JPH02222847A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPH02222847A
JPH02222847A JP261790A JP261790A JPH02222847A JP H02222847 A JPH02222847 A JP H02222847A JP 261790 A JP261790 A JP 261790A JP 261790 A JP261790 A JP 261790A JP H02222847 A JPH02222847 A JP H02222847A
Authority
JP
Japan
Prior art keywords
polarization
magnetic field
polarization plane
light
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP261790A
Other languages
Japanese (ja)
Other versions
JPH0640123B2 (en
Inventor
Tetsuo Kobayashi
哲郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2002617A priority Critical patent/JPH0640123B2/en
Publication of JPH02222847A publication Critical patent/JPH02222847A/en
Publication of JPH0640123B2 publication Critical patent/JPH0640123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable realization of a highly accurate sensor with variations in a transmission loss compensated by comparing intensities of light with two linearly polarized components contained in a polarized wave to allow measurement of an intensity of a magnetic field applied to a Faraday rotor based on an angle of rotation of a polarization plane therewith. CONSTITUTION:A polarization separation element 24 separates an incident light wave depending on a difference in a polarization plane. A Faraday rotor 18 as non-reciprocal polarization plane rotor arranged in a magnetic field to be measured makes a magnetic field detecting section. As for a reciprocal type polarization plane rotation element 25, the rotation of the polarization plane by 45 deg. is optimum. Moreover, a polarization separating light element 28 separates a light wave from a light waveguide loop separated with a beam splitter 27 according the polarization plane from each other and photo detectors 22 and 23 detect amplitudes of the light waves different in the polarization plane. Then, detection output signals of the detectors are introduced to a signal analyzer 29 to analyze, thereby calculating an intensity of the magnetic field detected with the Faraday rotor 18.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光導波ループを用いて充分に温度補償を施し
たループ型の磁界センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a loop-type magnetic field sensor that is sufficiently temperature-compensated using an optical waveguide loop.

(従来の技術と発明が解決しようとするその問題点) 従来の代表的な光学的磁界センサは、第2図に示すよう
に、前後に偏光子33および検光子35を配置したファ
ラデイ回転子18を通過させた直線偏光光ビームを光検
出器22に導いて、ファラデイ回転子18に印加された
磁界に応じた直線偏光面の回転角に対応した通過光量の
変化に基づいて印加磁界の大きさを知るものである。実
際の装置においては、例えば、図示のように、偏光子3
3を通過した入射光の偏波面に対して45°すなわちπ
/4ラジアンだけ偏波面を回転させた検光子35にフェ
ラデイ回転子18を通過した入射光を導き、その出力光
量の変化からファラディ回転子18による偏波面の回転
角、したがって、ファラディ回転子18の印加磁界の強
さを求める。いま、入射光強度をD2とし、ファラデイ
回転子18による偏波面の回転角をθ。とすれば、検光
子出力はつぎの(1)式に比例する。
(Prior art and its problems to be solved by the invention) As shown in FIG. The linearly polarized light beam that has passed is guided to the photodetector 22, and the magnitude of the applied magnetic field is determined based on the change in the amount of passed light corresponding to the rotation angle of the linearly polarized light plane according to the magnetic field applied to the Faraday rotator 18. It is something to know. In an actual device, for example, as shown in the figure, a polarizer 3
45° or π with respect to the polarization plane of the incident light that has passed through
The incident light that has passed through the Feraday rotator 18 is guided to the analyzer 35 whose plane of polarization has been rotated by /4 radian, and from the change in the output light amount, the angle of rotation of the plane of polarization by the Faraday rotator 18, and therefore the angle of rotation of the plane of polarization by the Faraday rotator 18. Find the strength of the applied magnetic field. Now, let the incident light intensity be D2, and the rotation angle of the polarization plane by the Faraday rotator 18 be θ. Then, the analyzer output is proportional to the following equation (1).

