JPH02222730A - Method for supporting catalytic metal on catalyst carrier - Google Patents

Method for supporting catalytic metal on catalyst carrier

Info

Publication number
JPH02222730A
JPH02222730A JP1044037A JP4403789A JPH02222730A JP H02222730 A JPH02222730 A JP H02222730A JP 1044037 A JP1044037 A JP 1044037A JP 4403789 A JP4403789 A JP 4403789A JP H02222730 A JPH02222730 A JP H02222730A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
catalytic metal
metal
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1044037A
Other languages
Japanese (ja)
Inventor
Kazunori Kobayashi
和則 小林
Hironao Kawai
河合 裕直
Masato Tsuji
正人 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Industrial Co Ltd filed Critical Cataler Industrial Co Ltd
Priority to JP1044037A priority Critical patent/JPH02222730A/en
Publication of JPH02222730A publication Critical patent/JPH02222730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To uniformly support a catalytic metal on catalyst carriers in a short time by immersing the carriers in a soln. contg. the metal for a certain time, pulling up the carriers, making the concn. of the soln. uniform by bubbling and repeating these operations. CONSTITUTION:Carriers 3 are put in a support frame 1 and this frame 1 is immersed in a soln. 4 contg. a catalytic metal in a soln. vessel 2. After the lapse of a certain time, the frame 1 is taken out of the soln. 4 and solenoid valves 7 are opened to introduce air from ducts 6. The soln. 4 is bubbled by the air and the concn. distribution of the soln. 4 is made uniform. The valves 7 are then closed and the frame 1 is lowered to immerse the carriers 3 in the soln. 4. These operations are repeated. The catalytic metal is uniformly supported in a short time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関から排出される炭化水素、酸化炭素お
よび窒素酸化物などの有害成分を浄化する触媒の製造工
程の一工程である触媒担体へ触媒金属を担持する方法に
関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to a catalyst carrier, which is a step in the manufacturing process of a catalyst that purifies harmful components such as hydrocarbons, carbon oxides, and nitrogen oxides discharged from internal combustion engines. The present invention relates to a method of supporting a catalytic metal on a metal.

[従来の技術] 従来触媒担体への触媒金属の担持方法としては、活性ア
ルミニウムなどの無機多孔質の担持層をハニカム担体基
材または三次元網目状担体基材に形成して触媒担体とす
る。そして前記触媒担体の上部より触媒金属含有溶液を
流し掛けるか、または触媒担体を触媒金属含有溶液に浸
漬して担持層に触媒金属を担持している。このとき担持
層は、溶液中に溶解している物質を容易に吸着担持する
ため溶液の濃度分布が不均一であると不均一に担持して
しまう。特に負金属の触媒は稀薄溶液であるのでバラツ
キがおきやすい。
[Prior Art] As a conventional method for supporting a catalyst metal on a catalyst carrier, an inorganic porous support layer such as activated aluminum is formed on a honeycomb carrier base material or a three-dimensional network carrier base material to form a catalyst carrier. Then, the catalyst metal is supported on the support layer by pouring the catalyst metal-containing solution from above the catalyst carrier or by immersing the catalyst carrier in the catalyst metal-containing solution. At this time, the support layer easily adsorbs and supports the substance dissolved in the solution, so if the concentration distribution of the solution is non-uniform, the support layer will non-uniformly support the substance. In particular, since negative metal catalysts are dilute solutions, they tend to vary.

この際、触媒金属を担体の担持層に均一に担持させるた
めに触媒金属含有溶液を攪拌機で攪拌したり循環させた
りして濃度を均一に保つようにしている。たとえば、特
公昭60−’! 5383号公報には、担体の吸水量の
8〜20倍mの触媒金属含有溶液を前記担体の孔に沿っ
て流しつつ循環接触させることにより、担体の担持層に
触媒金属を担持させる方法が開示されている。
At this time, in order to uniformly support the catalytic metal on the supporting layer of the carrier, the catalytic metal-containing solution is stirred with a stirrer or circulated to maintain a uniform concentration. For example, Tokko Showa 60-'! Publication No. 5383 discloses a method for supporting a catalytic metal on the supporting layer of a carrier by circulating and contacting a solution containing a catalytic metal in an amount of 8 to 20 times the water absorption amount of the carrier along the pores of the carrier. has been done.

