold and all the way to the four corners.
実施例4
実施例〔3〕の練り生地に、具として脱脂丸大豆や若布
の粉・刻んだ茎・昆布、黒胡麻、木の実、チョツプドオ
ニオン・キャロット、干アミ海老、塩雲丹、カカオマス
・チーズなどを混合した成形生地にしたり、あるいは実
施例〔3〕の成形した生地表面に生の薄い葉や味付けし
たり、乾燥した例えばアーティチ目−りやツルムラサキ
、サイシン、刻み南瓜、クレソン、シュンギク、バジル
、ゼンマイ、ヨモギなどの野菜・香菜・山菜・薬草の薄
片を載せたり挟んだりして、種々の斜交角度で誘電加熱
したところ、直交コンベアでは前例と同様に膨化ムラが
発生して製品と成らなかったが。Example 4 Add defatted whole soybeans, young cloth powder, chopped stems, kelp, black sesame seeds, nuts, chopped onions, carrots, dried shrimp, salted sea urchin, cacao trout, to the dough of Example [3] as ingredients. Formed dough mixed with cheese, etc., or seasoned with thin fresh leaves on the surface of the formed dough of Example [3], or dried such as artichoke, tsurumurasaki, saisin, chopped pumpkin, watercress, shungiku, and basil. When thin pieces of vegetables such as spring, mugwort, fragrant vegetables, wild plants, and medicinal herbs were placed or sandwiched together and dielectrically heated at various oblique angles, uneven swelling occurred on the orthogonal conveyor as in the previous example, and the product was not formed. There wasn't, though.
1/4〜1波長の高低差に斜交すれば総て伸びやかな良
いウキを示し、添加した具や菜の風味や彩りが活かされ
た製品が得られた。If the height difference was between 1/4 and 1 wavelength, all the products showed smooth flow and the flavor and color of the added ingredients and greens were fully utilized.
実施例5
海老摺り身50部、スケトウ摺り身30部、卵白10部
、タピオカ澱粉5部、調味料5部の割合で混合摺り身を
作り、断面に中空の湾曲した剥き海老型穴を設けたテフ
ロンの管に摺り身を圧入してパワーデンスティ1 kg
/ 1 kwの割合でマイクロ波加熱して凝固せしめた
。これを凍結後、巾3m−にカットしてからエアドライ
して、水分23%の比較的強い準結合水領域のチップと
したにのものを実施例〔1〕に示す本装置にトレー詰め
して直交させマイクロ波を印加したところ、中央部のみ
白色で丸く発泡膨化した海老様の製品となったが、縁辺
部に近ずくにつれて膨化頂点未達や残渣によるシュリン
クの膨化ムラが混じり、縁辺部は60部程度に暖まった
だけで全く変化なく製品にならなかった。Example 5 Mixed surimi was prepared using 50 parts of shrimp surimi, 30 parts of walleye surimi, 10 parts of egg white, 5 parts of tapioca starch, and 5 parts of seasoning, and a hollow curved peeled shrimp-shaped hole was provided in the cross section. Press the surimi into a Teflon tube to make 1 kg of Power Densty.
/ 1 kW to solidify by microwave heating. After freezing, this was cut into 3m-wide pieces, air-dried, and made into chips with a relatively strong semi-bonded water region with a moisture content of 23%.The chips were packed into a tray in the present device shown in Example [1]. When microwaves were applied at right angles to each other, a shrimp-like product was obtained that was white, round, and foamed only in the center, but as it approached the edges, the expansion peak did not reach the peak and the shrinkage expanded unevenly due to residue. It only warmed up to about 60 copies, but there was no change at all and it was not made into a product.