D”cos”(π/4−θ。) = (D”/2)1十cos (2(g/4−θ。))
〕=(D”/2) (1+5in2θ、 )     
  (1)したがって、上式(1)から回転角θ。が求
まり、さらに、印加磁界が計測される。しかしながら、
かかる磁界計測においては、入射光強度や各部の損失量
が変動すれば、その変動量がそのまま計測誤差になり、
特に、人出射光路に光ファイバを用いた場合には、その
伝送損失の変化も出力に現われて、被測定磁界の強さの
変化と混同されるおそれがあり、しかも、かかる光フア
イバ伝送損失の変動の効果を計測結果から除去すること
が困難という問題点がある。
D"cos" (π/4-θ.) = (D"/2)10cos (2(g/4-θ.))
]=(D”/2) (1+5in2θ, )
(1) Therefore, from the above equation (1), the rotation angle θ. is determined, and furthermore, the applied magnetic field is measured. however,
In such magnetic field measurement, if the intensity of the incident light or the amount of loss in each part fluctuates, the amount of fluctuation directly causes a measurement error.
In particular, when an optical fiber is used for the human output optical path, changes in its transmission loss also appear in the output and may be confused with changes in the strength of the magnetic field to be measured. There is a problem in that it is difficult to remove the effects of fluctuations from the measurement results.

本発明の目的は、非相反トランスジューサと組合わせて
温度補償を施された高周波バイアスを備えて高精度化し
た磁界測定やジャイロとして用い得る磁界センサを提供
することにある。
An object of the present invention is to provide a magnetic field sensor that can be used in combination with a non-reciprocal transducer and a temperature-compensated high-frequency bias for highly accurate magnetic field measurement or as a gyro.

本発明のさらに他の目的は、偏波保存光ファイバの伝送
損失や伝送定数等のふらつきによる測定誤差が取除かれ
た光磁界センサを提供することにある。
Still another object of the present invention is to provide an optical magnetic field sensor in which measurement errors due to fluctuations in transmission loss and transmission constant of a polarization-maintaining optical fiber are eliminated.

(問題点を解決するための手段) 本発明による磁界センサは、互いに直交した直線偏光の
2光波を分離するとともに合成する偏波分離合成手段と
、当該偏波分離合成手段により分離した直線偏光の2光
波を両端にそれぞれ入射させるとともにそれぞれ他端か
ら当該偏波分離合成手段に入射させる光導波ループと、
当該光導波ループの両端からそれぞれ入射した互いに直
交する直線偏光の2光波の偏光面をそれぞれ異なる角度
で回転させるファラデイ回転子および相反回転子とを備
え、前記先導波ループの両端からそれぞれ前記偏波分離
合成手段に入射して合成した偏光波に含まれる2直線偏
光成分の光強度を互いに比較して算出した前記ファラデ
ィ回転子による偏光面回転角に基づいて前記ファラディ
回転子に印加した磁界の強さを測定し得るようにしたこ
とを特徴とするものである。
(Means for Solving the Problems) The magnetic field sensor according to the present invention includes a polarization separation/synthesis means for separating and combining two linearly polarized light waves orthogonal to each other, and a polarization separation/synthesis means for separating and combining two linearly polarized light waves orthogonal to each other, and an optical waveguide loop that allows two light waves to enter the polarization separation/synthesis means at both ends, and to enter the polarization separation/synthesis means from the other end;
A Faraday rotator and a reciprocal rotator are provided to rotate the polarization planes of two mutually orthogonal linearly polarized light waves incident from both ends of the optical waveguide loop, respectively, at different angles, and the polarized light waves are rotated from both ends of the optical waveguide loop. The strength of the magnetic field applied to the Faraday rotator based on the rotation angle of the plane of polarization by the Faraday rotator, which is calculated by comparing the light intensities of two linearly polarized light components included in the polarized waves incident on the separation and combination means and combined. This method is characterized by being able to measure the degree of strength.