[発明が解決しようとする課題〕 前記の循環方法あるいは攪拌機による殴拌方法では、担
持層への触媒金属の担持量分布は触媒金属含有溶液が担
体に接触するときの流速に支配ざれ、ハニカム状の触媒
担体の場合には触媒金属含有溶液が細孔の流入口付近に
特に多く担持される。
[Problems to be Solved by the Invention] In the above-mentioned circulation method or stirring method using a stirrer, the distribution of the amount of catalyst metal supported on the support layer is controlled by the flow rate when the catalyst metal-containing solution contacts the support, and the catalyst metal-containing solution is formed in a honeycomb shape. In the case of the catalyst carrier, a particularly large amount of the catalytic metal-containing solution is supported near the inlet of the pores.

また同一槽内においても触媒金属含有溶液の濃度分布が
異なるため、各担体間の担持量のバラツギが多くなる。
Furthermore, since the concentration distribution of the catalytic metal-containing solution differs even within the same tank, there is a large variation in the amount supported between each carrier.

さらに循環担持装置の構造上触媒金属含有溶液の循環が
不均一になり易く、同一槽内でも触媒金属含有溶液濃度
のバラツキが発生する。
Further, due to the structure of the circulating support device, the circulation of the catalytic metal-containing solution tends to be uneven, and variations in the concentration of the catalytic metal-containing solution occur even within the same tank.

このため担体への触媒金属担持用にバラツキが生じ同一
性能の触媒が得がたい。また攪拌機を用いて攪拌する方
法では、攪拌機の取付り場所の制約により均一な混合が
されにくい。ざらには浸漬容器への担体の収容体積が制
限されるなどの問題を有している。
This causes variations in the amount of catalyst metal supported on the carrier, making it difficult to obtain catalysts with the same performance. Further, in the method of stirring using a stirrer, it is difficult to achieve uniform mixing due to restrictions on the mounting location of the stirrer. Moreover, there are problems such as the capacity of the carrier to be accommodated in the dipping container is limited.

本発明は前記の問題点を改善すべく成されたもので、触
媒金属を均一に担持させることを目的とする。
The present invention was made in order to improve the above-mentioned problems, and an object of the present invention is to uniformly support a catalytic metal.

[課題を解決するための手段] 本発明の触媒担体への触媒金属担持方法は、多孔質の担
持層をもつ触媒担体を触媒金属含有溶液中に浸漬する浸
漬工程と、該触媒担体を該触媒金属含有溶液から引き上
げ、該触媒台゛属含有溶液にガスを吹込んでバブリング
攪拌する攪拌工程とを交互に繰返し行うことを特徴とす
る。
[Means for Solving the Problems] The method of supporting a catalyst metal on a catalyst carrier of the present invention includes a dipping step of immersing a catalyst carrier having a porous support layer in a catalyst metal-containing solution; It is characterized by alternately repeating a stirring process in which the solution is lifted from a metal-containing solution, and a gas is blown into the solution containing the catalyst base and stirred by bubbling.

触媒担体はハニカム状または三次元網目構造をなし、た
とえばコージェライト、ムライト、スピネル等のモノリ
ス担体が用いられる。さらに金属製のハニカム担体にも
適用できる。この触媒担体には、アルミナ等の多孔質の
担持層が予め形成されており、この担持層に触媒金属が
担持される。
The catalyst carrier has a honeycomb-like or three-dimensional network structure, and for example, a monolithic carrier such as cordierite, mullite, spinel, etc. is used. Furthermore, it can also be applied to metal honeycomb carriers. A porous support layer made of alumina or the like is formed in advance on this catalyst carrier, and the catalyst metal is supported on this support layer.

触媒金属含有溶液は、白金族元素で通常触媒として使用
される水溶性化合物を溶解した溶液である。たとえば、
白金、パラジウム、ロジウムなどの硝酸塩などの水溶液
である。
The catalytic metal-containing solution is a solution in which a water-soluble compound of a platinum group element that is commonly used as a catalyst is dissolved. for example,
It is an aqueous solution of nitrates of platinum, palladium, rhodium, etc.

浸漬工程は触媒担体を触媒金属含有溶液に一定時間浸漬
する■稈であり、触媒担体の内部まで触媒金属含有溶液
に充分浸漬されるようにする。このとき溶液に溶解して
いる触媒金属が担持層に付着して担持される。この際、
触媒担体はハニカムのセルの軸方向に垂直に保持し触媒
金属含有溶液がセル内への侵入および落下を容易にする
ことが好ましい。また、この浸漬には触媒担体を複数個
を同時に軸方向を揃えて浸漬するのが好ましい。
The immersion step is a step in which the catalyst carrier is immersed in the catalytic metal-containing solution for a certain period of time, so that the inside of the catalyst carrier is sufficiently immersed in the catalytic metal-containing solution. At this time, the catalyst metal dissolved in the solution adheres to and is supported on the support layer. On this occasion,
It is preferable that the catalyst carrier is held perpendicular to the axial direction of the cells of the honeycomb so that the catalyst metal-containing solution can easily enter and fall into the cells. Further, in this immersion, it is preferable to immerse a plurality of catalyst carriers at the same time with their axial directions aligned.