次にトレーを斜めに傾けて印加したところ、トレーの傾
斜角度が5度付近から全面均一にムラなく膨化した。最
大のウキを示したのは20度付近であった。次に第3図
(B)のように、この装置の1管体の出入りの落差を2
75波長とし段階状に5管体接続して、入りのP、D、
は同一にして膨化させマイクロ波出力を出側に向かって
l→1→0.8→0,5→0.3の割合に減衰しつつ斜
交して実施したところ、同じ様にムラのない乳化乾燥物
が得られ、かつマイクロ波出力当りの生産効率が上昇し
た。この接続方法では最終出口が高くなり生産操作がや
や不便であったので、第3図(A)のように、管体を7
度傾斜して5管体をH′面側で接続し、トレーコンベア
を床にほぼ並行させるようにして実施したところ操作が
容易で、得られた結果は全く同様のものとなった。Next, when the tray was tilted diagonally and voltage was applied, the entire surface of the tray expanded uniformly and evenly from an angle of inclination of around 5 degrees. The maximum float was around 20 degrees. Next, as shown in Fig. 3 (B), the head between the entrance and exit of one tube of this device is 2
With 75 wavelengths, 5 tubes are connected in a stepwise manner, and the input P, D,
When the microwave output was expanded at the same rate and diagonally crossed while attenuating at the rate of 1 → 1 → 0.8 → 0.5 → 0.3 toward the output side, it was found that there was no unevenness in the same way. An emulsified dry product was obtained, and the production efficiency per microwave output was increased. With this connection method, the final outlet was high and production operations were somewhat inconvenient, so as shown in Figure 3 (A), the pipe body was
When the five pipes were connected on the H' side at an angle of inclination and the tray conveyor was placed almost parallel to the floor, the operation was easy and the results obtained were exactly the same.
同様にして、海老摺り身を皮剥きした紫イカの摺り身に
置換して、スルメの姿に成形せしめてマイクロ波加熱し
た場合も、同じように直交させると製品にならず、単体
管や接続管体を使用して成形物を斜交して通過させると
ムラなく均一に膨化し、反射波ロスも1/3に軽減した
。In the same way, if you replace the shrimp surimi with peeled purple squid surimi, mold it into the shape of a dried squid, and heat it with microwaves, if you place them perpendicularly in the same way, it will not become a product, and you will not be able to make a single pipe or connection. When the tube was used to pass through the molded article obliquely, it expanded evenly and uniformly, and the loss of reflected waves was reduced to 1/3.
実施例6
プロテアーゼで一部をペプタイズしたチキン摺り身肉7
0%、エステル澱粉5%、調味料25%の割合でO/W
型のカードを作り、これを並行、した20本のノズルか
ら押し出して径5IIIllのスティック状に成形して
スチームで加熱変性し固定せしめ、続いてエアドライし
て水分36%の準結合水領域のチキンスティックとした
。これを実施例〔1〕の本装置に直交せしめて誘電加熱
したところ、12秒後に中央部は強く加熱されて水分6
%の固結状になったが、縁辺部はほとんど加熱されず水
分も35%で直交では均一な乾燥は不可能であった。そ
こで同様の条件で出入りの落差を変えながら斜交して誘
電加熱したところ、人と出の高低差が1/4波長以上に
なると品温は総て瞬間的に120℃以上に達して蒸発を
続け、5秒後に得られた製品は、総てソフトに均一膨化
した水分15%前後の発泡チキンスティックになった。Example 6 Chicken minced meat partially peptized with protease 7
O/W at a ratio of 0%, ester starch 5%, seasoning 25%
A molded card was made, and this was extruded through 20 parallel nozzles to form a stick shape with a diameter of 5IIIll, which was denatured and fixed by heating with steam, and then air-dried to form a chicken in the semi-bound water region with a moisture content of 36%. I made it into a stick. When this was placed perpendicular to the device of Example [1] and dielectrically heated, the central part was heated strongly after 12 seconds and the moisture 6
%, but the edges were hardly heated and the moisture content was 35%, making uniform drying impossible with orthogonal drying. Therefore, when dielectric heating was performed diagonally while changing the head of the entrance and exit under the same conditions, when the height difference between the person and the exit was more than 1/4 wavelength, the temperature of all the products instantly reached 120℃ or more, causing evaporation. After 5 seconds, the resulting product was a foamed chicken stick with a moisture content of about 15%, which was puffed softly and uniformly.
実施例7
糖アルコールとアミノ酸化物を混合して後、酵母でアミ
ルアルコールを生成し、それを有機酸と縮合反応せしめ
複合エステルを生合成せしめた。Example 7 After mixing a sugar alcohol and an amino acid compound, amyl alcohol was produced using yeast and subjected to a condensation reaction with an organic acid to biosynthesize a complex ester.