(作 用) 本発明によれば、伝送路の伝送損失の変動が補償されて
高精度の性能を備えた磁界センサを実現することができ
る。
(Function) According to the present invention, it is possible to realize a magnetic field sensor that compensates for fluctuations in transmission loss in a transmission line and has highly accurate performance.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

本発明による2偏波型安定化磁界センサの構成例を第1
図に示す。図示の構成においては、光導波ループを用い
た磁界センサの・出力偏光光波を偏波面により分離して
安定確実に検出し、被測定磁界の強さを正確に解析し得
るようにしである。すなわち、光導波ループ中に位置す
る構成要素のうち、24は例えば偏波分離プリズムなど
の偏波分離素子であって、入射光波をその偏波面の相違
によって分離する。また、2,3は反射鏡であり、18
tは被測定磁界中に配置したファラディ回転子などの非
相反偏波面回転子であって、磁界検出部をなしている。
A first configuration example of a dual polarization type stabilized magnetic field sensor according to the present invention is described below.
As shown in the figure. In the illustrated configuration, the output polarized light waves of a magnetic field sensor using an optical waveguide loop are separated by the plane of polarization to be detected stably and reliably, and the strength of the magnetic field to be measured can be accurately analyzed. That is, among the components located in the optical waveguide loop, 24 is a polarization separation element such as a polarization separation prism, which separates incident light waves depending on the difference in their polarization planes. In addition, 2 and 3 are reflecting mirrors, and 18
t is a non-reciprocal polarization plane rotator such as a Faraday rotator placed in the magnetic field to be measured, and serves as a magnetic field detection section.

さらに、25は相反型偏波面回転素子であって、偏波面
を45°回転させるのが最適である。
Furthermore, 25 is a reciprocal polarization plane rotation element, which is optimally rotated by 45 degrees.

一方、偏波分離素子24に対する入出力光波を導入・導
出する偏波保存光ファイバ26は、磁界センサとして不
可欠の構成要素ではないが、上述したように被測定磁界
に怒応して偏波面を回転させる入出力偏光光波の偏波面
を保持して伝送し、回転角測定を高精度化、安定化する
に有用であり、特に、遠隔計測の場合に極めて有用であ
る。なお、偏波保存光ファイバは、光ファイバを非軸対
称に構成して単一偏波のみを伝搬させ、しかも、その偏
波をそのまま保持した状態で伝搬させ得るものである。
On the other hand, the polarization-maintaining optical fiber 26 that introduces and guides the input and output light waves to the polarization separation element 24 is not an essential component of a magnetic field sensor, but as described above, it changes the polarization plane in response to the magnetic field to be measured. It is useful for transmitting while maintaining the polarization plane of input and output polarized light waves to be rotated, and for increasing the accuracy and stabilization of rotation angle measurement, and is particularly useful for remote measurement. Note that a polarization-maintaining optical fiber is an optical fiber configured to be non-axially symmetrical so that only a single polarized wave can be propagated, and the polarized wave can be propagated while maintaining that polarized wave as it is.

また、27は入出力光波分離用のビームスプリッタであ
り、28はビームスプリッタ27により分離した光導波
ループからの光波を偏波面に応じて互いに分離する偏波
分離光素子である。さらに、22゜23は光検出器であ
って、それぞれ偏波面の異なる光波の振幅を検出し、そ
れらの検出出力信号を信号解析器29に導いて解析を行
ない、ファラディ回転子18により検知した被測定磁界
の強さを算出する。
Further, 27 is a beam splitter for separating input and output light waves, and 28 is a polarization separation optical element that separates light waves from the optical waveguide loop separated by the beam splitter 27 from each other according to the plane of polarization. Further, reference numerals 22 and 23 denote photodetectors, which detect the amplitudes of light waves with different planes of polarization, and guide their detection output signals to a signal analyzer 29 for analysis. Calculate the strength of the measured magnetic field.