また−個でもセルの軸方向に垂直に保持して浸漬しても
よい。
Alternatively, even one cell may be held perpendicular to the axial direction of the cell and immersed.

攪拌工程では、触媒担体を触媒金属含有溶液から引上げ
ると共に、ガスを触媒金属含有溶液に尋人してバブリン
グ攪拌する。このバブリング攪拌により短時間に浸漬槽
内の溶液濃度を均一にすることができる。このとぎセル
内の余分な液は落下して浸漬槽内で攪拌されて再び均一
の濃度の液となる。用いるガスは特に制限されず、空気
、窒素ガスなどが代表的に用いられる。
In the stirring step, the catalyst carrier is pulled up from the catalytic metal-containing solution, and a gas is bubbled into the catalytic metal-containing solution for stirring. This bubbling agitation allows the solution concentration in the dipping tank to be made uniform in a short time. The excess liquid in the rinsing cell falls and is stirred in the immersion tank to become a liquid with a uniform concentration again. The gas used is not particularly limited, and air, nitrogen gas, etc. are typically used.

本発明の最大の特徴は、浸漬工程と攪拌工程とを交互に
繰返す点にある。
The greatest feature of the present invention is that the dipping step and the stirring step are alternately repeated.

すなわら浸漬により濃度が不均一となった触媒金属含有
溶液をバブリング攪拌で濃度分布を均一としたところで
、再度触媒担体を触媒金属含有溶液に浸漬する工程をお
こなう。したがって浸漬工程では絶えず均一な触媒金属
含有溶液に触媒担体を繰返し浸漬することとなり触媒金
属は均一に担持されることになる。
That is, after the concentration distribution of the catalytic metal-containing solution, which has become non-uniform due to immersion, is made uniform by bubbling agitation, the step of immersing the catalyst carrier in the catalytic metal-containing solution is performed again. Therefore, in the dipping step, the catalyst carrier is constantly and repeatedly immersed in a uniform catalyst metal-containing solution, so that the catalyst metal is uniformly supported.

浸漬による触媒金属の担持は比較的短時間で可能である
。またバブリングにより攪拌が短時間で濃度分布を均一
にできるので攪拌工程と浸漬工程を短時間でなんとも繰
返して行うことができるようになった。この操作を所定
時間繰返すことにより担持層に、浸漬工程の繰返しの度
毎に均−i度の溶液が各触媒担体に接触するので触媒が
均一に担持されバラツキが少なくなる。したがって、担
持層への触媒の担持量を均一にすることができる。
The catalyst metal can be supported in a relatively short time by dipping. In addition, since bubbling can make the concentration distribution uniform in a short period of time, it has become possible to repeatedly perform the stirring step and the dipping step in a short period of time. By repeating this operation for a predetermined period of time, each catalyst carrier is brought into contact with a solution of -i degree uniformly on the support layer each time the dipping step is repeated, so that the catalyst is uniformly supported and variations are reduced. Therefore, the amount of catalyst supported on the support layer can be made uniform.

また、複数個の担体間の担持量の不均一も解消すること
ができる。
Furthermore, it is possible to eliminate non-uniformity in the amount of support among a plurality of carriers.

このバブリング撹拌は、攪拌機のように溶液槽に特定の
場所を設けることを必要とUず、たとえば加圧空気を導
入することで均一に触媒金属含有溶液を攪拌することが
できる。また攪拌機とは異なり溶液栖の容積をフルに活
用して担持に利用できる。バブリングはガスの圧力やバ
ブリングガスの間口径や開口形状および開口の位置を調
整することにより攪拌状況を容易に調整することができ
素早く均一な触媒金属含有溶液とすることができる。し
たがってこの浸漬工程と撹拌工程を短時間でなんとも繰
返すことができ短時間で均一に触媒金属を担持すること
ができる。
This bubbling agitation does not require a specific location in the solution tank like a stirrer, and can uniformly stir the catalytic metal-containing solution by introducing pressurized air, for example. Also, unlike a stirrer, the volume of the solution tank can be fully utilized for support. In bubbling, the stirring conditions can be easily adjusted by adjusting the pressure of the gas, the diameter of the bubbling gas, the shape of the aperture, and the position of the aperture, and a uniform catalytic metal-containing solution can be obtained quickly. Therefore, this dipping step and stirring step can be repeated in a short period of time, and the catalyst metal can be evenly supported in a short period of time.