このものは飴状で水分34%の準結合水領域にあって、
一般生菌数が平均10+s個/gあった。これを本装置
に挿通した25本の10m履径0テフロンチューブ内へ
均一に圧送して誘電加熱した。従来の直交方法では中央
部の18本が強い束縛熱を発して噴出し、両端に向かっ
て次第に加熱されなくなり、縁辺部は僅かに暖まるだけ
となった。加熱処理後の一般生菌数は、中央部が< 1
0”個/gに減少したが端に近付くに従って減少する割
合が低くなり縁辺部はIO+7個/gで熱に弱い酵母が
殺菌されただけで耐熱菌は全く減少しなかった0次に本
発明による斜交方法で実施したところ、同じ出力と流量
で25本とも3秒間で125℃の束縛熱を発してチュー
ブの先端から均一に流出した。得られた製品は総て含水
分が29%で一般生菌数が〈30個/gの無菌に近いも
のとなり、かつ複合エステルは活性率94%で殆ど破壊
されていなかったので目的とする活性が維持されている
と認められた。This substance is candy-like and has a moisture content of 34%, which is in the semi-bound water region.
The average number of viable bacteria was 10+s/g. This was uniformly pressure-fed into 25 10 m track diameter 0 Teflon tubes inserted into this device and dielectrically heated. In the conventional orthogonal method, the 18 wires in the center emit strong bound heat and emit heat, gradually becoming less heated toward both ends, and the edges are only slightly warmed. The number of viable bacteria after heat treatment is <1 in the center.
It decreased to 0''/g, but the rate of decrease decreased as it approached the edge, and at the edge, it was IO + 7/g, only heat-sensitive yeasts were sterilized, but heat-resistant bacteria did not decrease at all. Using the oblique method, all 25 tubes generated a confined heat of 125°C in 3 seconds with the same output and flow rate, and flowed out uniformly from the tip of the tube.The resulting products all had a water content of 29%. The number of viable bacteria was <30 cells/g, which was close to sterile, and the composite ester was hardly destroyed at an activity rate of 94%, so it was confirmed that the desired activity was maintained.
実施例8
牛赤肉のスライスした薄片を高濃度調味液に浸漬してキ
ユアリングと浸透圧を利用して筋束間自由水を除去して
のち表面液を除き、主として細胞内コロイドの準結合水
領域に調整した味付はビーフ片をつくり、これを実施例
〔1〕の装置にテフロンネットコンベアに一面に並べて
、出側から入側に向かって、湿度3%・50℃の温風を
強制透過しつつ、パワーデンスチイを2 kW/kgと
低くして誘電加熱した。直交して得られたものはやはり
ベルト中央部が強く加熱されて焦げて収縮しても、縁辺
部は未変性で収縮せず表面が温風で少し乾いた程度であ
った。次に入側よりも出側を1/2波長低く斜交して同
様に加熱したところ、加熱ムラなく全体が少し収縮を示
した均一な味付は乾燥ビーフとなった。Example 8 Thin slices of beef red meat are immersed in a highly concentrated seasoning solution to remove interfascicular free water using curing and osmotic pressure, and then the surface liquid is removed to remove mainly semi-bound water from intracellular colloids. The seasoning was adjusted to the desired area by making beef pieces, placing them all over the Teflon net conveyor in the device of Example [1], and forcing hot air at 3% humidity and 50°C from the exit side to the input side. The power density steel was dielectrically heated at a low power of 2 kW/kg while transmitting the light. In the case of the belt obtained by orthogonally crossing the belt, even though the central part of the belt was strongly heated and scorched and shrunk, the edge part was undenatured and did not shrink, and the surface was only slightly dried by hot air. Next, when heating was performed in the same manner with the exit side 1/2 wavelength lower than the input side, the beef was heated evenly and had a slight shrinkage throughout, resulting in uniformly seasoned dried beef.