上述した第10図示の構成による磁界センサにおいて、
いま、偏波保存光ファイバ26を介して互いに直交する
直線偏光の2光波A、Bが偏波分離素子24に入射する
と、それらの2光波A、Bは互いに分離されて先導波ル
ープを互いに逆回りに進行する。かかる2光波の進行中
に、光波Aが、その進行方向に向って時計回りの向きに
、相反偏波面回転素子25によりθ。ラジアンだけ偏波
面の回転を受けるとともに非相反のファラディ回転子1
8によりθ。ラジアンだけ偏波面の回転を受け、合計(
θ。→−θ。)ラジアンの偏波面回転を生じたとすると
、光波Bは、その進行方向に向って同じく時計回りの向
きに、相反偏波面回転素子25によりθ0ラジアンだけ
偏波面の回転を受けるとともに非相反のファラデイ回転
子18により一θ。ラジアンだけ偏波面の回転を受け、
合計(θ。−θ。)ラジアンの偏波面回転をすすること
になる。しかも、光波Bは、光波Aとは逆向きに進行し
ているのであるから、光波Aの進行方向に向っては時計
回りの向きに(θ。−θl、)ラジアンだけの偏波面回
転を生じていることになる。
In the magnetic field sensor having the configuration shown in FIG. 10 described above,
Now, when two mutually orthogonal linearly polarized light waves A and B enter the polarization separation element 24 via the polarization-maintaining optical fiber 26, these two light waves A and B are separated from each other and the leading wave loop is reversed. Proceed around. While the two light waves are traveling, the light wave A is rotated clockwise in the direction of travel by the reciprocal polarization plane rotation element 25 so that the light wave A is rotated by θ. A non-reciprocal Faraday rotator 1 that undergoes rotation of the plane of polarization by radians.
8 by θ. The plane of polarization undergoes rotation by radians, and the total (
θ. →−θ. ) radian, the light wave B undergoes rotation of the polarization plane by θ0 radians in the same clockwise direction in its traveling direction by the reciprocal polarization plane rotation element 25, and also undergoes non-reciprocal Faraday rotation. One θ due to child 18. The plane of polarization is rotated by radians,
This results in a total polarization plane rotation of (θ.-θ.) radians. Moreover, since light wave B is traveling in the opposite direction to light wave A, the plane of polarization is rotated clockwise by (θ.-θl,) radians in the direction of travel of light wave A. This means that

上述のような偏波面回転を生じた光波Aが再度偏波分離
素子24に入射した際に、その偏波分離素子24を通過
し得るのは光波Aの偏波面と直交する偏波成分であり、
その振幅は入射光波Aのsin  (θ。+θ。)であ
り、同様にして、光波Bが再度偏波分離素子24に入射
した際に、その偏波分離素子24を通過し得るのは入射
光波Bの振幅のsin  (θ。−〇、)倍である。偏
波分離素子24を通過したこれらの光波は偏波保存光フ
ァイバ26を介して送出源側に戻るのであるが、入射時
とは異なる偏波面をもって戻るので、光波A、Bともに
往路と復路とで全く同一の光路を経由することになり、
光ファイバの異なる2偏波に対する伝送損失、位相定数
等の伝送特性の差異は往路と復路とでそれぞれ相殺され
ることになる。
When the light wave A that has undergone the rotation of the polarization plane as described above enters the polarization separation element 24 again, it is the polarization component orthogonal to the polarization plane of the light wave A that can pass through the polarization separation element 24. ,
Its amplitude is sin (θ. + θ.) of the incident light wave A. Similarly, when the light wave B enters the polarization separation element 24 again, only the incident light wave can pass through the polarization separation element 24. It is sin (θ.-〇,) times the amplitude of B. These light waves that have passed through the polarization separation element 24 return to the transmission source side via the polarization-maintaining optical fiber 26, but because they return with a polarization plane different from that at the time of incidence, both the light waves A and B have different polarization planes on their outgoing and return paths. The light passes through the same optical path,
Differences in transmission characteristics such as transmission loss and phase constant for two different polarized waves of the optical fiber are canceled out between the outgoing path and the returning path.

しかして、偏波保存光ファイバ26を経由して戻って来
た2光波A、Bをビームスプリッタ27により分岐して
偏波分離素子28に導き、互いに異なる偏波面を有する
2光波A、Bを互いに分離して光検出器22.23にそ
れぞれ導き、それぞれの光強度を検出すると、それらの
光検出強度はそれぞれつぎの(2)式および(3)式に
よって表わされる。
The two light waves A and B that have returned via the polarization maintaining optical fiber 26 are split by the beam splitter 27 and guided to the polarization separation element 28, and the two light waves A and B having different polarization planes are separated. When the light beams are separated from each other and guided to photodetectors 22 and 23 to detect their respective light intensities, the detected light intensities are expressed by the following equations (2) and (3), respectively.