[作用] 本発明の担持方法は、触媒担体を一定時間触媒金属含有
溶液に浸漬した後、該溶液から引−ヒげ、該溶液をバブ
リング攪拌して濃度弁イl−rを均一にする。均一の濃
度分布になったところで再度触媒担体を浸漬する。この
二つの工程を繰返す。触媒担体は常に均一なm度分布の
触媒金属含有溶液中に浸漬されることになり、均一に担
持させることが可能となった。このバブリング攪拌が短
時間で濃度分布を均一にすることができるので、短時間
になんとも浸漬工程と攪拌工程を繰返すことができ、し
かも複数個同時に浸漬しても担体間の触媒金属の担持分
布を均一にできる。
[Function] In the supporting method of the present invention, the catalyst carrier is immersed in a catalyst metal-containing solution for a certain period of time, then removed from the solution, and the solution is stirred by bubbling to make the concentration ratio uniform. Once the concentration distribution is uniform, the catalyst carrier is immersed again. Repeat these two steps. The catalyst carrier was always immersed in a catalyst metal-containing solution with a uniform m-degree distribution, making it possible to support the catalyst uniformly. This bubbling agitation can make the concentration distribution uniform in a short time, so the dipping and stirring processes can be repeated in a short time, and even if multiple supports are dipped at the same time, the distribution of the catalyst metal between them can be maintained. Can be done evenly.

[実施例J 以下実施例により本発明を具体的に説明する。[Example J The present invention will be specifically explained below using Examples.

第1図は支持枠1に担体3を配置したときの模式平面図
である。第2図は支持枠1と溶液槽2との配置の模式説
明図である。第3図は支持枠1を触媒金属含有溶液4の
溶液槽2に浸漬した時の模式説明図である。
FIG. 1 is a schematic plan view when the carrier 3 is placed on the support frame 1. FIG. 2 is a schematic explanatory diagram of the arrangement of the support frame 1 and the solution tank 2. FIG. 3 is a schematic explanatory diagram when the support frame 1 is immersed in the solution tank 2 of the catalyst metal-containing solution 4.

この溶液槽2は、支持枠1を収納でき、かつ担体3の上
面より上に溶液面がくる深さをもち、バブリング用の開
口を有し電磁弁7が配備され空気の導入および停止の切
替を行う空気配管6が複数個溶液槽2に接続され、担体
3を収容した支持枠1を上下に揺動する揺動FjX5が
配置された構成となっている。
This solution tank 2 can accommodate the support frame 1, has a depth such that the solution surface is above the top surface of the carrier 3, has an opening for bubbling, and is equipped with a solenoid valve 7 for switching between introducing and stopping air. A plurality of air pipes 6 for performing this are connected to the solution tank 2, and a swing FjX5 for swinging the support frame 1 containing the carrier 3 up and down is arranged.

第3図のように支持枠1を溶液槽2に浸漬させ、一定時
間保った後、揺動機5で支持枠1を引上げ触媒金属含有
溶液4から取出す、これと同時に電磁弁7を開放状態に
して空気を空気配管6より導入し触媒金属含有溶液4を
エアーバブリングする。
As shown in Fig. 3, the support frame 1 is immersed in the solution bath 2, and after being kept for a certain period of time, the support frame 1 is pulled up by the rocker 5 and taken out from the catalyst metal-containing solution 4. At the same time, the solenoid valve 7 is opened. Then, air is introduced from the air pipe 6 to bubble the catalyst metal-containing solution 4 with air.

すると触媒金属含有溶液4の濃度分布は均一になる。そ
こで電磁弁7を閉じ、揺動機5により支持枠1を下降さ
せて触媒金属含有溶液4に触媒担体3を浸漬させる。こ
の操作を繰返すことにより均一の担持量を有する触媒が
作成できる。
Then, the concentration distribution of the catalyst metal-containing solution 4 becomes uniform. Then, the electromagnetic valve 7 is closed, and the support frame 1 is lowered by the swinger 5 to immerse the catalyst carrier 3 in the catalyst metal-containing solution 4. By repeating this operation, a catalyst having a uniform amount of support can be produced.