実施例9
冷蔵で味付はキユアリングした豚肉を成るべく細胞膜の
破砕を少なくして約3mmの粒にカッティングして練り
、径Low−の丸い粒に成形し、これを低湿冷風乾燥し
て自由水をほぼ除去し水分35%の準結合水領域に調整
した。次に本発明の薄型トレーコンベアに均一な厚みに
供給してP、0.8で誘電加熱した。直交して得られた
ものは中央部で赤肉が強く加熱を受けて乾燥固結し、脂
肪膜が破裂して分離したが、縁辺部に近づくにつれて加
熱され難くなり未変性となって製品にならなかった。次
にトレーコンベアの傾斜を出入り差を付けて実施したと
ころやはり175波長辺りから加熱ムラが減少し、1/
4波長以上の差になると殆ど均一になり、1/2波長差
以上では固結や分離が生ぜず、均一に膨化してムラが全
く無くなった。Example 9 Pork that has been refrigerated and seasoned and cured is cut into particles of about 3 mm with as little disruption of cell membranes as possible, kneaded, shaped into round particles with a diameter of Low-, and dried with low-humidity cold air to make free water. was almost completely removed to adjust the moisture content to a semi-bound water region of 35%. Next, it was supplied to the thin tray conveyor of the present invention to a uniform thickness and dielectrically heated at P, 0.8. In the case of the meat obtained by crossing at right angles, the red meat was heated strongly in the center and dried and solidified, and the fat membrane burst and separated, but as it approached the edges, it became difficult to heat and became undenatured, resulting in the product. did not become. Next, when we tilted the tray conveyor with a difference in entrance and exit, the heating unevenness decreased from around 175 wavelengths.
When the difference was 4 or more wavelengths, it became almost uniform, and when the difference was 1/2 wavelength or more, no solidification or separation occurred, and it expanded uniformly, with no unevenness at all.
(発明の効果)
本発明によれば、被加熱物を従来のように電界に対して
直交せしめてマイクロ波加熱するのではなく、斜交せし
めてマイクロ波加熱するという新規な構成をはじめて採
用したことにより、電気使用量に対する乾燥処理能力を
大巾に高めることができる。(Effects of the Invention) According to the present invention, a novel configuration has been adopted for the first time in which the object to be heated is not heated by microwaves while being perpendicular to the electric field as in the conventional method, but is heated by microwaves by placing the object at an angle to the electric field. By doing so, the drying processing capacity relative to the amount of electricity used can be greatly increased.
そして更に本発明によれば、前記したように、(4)の
順次拡大型は、前記(3)の導波管加熱と同じように事
実上導波管を順次拡大したアプリケーター内で加熱され
るので、他の従来の接続型アプリケーターと比較すると
、設備がシンプルで、かつ強電界のため電波効率がよい
から、設備イニシャルが廉価であるが、電界と直交して
本被加熱物を印加するため、前記したように加熱ムラが
発生したり、マイクロ波の比吸収効率が低いという欠点
があった。本発明の如くマイクロ波電界成分方向に対し
て本被加熱物を斜交せしめることによってこれらの問題
点はほとんど解消できるものである。Further, according to the present invention, as described above, the sequential expansion type (4) is heated in the applicator in which the waveguide is actually expanded sequentially in the same manner as the waveguide heating (3). Therefore, compared to other conventional connection type applicators, the equipment is simple and the electric field is strong, so the radio wave efficiency is good, so the equipment initial is inexpensive, but because the electric field is applied perpendicular to the object to be heated, However, as mentioned above, there are disadvantages in that uneven heating occurs and the specific absorption efficiency of microwaves is low. Most of these problems can be solved by arranging the object to be heated obliquely with respect to the direction of the microwave electric field component as in the present invention.
前記(2) (3)型で吸収されなかったマイクロ波は
、従来本被加熱物に関しては反射波の発生は避けられな
いので、通常は反射波によるマグネトロンなど電源部の
損傷を防ぐため、ファデラー回転型アイソレーターやサ
ーキュレータ−で分離して負荷に吸収せしめるので、そ
こでかなりのマイクロ波エネルギーロスが生じるのは避
けられなかった。The microwaves that are not absorbed by the above-mentioned types (2) and (3) cannot avoid the generation of reflected waves when it comes to the object to be heated. Since the microwave energy is separated using a rotating isolator or circulator and absorbed by the load, it was inevitable that a considerable amount of microwave energy would be lost.