A”stn” (θ。+θ、 )      (2)B
”sin”  (θ。 −θ、  )        
   (3)しかして、入射時における光波Aと光波B
との強度を互いに等しくしておくか、あるいは、光検出
器22と23との感度調整により、ファラデイ回転子1
8に対する磁界無印加時における双方の検出出力信号レ
ベルを互いに等しくしておけば、A2−B2となし得る
ので、雨検出出力の差Δはつぎの(4)式のように表わ
される。
A"stn" (θ.+θ, ) (2)B
“sin” (θ. −θ, )
(3) Therefore, light wave A and light wave B at the time of incidence
The Faraday rotator 1 can be made equal in intensity to each other, or by adjusting the sensitivity of the photodetectors 22 and
If the levels of both detection output signals when no magnetic field is applied to 8 are made equal to each other, A2-B2 can be obtained. Therefore, the difference Δ in the rain detection outputs can be expressed as in the following equation (4).

Δ■^”rtn” (θ、+θm )  B”stn”
 (θ。−〇、)−八” (−cos (2(θ、十θ
。) ) +cos (2(θ、−〇。))千^−Ln
2θ*w ・5in2θ、、       、、 (4
)この(4)式から非相反のファラデイ回転子18によ
る偏波面回転角θ。かつぎの(5)式のように求められ
る。
Δ■^”rtn” (θ, +θm) B”stn”
(θ.-〇,)-8” (-cos (2(θ, 10θ
. ) ) +cos (2(θ, -〇.)) 1,000^-Ln
2θ*w ・5in2θ, , , (4
) From this equation (4), the rotation angle θ of the polarization plane by the non-reciprocal Faraday rotator 18 is obtained. It is obtained as shown in the following equation (5).

θ、 =H/2)sln−’ (Δ/(A”5in2θ
a))  (5)この(5)式によれば、ファラデイ回
転子18に印加される被測定磁界が弱くて偏波面回転角
θ。が小さい場合にも容易確実に検出し得るようにする
ためには、(5)式の右辺におけるA”5in2θ。が
大きいことが望ましく、したがって、相反位相回転素子
25による偏波面回転角θ。を45°すなわち(π/4
)ラジアンとするのが最適である。なお、光検出器22
と23との雨検出出力の和SUhはつぎの(6)式とな
る。
θ, =H/2)sln-'(Δ/(A"5in2θ
a)) (5) According to this equation (5), the magnetic field to be measured applied to the Faraday rotator 18 is weak and the polarization plane rotation angle θ. In order to be able to easily and reliably detect a small value, it is desirable that A''5in2θ on the right side of equation (5) be large. Therefore, the polarization plane rotation angle θ by the reciprocal phase rotation element 25 should be 45° or (π/4
) is best set in radians. Note that the photodetector 22
The sum SUh of the rain detection outputs of and 23 is expressed by the following equation (6).

StlM−^”(1−cos2θ。4・Co11θ、v
)    (6)この(6)式による雨検出出力の和S
IIMと(4)弐による差Δとの比rはつぎの(7)式
のように表わされる。
StlM-^”(1-cos2θ.4・Co11θ,v
) (6) Sum S of rain detection outputs according to equation (6)
The ratio r between IIM and the difference Δ due to (4) 2 is expressed as the following equation (7).

〕/2 乍5in2θ。(θ、v−45°のとき)(7)この(
7)式からもファラデイ回転角θ。を算出することがで
きる。また、この場合には、人力光波の強度や光ファイ
バあるいは光導波ループ部における伝送損失などの変動
により上述の和SKIMおよび差Δがそれぞれ変動して
も、雨検出出力の和SIIMと差Δとの比「は一定であ
り、極めて安定にファラデイ回転角θ。を測定すること
ができる。
]/2 5in2θ. (When θ, v-45°) (7) This (
From equation 7), Faraday rotation angle θ is also obtained. can be calculated. In this case, even if the above-mentioned sum SKIM and difference Δ vary due to variations in the intensity of the human-powered light wave and transmission loss in the optical fiber or optical waveguide loop, the sum SIIM and the difference Δ of the rain detection outputs will change. The ratio ``is constant, and the Faraday rotation angle θ can be measured extremely stably.