(実施例1) Y−アルミナを主成分とするコート層を有するハニカム
担体(938φX100m1400セル/1n2)を9
個(3列×3個)支持枠1に収容した。触媒金属含有溶
液4は、白金6.1gを含む塩化白金酸水溶液10.O
,ffを調整して溶液槽2にいれた。次に支持枠1を下
降させて担体3を触媒金属含有溶液4中に浸漬した。4
0秒後支持枠1を上昇させるとともに触媒金属含有溶液
4に空気配管6より空気を導入してエアーバブリングを
10秒問おこなった。そのあと再び支持枠1を下降して
担体3を触媒金属含有溶液4中に浸漬した。この操作の
繰返しを60分間おこなった。
(Example 1) A honeycomb carrier (938φX100m1400 cells/1n2) having a coating layer mainly composed of Y-alumina was
(3 rows x 3 pieces) were accommodated in the support frame 1. The catalytic metal-containing solution 4 was an aqueous chloroplatinic acid solution containing 6.1 g of platinum. O
, ff were adjusted and placed in the solution tank 2. Next, the support frame 1 was lowered and the carrier 3 was immersed in the catalyst metal-containing solution 4. 4
After 0 seconds, the support frame 1 was raised, and air was introduced into the catalyst metal-containing solution 4 from the air pipe 6 to perform air bubbling for 10 seconds. Thereafter, the support frame 1 was lowered again and the carrier 3 was immersed in the catalyst metal-containing solution 4. This operation was repeated for 60 minutes.

(比較例1) 実施例1と同じ担体に実施例1と同じ白金6゜0gを含
む塩化白金酸水溶液を20.0fI調整し、従来のポン
プによる強制担持液循環方式で60分−間の担持をおこ
なった。
(Comparative Example 1) A chloroplatinic acid aqueous solution containing 6.0 g of the same platinum as in Example 1 was adjusted to 20.0 fI on the same carrier as in Example 1, and supported for 60 minutes using a forced support liquid circulation method using a conventional pump. was carried out.

この実施例と比較例の各担体について触媒の白金担持量
分布比を調べた。結果を第5図の△および八−の線グラ
フで示す。実施例の9個の担体はいずれも約1.0の分
布比を示し均一に触媒金属が担持されているが、比較例
の場合は■、■、■の担持量分布比が他の場合より高く
中央の■は一段と高く隅に配置されたものは実施例より
低く均一に担持されていないことを示している。
The distribution ratio of the amount of platinum supported on the catalyst was investigated for each carrier of this Example and Comparative Example. The results are shown in the △ and 8- line graphs in FIG. All of the nine supports in the examples showed a distribution ratio of about 1.0 and the catalyst metal was supported uniformly, but in the case of the comparative examples, the supported amount distribution ratios of ■, ■, and ■ were higher than in the other cases. The high square mark in the center indicates that those placed in the corners are lower than those in the example and are not supported uniformly.

(実施例2) 実施例1の触媒金属含有溶液4の白金をロジウム1.2
gを含む塩化ロジウム水溶液に代えた以外は同様の方法
で触媒を担持した。
(Example 2) Platinum in catalyst metal-containing solution 4 of Example 1 was replaced with 1.2 rhodium.
The catalyst was supported in the same manner except that the rhodium chloride aqueous solution containing g was used instead.

(比較例2) 比較例1と同一条件において白金に代えてロジウム1.
2gを含む塩化ロジウム水溶液を用い担持した。
(Comparative Example 2) Under the same conditions as Comparative Example 1, rhodium 1.
It was supported using an aqueous rhodium chloride solution containing 2 g.

この実施例2および比較例2の各担体について触媒のロ
ジウム担持量分イfi比を調べた。結果を第6図の8お
よびB−の線グラフに示す。実施例の8の線グラフは直
線であるが比較例のB′は波状で均一に担持されていな
い。支持枠の隅に位置している担体の担持量分布比が低
い。
For each of the carriers of Example 2 and Comparative Example 2, the ifi ratio was determined based on the amount of rhodium supported on the catalyst. The results are shown in the line graphs 8 and B- in FIG. The line graph of Example 8 is a straight line, but the line graph of Comparative Example B' is wavy and not uniformly supported. The supported amount distribution ratio of the carrier located at the corner of the support frame is low.

(実施例3) 第4図に示すように支持枠にハニカム担体(93M1φ
X100mL)を6個収容し4.0gの白金を含む塩化
白金酸水溶液10.0Jを調整し、実施例1と同様の方
法で浸漬工程と攪拌工程を繰返し触媒を担持した。
(Example 3) As shown in Fig. 4, a honeycomb carrier (93M1φ
10.0 J of a chloroplatinic acid aqueous solution containing 4.0 g of platinum was prepared, and the dipping step and stirring step were repeated in the same manner as in Example 1 to support the catalyst.