前記(4)では管体終末の可動反射板を調整することに
よって反射波のマツチングを計るものであるが、斜交し
た結果はマイクロ波は極めて効率良く吸収されて反射波
はほとんど発生せず、従ってマイクロ波エネルギーロス
もほとんど生じないものであった。従って本発明はマイ
クロ波ロスが、従来の方法に比して6〜70%程度も軽
減され、処理能力が著しく向上して省エネ効果が高くな
るものである。また直交型では中心部と縁辺部に明白な
加熱ムラが生じて製品にならない強い準結合水領域の本
被加熱物でも、本発明によれば加熱ムラが全く生ぜず、
均一な製品とすることができるのも特徴である。In (4) above, the reflected waves are matched by adjusting the movable reflector at the end of the tube, but the oblique results show that the microwaves are absorbed extremely efficiently and almost no reflected waves are generated. Therefore, almost no microwave energy loss occurred. Therefore, in the present invention, the microwave loss is reduced by about 6 to 70% compared to the conventional method, the processing capacity is significantly improved, and the energy saving effect is enhanced. In addition, according to the present invention, heating unevenness does not occur at all even in the case of the object to be heated in the region of strongly semi-bonded water, which cannot be finished as a product due to obvious heating unevenness in the center and edges in the orthogonal type.
Another feature is that it can be made into a uniform product.
本発明は、本被加熱物の形状サイズや特性、所望する効
果によって、開き角度や拡大長さ、斜めに供給貫通させ
る角度を自由に求める事ができるものであり、その結果
は従来型のアプリケーターのように、狭い対象物の専用
的装置に限定されることなく、小型で遥かに巾広い対象
物を処理することが可能となるものである。In the present invention, the opening angle, expansion length, and diagonal feeding penetration angle can be freely determined depending on the shape size and characteristics of the object to be heated, and the desired effect. As shown in FIG.
したがって本発明は、食品のみならず、医薬その他のす
べての物質の乾燥等に広範に利用することができ、併せ
て殺菌にも利用することができる。Therefore, the present invention can be widely used for drying not only foods but also medicines and all other substances, and can also be used for sterilization.
第1図は従来の直交型例である。第2図は本発明による
斜文型である6第3図は本発明の斜交する接続例を示す
ものであるが、(A)は管体を傾斜せしめて複数個H′
面で接続したタイプを図示したものであり、(B)は管
体を直立せしめたまま段階状に複数個H′面で接続した
タイプを図示したものである。第4図は第S図に示した
本発明装置から可動遮断板を除去したタイプの装置例で
あるが。
(A)はその断面図であり(B)はその一部を切欠いた
斜視図である。第5図は、本発明による斜交型例の1例
を図示したものである。
図中のEは拡大前のE面、E′は拡大後のE面、Hは拡
大前のH面、H′は拡大後のH面を示し、aは被加熱物
の入側、a′は出側を示す。bはスロット部の入側位置
、b′は出側位置を示す、Cは順次拡大する角錐ラッパ
部を、dは可動底抜、gは可動遮断板を示すものである
。FIG. 1 shows an example of a conventional orthogonal type. Fig. 2 shows an oblique type connection according to the present invention.6 Fig. 3 shows an example of an oblique connection according to the present invention, and (A) shows a plurality of H'
This figure shows a type in which the pipes are connected by a plane, and (B) shows a type in which a plurality of pipes are connected by a plane H' in a stepwise manner while the tube bodies are kept upright. FIG. 4 shows an example of the device of the present invention shown in FIG. S, with the movable blocking plate removed. (A) is a sectional view thereof, and (B) is a partially cutaway perspective view thereof. FIG. 5 illustrates an example of an oblique type according to the present invention. In the figure, E indicates the E plane before enlargement, E' indicates the E plane after enlargement, H indicates the H plane before enlargement, H' indicates the H plane after enlargement, a indicates the entrance side of the object to be heated, and a' indicates the exit side. b indicates the entry side position of the slot portion, b' indicates the exit side position, C indicates the pyramidal wrapper portion that gradually expands, d indicates the movable bottom, and g indicates the movable blocking plate.