一方、ファラデイ回転角θ。はファラデイ回転子18に
印加される軸方向磁界の強さに比例するのであるから、
上述のようにしてファラデイ回転角θ。を求めることに
よって印加磁界の強さを算出することができる。なお、
相反型偏波面回転素子25には、ガラス等の旋光性媒質
を用いる他、従来周知の半波長板を適切な角度に回転さ
せ、相反位相回転素子25として用いることもできる。
On the other hand, the Faraday rotation angle θ. Since is proportional to the strength of the axial magnetic field applied to the Faraday rotor 18,
The Faraday rotation angle θ is determined as described above. By determining , the strength of the applied magnetic field can be calculated. In addition,
In addition to using an optically active medium such as glass as the reciprocal polarization plane rotation element 25, a conventionally known half-wave plate may be rotated at an appropriate angle and used as the reciprocal phase rotation element 25.

(発明の効果) 以上の説明から明らかなように、本発明によれば、非相
反偏波面回転素子を組合わせて温度補償が施された高精
度の磁界センサを実現することができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, it is possible to realize a highly accurate magnetic field sensor that is temperature compensated by combining non-reciprocal polarization plane rotation elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によりループ型光変調器を適用した磁界
センサの構成例を示す構成配置図、第2図は従来の磁界
センサの基本的構成を示す構成配置図である。 2・・・反射鏡18・・・ファラデイ回転子22、23
・・・光検出器   24.28・・・偏波分離素子2
5・・・相反型偏波面回転素子 26・・・偏波保存光ファイバ
FIG. 1 is a configuration diagram showing an example of the configuration of a magnetic field sensor to which a loop-type optical modulator is applied according to the present invention, and FIG. 2 is a configuration layout diagram showing the basic configuration of a conventional magnetic field sensor. 2... Reflector 18... Faraday rotator 22, 23
... Photodetector 24.28 ... Polarization separation element 2
5... Reciprocal polarization plane rotation element 26... Polarization maintaining optical fiber

Claims (1)

【特許請求の範囲】 1、互いに直交した直線偏光の2光波を分離するととも
に合成する偏波分離合成手段と、当該偏波分離合成手段
により分離した直線偏光の2光波を両端にそれぞれ入射
させるとともにそれぞれ他端から当該偏波分離合成手段
に入射させる光導波ループと、当該光導波ループの両端
からそれぞれ入射した互いに直交する直線偏光の2光波
の偏光面をそれぞれ異なる角度で回転させるフアライデ
回転子および相反回転子とを備え、前記光導波ループの
両端からそれぞれ前記偏波分離合成手段に入射して合成
した偏光波に含まれる2直線偏光成分の光強度を互いに
比較して算出した前記ファラデイ回転子による偏光面回
転角に基づいて前記ファラデイ回転子に印加した磁界の
強さを測定し得るようにしたことを特徴とする磁界セン
サ。 2、特許請求の範囲第1項記載の磁界センサにおいて、
前記互いに直交した直線偏光の2光波を偏波保存ファイ
バを介して前記偏波分離合成手段に導入するとともに、
前記合成した偏光波に含まれる2直線偏光成分を当該偏
波保存光ファイバを介して導出することを特徴とする磁
界センサ。
[Claims] 1. A polarization separation/synthesis means for separating and combining two linearly polarized light waves orthogonal to each other, and for making the two linearly polarized light waves separated by the polarization separation/synthesis means incident on both ends, respectively. an optical waveguide loop that enters the polarization separation/synthesis means from the other end; a Farreide rotator that rotates the polarization planes of two mutually orthogonal linearly polarized light waves that are incident from both ends of the optical waveguide loop at different angles; and a reciprocal rotator, wherein the Faraday rotator is calculated by comparing the light intensities of two linearly polarized components included in polarized waves synthesized by entering the polarization separation/synthesis means from both ends of the optical waveguide loop. A magnetic field sensor characterized in that the strength of the magnetic field applied to the Faraday rotator can be measured based on the rotation angle of the plane of polarization. 2. In the magnetic field sensor according to claim 1,
Introducing the two mutually orthogonal linearly polarized light waves to the polarization separation/synthesis means via a polarization maintaining fiber,
A magnetic field sensor characterized in that two linearly polarized light components included in the combined polarized light wave are derived through the polarization maintaining optical fiber.
JP2002617A 1990-01-11 1990-01-11 Magnetic field sensor Expired - Lifetime JPH0640123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002617A JPH0640123B2 (en) 1990-01-11 1990-01-11 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002617A JPH0640123B2 (en) 1990-01-11 1990-01-11 Magnetic field sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23458485A Division JPS6294821A (en) 1985-10-22 1985-10-22 Loop type optical modulator