(比較例3) 実施例3と同じ担体に実施例3と同じ白金4゜0gを含
む塩化白金酸水溶液を20.0.11調整し比較例1と
同一方法で60分間担持をおこなった。
(Comparative Example 3) A chloroplatinic acid aqueous solution containing 4.0 g of platinum as in Example 3 was prepared in an amount of 20.0.11 on the same carrier as in Example 3, and supported in the same manner as in Comparative Example 1 for 60 minutes.

この実施例3および比較例3の各担体について触媒の白
金担持量分布比を調べた。結果を第7図のCおよびC′
の線グラフに示す。実施例3のCは直線で均一に担持さ
れているが、比較例3は右肩あがりで内側のみが多く担
持され実施例のCより高いが壁側は逆に低い。均一な担
持がなされないことを示している。
For each of the carriers of Example 3 and Comparative Example 3, the distribution ratio of the amount of platinum supported on the catalyst was investigated. The results are shown in C and C' in Figure 7.
This is shown in the line graph. C in Example 3 is straight and evenly supported, whereas Comparative Example 3 is higher on the right shoulder and is more supported only on the inside, and is higher than C in Example, but on the contrary, it is lower on the wall side. This indicates that uniform loading is not achieved.

(実施例4) Y−アルミナが主成分のコート層を有する三次元網目構
造のセラミックス担体3(93mMφ×100mL13
メツシュ)を9個支持枠に収容し実施例1と同様にして
触媒を担持した。
(Example 4) Ceramic carrier 3 with a three-dimensional network structure having a coating layer mainly composed of Y-alumina (93 mmφ×100 mL 13
A catalyst was supported in the same manner as in Example 1 by housing nine pieces of mesh in a support frame.

(比較例4) 実施例4と同じ担体を比較例1と同一方法同一条イ41
において担持をおこなった。
(Comparative Example 4) The same carrier as in Example 4 was used in the same manner as in Comparative Example 1.
We carried out the support at

この実施例4および比較例4の各担体について触媒の白
金担持聞分イ「比を調べた。結果を第8図のDおよびD
−の線グラフに示す。実施例4のDは直線を示し均一に
担持されていることを示しているが、比較例のD′は波
形のグラフで均一に担持されていないことを示している
The platinum loading ratio of the catalyst was investigated for each carrier in Example 4 and Comparative Example 4. The results are shown in D and D in Figure 8.
- Shown in the line graph. D in Example 4 shows a straight line indicating that the particles are uniformly supported, whereas D' in Comparative Example shows a waveform graph indicating that the particles are not uniformly supported.

(実施例5) 実施例1で得た触媒をA1とし、第9図に示すように上
中下(a、b、c)の3部分にわけて白金の担持量を測
定した。結果を第10図に示す。
(Example 5) The catalyst obtained in Example 1 was designated as A1, and as shown in FIG. 9, the amount of platinum supported was measured by dividing it into three parts, top, middle, and bottom (a, b, and c). The results are shown in FIG.

(比較例5) 比較例1で得た触媒をA′1として、実施例5と同様に
a、b、cの上中下の3部分に分け、それぞれの位置の
白金担持量を測定した結果を第1O図に示した。
(Comparative Example 5) The catalyst obtained in Comparative Example 1 was designated as A'1, and was divided into three parts a, b, and c, upper, middle, and lower, as in Example 5, and the amount of platinum supported at each position was measured. is shown in Figure 1O.

実施例のA1は担体内の部位による変化はなく均一に担
持されているが、比較例のA−1の場合は下方のCが多
く上方のaが少なく均一に担持されていない。
In the case of A1 of the example, there is no change depending on the location within the carrier, and the support is uniform, but in the case of A-1 of the comparative example, there is more C in the lower part and less a in the upper part, and the support is not uniform.

(触媒金属含有溶液の位置による濃度差)実施例1およ
び比較例1の方法で担持した時、溶液槽を第11図に示
す様に中央部d、壁沿い部e1溶液槽の隅部fにおける
触媒金属含有溶液中の触媒金属の担持時間の経過と共に
減少する濃度変化を第12図に示す(触媒金属含有溶液
の濃度はホールピペットによりサンプリング1.3.5
.10分およびその後は、10毎に採取して測定した。
(Concentration difference depending on the position of the catalyst metal-containing solution) When the catalyst metal-containing solution was supported by the method of Example 1 and Comparative Example 1, the solution tank was as shown in FIG. Figure 12 shows the concentration change of the catalytic metal in the catalytic metal-containing solution, which decreases with the passage of time for supporting the catalytic metal (the concentration of the catalytic metal-containing solution was sampled with a whole pipette in 1.3.5).
.. Samples were taken and measured at 10 minutes and every 10 minutes thereafter.

)。実施例1の場合はどの位置も同じ濃度変化を示しで
tI)るが、比較例1の場合は3箇所の濃度変化に差が
認められる。したがって、担体に担持される触媒金属の
量もバラツキがおきていると想定される。
). In the case of Example 1, the density changes are the same at all positions, but in the case of Comparative Example 1, differences are observed in the density changes at the three locations. Therefore, it is assumed that the amount of catalyst metal supported on the carrier also varies.

(触媒の性能評価) また実施例1および比較例1で得た触媒を20OOCC
のエンジンの排気系に取付は常法の耐久試験をおこない
炭化水素、−酸化炭素および窒素酸化物の浄化率を調べ
た。結果を第13.14.15図の線グラフで示した。
(Performance evaluation of catalyst) In addition, the catalysts obtained in Example 1 and Comparative Example 1 were
The product was installed in the exhaust system of an engine, and was subjected to a conventional durability test to examine the purification efficiency of hydrocarbons, carbon oxides, and nitrogen oxides. The results are shown in line graphs in Figures 13, 14, and 15.

実施例のA1の場合の方が比較例のA”1より耐久時間
の増加による浄化率の低下が少ない。すなわち触媒性能
が優れていることを示している。
In the case of A1 of the example, the reduction in purification rate due to an increase in durability time is smaller than in the case of A''1 of the comparative example. In other words, this shows that the catalyst performance is excellent.

[効果] 本発明の方法によれば、攪拌工程においてバブリングす
ることにより、浸漬工程における溶液槽内での触媒金属
含有溶液の濃度分布を均一にすることができる。したが
って、この浸漬工程と攪拌工程とを交互に繰返すことに
より触媒担体間および同−触媒担体内の触媒金属の担持
量のバラツキを無くすことができる。また−度に多数個
の担持がおこなえ、しかも同一品質の触媒を得ることが
できる。
[Effects] According to the method of the present invention, by bubbling in the stirring step, the concentration distribution of the catalyst metal-containing solution in the solution tank in the dipping step can be made uniform. Therefore, by repeating the dipping step and the stirring step alternately, it is possible to eliminate variations in the amount of catalyst metal supported between and within the catalyst carriers. Moreover, a large number of catalysts can be supported at the same time, and catalysts of the same quality can be obtained.

またこの方法で得られた触媒は、触媒金属が均一に担持
されているため、耐久俊の性能が従来のものに比へて優
れている。
In addition, the catalyst obtained by this method has superior durability and performance compared to conventional catalysts because the catalytic metal is uniformly supported.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図より第4図までは本工程を説明する模式図であり
、第1図は支持枠に担体基材を荷載したときの平面図、
第2図は第1図の支持枠を触媒金属含有溶液に浸漬する
工程の模式図、第3図は浸漬時の模式図、第4図は第1
図の担体基材の荷載数を6とした場合の配置図、第5図
は実施例1および比較例1の担持足分布比を示すグラフ
であり、第6図は実施例2および比較例2の担Kfi分
イE比を示すグラフであり、第7図は実施例3および比
較例3の担持量分布比を示すグラフであり、第8図は実
施例4および比較例4の担持聞分4h比を示すグラフで
あり、第9図は触媒担体の担持弁イ11を比較する部位
を示す模式図、第10図は実施例5および比較例5の担
持量分布比を示すグラフであり、第11図は触媒金属含
有溶液の濃度変化を調べる支持枠の部位を示す平面図、
第12図は第11図に示す部位の触媒金属含有溶液の担
持時間による6%a変化を示すグラフ、第13.14.
15図は実施例と比較例の耐久後の浄化率を示すグラフ
であり、第13図はHCの浄化率、第14図はCOの浄
化率、第15図はNOXの浄化率を示す。 1・・・支持枠 3・・・担体 6・・・空気配管
FIG. 1 to FIG. 4 are schematic diagrams for explaining this process, and FIG. 1 is a plan view when the carrier base material is loaded on the support frame;
Figure 2 is a schematic diagram of the process of immersing the support frame in Figure 1 in a catalyst metal-containing solution, Figure 3 is a schematic diagram of the process of immersion, and Figure 4 is a schematic diagram of the process of immersing the support frame in Figure 1.
The figure shows the arrangement when the number of loaded carrier base materials is 6, FIG. 5 is a graph showing the supported foot distribution ratio of Example 1 and Comparative Example 1, and FIG. 6 is a graph showing the carrier foot distribution ratio of Example 2 and Comparative Example 2 FIG. 7 is a graph showing the supported amount distribution ratio of Example 3 and Comparative Example 3, and FIG. 8 is a graph showing the supported amount distribution ratio of Example 4 and Comparative Example 4. 4h ratio, FIG. 9 is a schematic diagram showing the portions of the catalyst carrier supporting valve 11 to be compared, and FIG. 10 is a graph showing the supported amount distribution ratio of Example 5 and Comparative Example 5. FIG. 11 is a plan view showing the part of the support frame for examining the concentration change of the catalyst metal-containing solution;
FIG. 12 is a graph showing the 6% a change depending on the supporting time of the catalytic metal-containing solution in the portions shown in FIG. 11, 13.14.
FIG. 15 is a graph showing the purification rate after durability of the example and the comparative example. FIG. 13 shows the HC purification rate, FIG. 14 shows the CO purification rate, and FIG. 15 shows the NOX purification rate. 1... Support frame 3... Carrier 6... Air piping

Claims (1)

【特許請求の範囲】[Claims] 多孔質の担持層をもつ触媒担体を触媒金属含有溶液中に
浸漬する浸漬工程と、該触媒担体を該触媒金属含有溶液
から引き上げ該触媒金属含有溶液にガスを吹込んでバブ
リング撹拌する攪拌工程とを交互に繰返し行うことを特
徴とする触媒担体への触媒金属の担持方法。
An immersion step in which a catalyst carrier having a porous support layer is immersed in a catalytic metal-containing solution; and a stirring step in which the catalyst carrier is lifted from the catalytic metal-containing solution and gas is blown into the catalytic metal-containing solution to stir it by bubbling. A method for supporting a catalytic metal on a catalyst carrier, characterized in that the method is carried out alternately and repeatedly.
JP1044037A 1989-02-23 1989-02-23 Method for supporting catalytic metal on catalyst carrier Pending JPH02222730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1044037A JPH02222730A (en) 1989-02-23 1989-02-23 Method for supporting catalytic metal on catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1044037A JPH02222730A (en) 1989-02-23 1989-02-23 Method for supporting catalytic metal on catalyst carrier

Publications (1)

Publication Number Publication Date
JPH02222730A true JPH02222730A (en) 1990-09-05

Family

ID=12680427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1044037A Pending JPH02222730A (en) 1989-02-23 1989-02-23 Method for supporting catalytic metal on catalyst carrier

Country Status (1)

Country Link
JP (1) JPH02222730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068040A (en) * 2003-08-21 2005-03-17 Mitsubishi Chemicals Corp Method for producing porphyrin compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005068040A (en) * 2003-08-21 2005-03-17 Mitsubishi Chemicals Corp Method for producing porphyrin compound

Similar Documents

Publication Publication Date Title
US4550034A (en) Method of impregnating ceramic monolithic structures with predetermined amounts of catalyst
PL100189B1 (en) DEVICE FOR MULTI-STAGE SATURATION WITH CATALYTIC AGENT FOR POROUS CATALYST
CN102245281A (en) Method and catalyst for removal of nitrogen oxides in a flue gas
KR20120105554A (en) Method of coating a monolith substrate with catalyst component
CN114177919A (en) Method for preparing monolithic metal-based environmental catalyst by metal replacement method
JPH02222730A (en) Method for supporting catalytic metal on catalyst carrier
US20040116288A1 (en) Catalyst support with intersecting channel network, catalysis reactor comprising same and method for making same
EP0441062A1 (en) Method for purification of exhaust gas and apparatus therefor
JP3754095B2 (en) Method and apparatus for applying slurry to tubular honeycomb body
US3983052A (en) Process for rejuvenating automobile emission control catalysts
JPS62117633A (en) Production of monolithic catalyst
JPS6012136A (en) Coating and supporting method of monolithic carrier
JP2005131551A (en) Catalyst for purifying exhaust gas
JPS6118438A (en) Manufacture of monolithic catalyst
WO2020105545A1 (en) Exhaust-gas purification apparatus and method for manufacturing same
JPH01135543A (en) Preparation of monolith-type catalyst
JPH02203940A (en) Method for supporting catalytic metal on carrier
KR100747167B1 (en) Method for manufacturing double layered three way catalyst with zone coating
CN104801300A (en) MnOx-CeO2 oxide catalysts, filter preparation method and tail gas treatment system
EP3424596A1 (en) Method for coating a monolith carrier
JP7386916B2 (en) Method for manufacturing exhaust gas purification catalyst and chemical solution tray used in the manufacturing method
CN111375416A (en) Monolithic catalyst having perovskite oxide skeleton and method for producing same
JPS634003B2 (en)
CN113348035B (en) Method for producing an exhaust gas catalyst for motor vehicles
JPH10280950A (en) Diesel exhaust emission controlling catalyst