Claims (1)
イクロ波電界においてその他の構成物質分子から束縛を
受けるよう準結合水領域に調整され、成形された被加熱
物を、矩形導波管が順次角錐ラッパ状に拡大し、ついで
拡大をやめたH′面に高低差を付けた出入りスロット部
を設け、E′面に対して、被加熱物を斜交せしめて、誘
電加熱することを特徴とするマイクロ波加熱方法。 2、H′面の入側に対して1/4波長以上の位置の出側
に斜交せしめ、もって被加熱物を斜め方向に移動貫通せ
しめることを特徴とする第1項に記載のマイクロ波加熱
方法。 3、角錐型ラッパが長方形管型となった部分で、複数の
アプリケーターを、傾斜させまたは傾斜させないでH′
面側で接続して、被加熱物をE′面に対して斜交せしめ
、もってこれを斜め方向に移動貫通せしめることを特徴
とする第1項に記載のマイクロ波加熱方法。 4、順次拡大する導波管を用いて、E面の拡大角度を低
く調整することによって発泡膨化度を強くし、角度を高
く調整することによって発泡膨化度を低くすることを特
徴とする第1項に記載のマイクロ波加熱方法。 5、拡大をやめたE面において、CとE′面の接続部に
、可動遮断板gを設けてH′面に入射巾を調整すること
を特徴とする第1項に記載のマイクロ波加熱方法。 6、矩形導波管を順次拡大して角錐ラッパ状となし、つ
いで拡大を止めたH′面に高低差をつけた出入りスロッ
ト部を設け、E′面に対して、被加熱物を斜交せしめて
、誘導加熱するように構成したことを特徴とするマイク
ロ波加熱装置。[Scope of Claims] 1. A material to be heated which is formed by adjusting the semi-bonded water region so that water molecules of a material mainly composed of a dielectric are bound by molecules of other constituent materials in a microwave electric field. , the rectangular waveguide gradually expands into a pyramidal trumpet shape, and then an entry/exit slot section with a height difference is provided on the H' plane where the expansion has stopped, and the object to be heated is diagonally crossed with respect to the E' plane, and the dielectric A microwave heating method characterized by heating. 2. The microwave according to item 1, wherein the microwave is diagonally crossed on the output side at a position of 1/4 wavelength or more with respect to the input side of the H' plane, thereby moving and penetrating the object to be heated in an oblique direction. Heating method. 3. At the part where the pyramid-shaped wrapper becomes a rectangular tube shape, hold multiple applicators at an angle of H' without tilting or tilting them.
2. The microwave heating method according to claim 1, wherein the object to be heated is connected on the surface side, and the object to be heated is made obliquely perpendicular to the E' surface, so that the object is moved and penetrated in an oblique direction. 4. Using a waveguide that expands sequentially, the degree of foam expansion is increased by adjusting the expansion angle of the E plane to a low value, and the degree of foam expansion is decreased by adjusting the angle to a high value. Microwave heating method described in Section. 5. The microwave heating method according to item 1, characterized in that on the E plane that has stopped expanding, a movable shielding plate g is provided at the connection part between the C and E' planes to adjust the incident width on the H' plane. . 6. Sequentially expand the rectangular waveguide to form a pyramidal trumpet shape, then provide an entry/exit slot with a difference in height on the H' plane that has stopped expanding, and place the object to be heated diagonally across the E' plane. A microwave heating device characterized in that it is configured to perform induction heating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4174289A JP2898646B2 (en) | 1989-02-23 | 1989-02-23 | Microwave heating method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4174289A JP2898646B2 (en) | 1989-02-23 | 1989-02-23 | Microwave heating method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02223186A true JPH02223186A (en) | 1990-09-05 |
JP2898646B2 JP2898646B2 (en) | 1999-06-02 |
Family
ID=12616879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4174289A Expired - Fee Related JP2898646B2 (en) | 1989-02-23 | 1989-02-23 | Microwave heating method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2898646B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523548A (en) * | 1994-01-31 | 1996-06-04 | Nec Corporation | Electromagnetic wave heater having a cone-shaped container whose tapered portion is pointed and directed toward the electromagnetic wave generator |
JPH08288061A (en) * | 1995-04-12 | 1996-11-01 | Nec Corp | Electromagnetic wave heating device |
US6246037B1 (en) * | 1999-08-11 | 2001-06-12 | Industrial Microwave Systems, Inc. | Method and apparatus for electromagnetic exposure of planar or other materials |
US6259077B1 (en) * | 1999-07-12 | 2001-07-10 | Industrial Microwave Systems, Inc. | Method and apparatus for electromagnetic exposure of planar or other materials |