Publications (2)

Publication Number Publication Date
JPH02222847A true JPH02222847A (en) 1990-09-05
JPH0640123B2 JPH0640123B2 (en) 1994-05-25

Family

ID=11534367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002617A Expired - Lifetime JPH0640123B2 (en) 1990-01-11 1990-01-11 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH0640123B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129372A (en) * 1982-01-29 1983-08-02 Sumitomo Electric Ind Ltd Magnetic field-light converter
JPS58135465A (en) * 1982-02-05 1983-08-12 Mitsubishi Electric Corp Photoelectric current magnetic field sensor
JPS5940277A (en) * 1982-08-31 1984-03-05 Hitachi Cable Ltd Polarization surface preserving optical fiber type magnetic field sensor
JPS60138480A (en) * 1983-12-27 1985-07-23 Hitachi Cable Ltd Optical magnetic field sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129372A (en) * 1982-01-29 1983-08-02 Sumitomo Electric Ind Ltd Magnetic field-light converter
JPS58135465A (en) * 1982-02-05 1983-08-12 Mitsubishi Electric Corp Photoelectric current magnetic field sensor
JPS5940277A (en) * 1982-08-31 1984-03-05 Hitachi Cable Ltd Polarization surface preserving optical fiber type magnetic field sensor
JPS60138480A (en) * 1983-12-27 1985-07-23 Hitachi Cable Ltd Optical magnetic field sensor

Also Published As

Publication number Publication date
JPH0640123B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US11268811B2 (en) Non-interferometric optical gyroscope based on polarization sensing
US6122415A (en) In-line electro-optic voltage sensor
US8068233B2 (en) Compact resonator fiber optic gyroscopes
EP0262825A2 (en) Fiber optic rotation sensor utilizing high birefringence fiber and having reduced intensity type phase errors
US6462539B2 (en) Magnetic sensor with faraday element
KR101978444B1 (en) Optical fiber Sagnac interferometer using a polarizing beam splitter
US6128080A (en) Extended range interferometric refractometer
US5229834A (en) Sensor for detecting and measuring the angle of rotation of a plane of light polarization
JP2007057324A (en) Fiber optic measuring system
KR101981707B1 (en) Free space Sagnac interferometer using a polarizing beam splitter
US5351124A (en) Birefringent component axis alignment detector
EP0078931B1 (en) Angular rate sensor
JP3687971B2 (en) Method and apparatus for compensating residual birefringence in an interferometric fiber optic gyro
JPH02222847A (en) Magnetic field sensor
JP2004279380A (en) Angle of rotation measuring instrument
KR101235274B1 (en) Long-term stabilized heterodyne interferometer and readout sensor for biochemical fluidic channel using the interferometer
US7130053B2 (en) Device for measuring a non-reciprocal effect, in particular fiber-optic gyro
JPS5899761A (en) Electric field/magnetic field measuring apparatus with light
RU2337331C1 (en) Method for polarisation plane azimuth measurement for optical emitter
JP2509692B2 (en) Optical measuring device
JP3494525B2 (en) Optical fiber current measuring device
JPH07306095A (en) Polarization-analysis evaluation method of polarization modulation optical signal
JPS59634A (en) Temperature measuring method using optical fiber preserving polarized wave surface
JPS63148108A (en) Ellipsometer
CN117330515A (en) High-sensitivity azimuth ellipticity simultaneous measurement device and method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term