JP2006134621A (en) * | 2004-11-04 | 2006-05-25 | Tokyo Denshi Kk | Microwave heating device |
DE102018105385A1 (en) * | 2018-03-08 | 2019-09-12 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace and plant for the production of wood-based panels |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101533628B1 (en) * | 2013-10-31 | 2015-07-06 | 한국전기연구원 | Heating Apparatus and Method For Large Heating Area Using Magnetic Field of Microwave |
EP4289999A1 (en) | 2021-02-02 | 2023-12-13 | Teijin Limited | Microwave heating unit, and carbon fiber manufacturing method using same |
-
1989
- 1989-02-23 JP JP4174289A patent/JP2898646B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523548A (en) * | 1994-01-31 | 1996-06-04 | Nec Corporation | Electromagnetic wave heater having a cone-shaped container whose tapered portion is pointed and directed toward the electromagnetic wave generator |
JPH08288061A (en) * | 1995-04-12 | 1996-11-01 | Nec Corp | Electromagnetic wave heating device |
US6259077B1 (en) * | 1999-07-12 | 2001-07-10 | Industrial Microwave Systems, Inc. | Method and apparatus for electromagnetic exposure of planar or other materials |
US6590191B2 (en) | 1999-07-12 | 2003-07-08 | Industrial Microwaves Systems, Inc. | Method and apparatus for electromagnetic exposure of planar or other materials |
US6246037B1 (en) * | 1999-08-11 | 2001-06-12 | Industrial Microwave Systems, Inc. | Method and apparatus for electromagnetic exposure of planar or other materials |
US6396034B2 (en) | 1999-08-11 | 2002-05-28 | Industrial Microwave Systems, Inc. | Method and apparatus for electromagnetic exposure of planar or other materials |
JP2006134621A (en) * | 2004-11-04 | 2006-05-25 | Tokyo Denshi Kk | Microwave heating device |
DE102018105385A1 (en) * | 2018-03-08 | 2019-09-12 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace and plant for the production of wood-based panels |
DE102018105385B4 (en) * | 2018-03-08 | 2020-01-30 | Siempelkamp Maschinen- Und Anlagenbau Gmbh | Continuous furnace and plant for the production of wood-based panels |
Also Published As
Publication number | Publication date |
---|---|
JP2898646B2 (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2632749B2 (en) | Method and apparatus for producing oil-free fat snack confectionery chips | |
US3835280A (en) | Composite microwave energy perturbating device | |
US5553532A (en) | Apparatus for cooking food products using very low and low frequency radio waves | |
US7119313B2 (en) | Apparatus and method for heating objects with microwaves | |
US3235971A (en) | Method and apparatus for drying | |
CN1116402A (en) | Process and apparatus for preparing fat free snack chips | |
EP0372025A1 (en) | Method and apparatus for adjusting the temperature profile of food products during microwave heating | |
JPH02223186A (en) | Microwave induced heating and its apparatus | |
EP0267368A2 (en) | Low temperature extrusion process for quick cooking pasta products | |
US5180601A (en) | Process for preparing fat free snack chips | |
US4919951A (en) | Method for the heat curing of raw meat products | |
CN114304489B (en) | Method for drying fine dried noodles by low-frequency electromagnetic field | |
US4935253A (en) | Process and installation for the manufacture of a complex egg-based product | |
US4704291A (en) | Method of preparation of fish-noodle | |
JP3012052B2 (en) | Scrambled eggs | |
RU2000107952A (en) | FOOD PRODUCTS SUITABLE FOR Frying AFTER REHYDRATION AND METHOD FOR PRODUCING THEM | |
JPS56144074A (en) | Method and apparatus for continuous preparation of simple relish | |
JPS5941712B2 (en) | How to thaw frozen foods using high frequency heating | |
JPH046337B2 (en) | ||
JPS5829590B2 (en) | Micro Hakanetshouhou | |
KR900008244B1 (en) | Process for making fish cake shaped crabe's leg | |
JPH03176385A (en) | Container for use in electronic range | |
JPS5853997Y2 (en) | Continuous food processing equipment using microwave heating means | |
JPH07147888A (en) | Coated instant dry meat food and its preparation | |
JPS5832870B2 (en) | Method for manufacturing delicacy foods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |